

Supporting Information

for

Chemical and biosynthetic potential of *Penicillium shentong* XL-F41

Ran Zou, Xin Li, Xiaochen Chen, Yue-Wei Guo and Baofu Xu

Beilstein J. Org. Chem. 2024, 20, 597–606. doi:10.3762/bjoc.20.52

NMR and mass spectra of isolated compounds

License and Terms: This is a supporting information file under the terms of the Creative Commons Attribution License (https://creativecommons.org/ licenses/by/4.0). Please note that the reuse, redistribution and reproduction in particular requires that the author(s) and source are credited and that individual graphics may be subject to special legal provisions.

Table of contents

Figure S1. ¹ H NMR spectrum (600 MHz, chloroform-d) of 1	S3
Figure S2. ¹³ C NMR spectrum (600 MHz, chloroform-d) of 1	S3
Figure S3. HSQC spectrum (600 MHz, chloroform-d) of 1	S4
Figure S4. ¹ H- ¹ H COSY spectrum (600 MHz, chloroform-d) of 1	S4
Figure S5. HMBC spectrum (600 MHz, chloroform-d) of 1	S5
Figure S6. NOESY spectrum (600 MHz, chloroform-d) of 1	S5
Figure S7. HRESIMS spectrum of 1	S6
Figure S8. FT-IR spectrum of compound 1	S6
Figure S9. Chemical structure of compound 1	S7
Figure S10. ¹ H NMR spectrum (600 MHz, chloroform-d) of 2	S8
Figure S11. ¹³ C NMR spectrum (600 MHz, chloroform-d) of 2	S8
Figure S12. HSQC spectrum (600 MHz, chloroform-d) of 2	S9
Figure S13. ¹ H- ¹ H COSY spectrum (600 MHz, chloroform-d) of 2	S9
Figure S14. HMBC spectrum (600 MHz, chloroform-d) of 2	S10
Figure S15. NOESY spectrum (600 MHz, chloroform-d) of 2	S10
Figure S16. HRESIMS spectrum of 2	S11
Figure S17. FT-IR spectrum of compound 2	S11
Figure S18. Chemcial structure of compound 2	S12
Figure S19. ¹ H NMR spectrum (600 MHz, chloroform-d) of 3	S13
Figure S20. ¹³ C NMR spectrum (600 MHz, chloroform-d) of 3	S13
Figure S21. HSQC spectrum (600 MHz, chloroform-d) of 3	S14
Figure S22. ¹ H- ¹ H COSY spectrum (600 MHz, chloroform-d) of 3	S14
Figure S23. HMBC spectrum (600 MHz, chloroform-d) of 3	S15

Figure S24. NOESY spectrum (600 MHz, chloroform-d) of 3	S15
Figure S25. LC-MS spectrum of 3	S16
Figure S26. FT-IR spectrum of compound 3	S16
Figure S27. Chemcial structure of compounds 3	S16
Figure S28. ¹ H NMR spectrum (600 MHz, chloroform-d) of 4	S17
Figure S29. ¹ H NMR spectrum (600 MHz, chloroform-d) of 5	S18
Figure S30. ¹ H NMR spectrum (600 MHz, acetone- <i>d</i> ₆) of 6	S19
Figure S31. ¹ H NMR spectrum (600 MHz, acetone- <i>d</i> ₆) of 7	S20
Figure S32. ¹ H NMR spectrum (600 MHz, chloroform-d) of 8	S21
Figure S33. ¹ H NMR spectrum (600 MHz, chloroform-d) of 9	522
Figure S34. ¹ H NMR spectrum (600 MHz, chloroform-d) of 10	S23
Figure S35. ¹ H NMR spectrum (600 MHz, acetone- <i>d</i> ₆) of 11	S24
Figure S36.1H NMR spectrum (600 MHz, methanol-d4) of 12	S25
Figure S37. The biosynthetic pathways of the quinoline ring formation	S26
References	S27

Figure S1. ¹H NMR spectrum (600 MHz, chloroform-d) of **1**

Figure S2. ¹³C NMR spectrum (600 MHz, chloroform-d) of **1**

Figure S3. HSQC spectrum (600 MHz, chloroform-d) of 1

Figure S4. ¹H-¹H COSY spectrum (600 MHz, chloroform-d) of **1**

Figure S5. HMBC spectrum (600 MHz, chloroform-d) of 1

Figure S6. NOESY spectrum (600 MHz, chloroform-d) of 1

Figure S7. HRESIMS spectrum of 1

Figure S8. FT-IR spectrum of compound 1

Figure S9. Chemical structure of compound 1

Figure S10. ¹H NMR spectrum (600 MHz, chloroform-d) of 2

Figure S11. ¹³C NMR spectrum (600 MHz, chloroform-d) of 2

Figure S12. HSQC spectrum (600 MHz, chloroform-d) of 2

Figure S13. ¹H-¹H COSY spectrum (600 MHz, chloroform-d) of **2**

Figure S14. HMBC spectrum (600 MHz, chloroform-d) of 2

Figure S15. NOESY spectrum (600 MHz, chloroform-d) of 2

Figure S16. HRESIMS spectrum of 2

Figure S17. FT-IR spectrum of compound 2

Figure S18. Chemcial structure of compound 2

Figure S19. ¹H NMR spectrum (600 MHz, chloroform-d) of 3

Figure S20. ¹³C NMR spectrum (600 MHz, chloroform-d) of **3**

Figure S21. HSQC spectrum (600 MHz, chloroform-d) of 3

Figure S22. ¹H-¹H COSY spectrum (600 MHz, chloroform-d) of **3**

Figure S23. HMBC spectrum (600 MHz, chloroform-d) of 3

Figure S24. NOESY spectrum (600 MHz, chloroform-d) of 3

Figure S25. LC-MS spectrum of 3

Figure S26. FT-IR spectrum of compound 3

Figure S27. Chemcial structure of compounds 3

Figure S28. ¹H NMR spectrum (600 MHz, chloroform-d) of 4

¹H NMR (600 MHz, chloroform-d) δ 8.11 (s, 1H), 8.02 (s, 1H), 7.69 (dd, J = 8.0, 1.0 Hz, 1H), 7.63 (dd, J = 8.0, 1.0 Hz, 1H), 7.36 (d, J = 8.2 Hz, 1H), 7.34 (d, J = 8.1 Hz, 1H), 7.22 – 7.15 (m, 3H), 7.12 – 7.05 (m, 2H), 4.76 (d, J = 7.2 Hz, 1H), 4.56 (tt, J = 7.1, 3.6 Hz, 1H), 3.78 (ddd, J = 10.9, 7.2, 3.5 Hz, 1H), 3.66 (ddd, J = 11.4, 6.7, 4.9 Hz, 1H), 2.26 (d, J = 3.9 Hz, 1H), 2.01 (dd, J = 7.3, 5.1 Hz, 1H).Compound **4** was determined by comparison of its spectroscopic data with fusarindole B in the literature [1].

Figure S29. ¹H NMR spectrum (600 MHz, chloroform-d) of 5

¹H NMR (600 MHz, chloroform-d) δ 6.64 (d, J = 1.5 Hz, 1H), 6.61 (dd, J = 8.6, 3.8 Hz, 1H), 6.35 (d, J = 2.5 Hz, 1H), 6.27 (d, J = 2.6 Hz, 1H), 4.92 – 4.84 (m, 1H), 4.02 (d, J = 17.7 Hz, 1H), 3.53 (d, J = 17.7 Hz, 1H), 2.47 (d, J = 8.5 Hz, 1H), 2.38 – 2.29 (m, 1H), 1.98 (q, J = 9.3, 7.6 Hz, 1H), 1.93 – 1.86 (m, 1H), 1.66 (d, J = 4.9 Hz, 1H), 1.65 – 1.63 (m, 1H), 1.25 (s, 3H). Compound **5** was determined by comparison of its spectroscopic data with dehydrocurvularin in the literature [2].

Figure S30. ¹H NMR spectrum (600 MHz, acetone-*d*₆) of **6**

¹H NMR (600 MHz, acetone- d_6) δ 6.43 (d, J = 2.3 Hz, 1H), 6.34 (d, J = 2.3 Hz, 1H), 4.95 (td, J = 6.6, 3.5 Hz, 1H), 3.99 (ddt, J = 10.4, 7.0, 3.6 Hz, 1H), 3.82 (d, J = 15.4 Hz, 1H), 3.68 (d, J = 15.4 Hz, 1H), 3.31 (d, J = 3.2 Hz, 1H), 3.08 (dd, J = 13.9, 10.0 Hz, 1H), 1.81 - 1.33 (m, 6H), 1.12 (d, J = 6.4 Hz, 3H). Compound **6** was determined by comparison of its spectroscopic data with hydroxycurvularin in the literature [3].

Figure S31. ¹H NMR spectrum (600 MHz, acetone-*d*₆) of **7**

¹H NMR (600 MHz, acetone- d_6) δ 6.39 (d, J = 2.3 Hz, 1H), 6.34 (d, J = 2.3 Hz, 1H), 4.91 (dqd, J = 9.0, 6.3, 2.8 Hz, 1H), 3.77 (d, J = 15.7 Hz, 1H), 3.70 (d, J = 15.6 Hz, 1H), 3.11 (ddd, J = 15.5, 8.6, 3.0 Hz, 1H), 2.77 (ddd, J = 15.5, 9.8, 3.0 Hz, 1H), 1.80 - 1.68 (m, 1H), 1.60 (ddt, J = 14.3, 7.9, 3.2 Hz, 1H), 1.56 - 1.49 (m, 1H), 1.49 - 1.37 (m, 3H), 1.35 - 1.21 (m, 2H), 1.11 (d, J = 6.3 Hz, 3H). Compound **7** was determined by comparison of its spectroscopic data with curvularin in the literature [4].

Figure S32. ¹H NMR spectrum (600 MHz, chloroform-d) of 8

¹H NMR (600 MHz, chloroform-d) δ 6.32 (d, J = 2.3 Hz, 1H), 6.28 – 6.24 (m, 1H), 5.12 (s, 1H), 4.85 (q, J = 6.1, 5.6 Hz, 1H), 4.56 (d, J = 17.4 Hz, 1H), 3.42 (d, J = 17.4 Hz, 1H), 3.20 (dd, J = 17.7, 7.6 Hz, 1H), 2.62 (d, J = 17.7 Hz, 1H), 2.23 (s, 1H), 1.66 – 1.49 (m, 2H), 1.44 – 1.31 (m, 3H), 1.30 – 1.22 (m, 1H), 1.01 (d, J = 6.6 Hz, 3H). Compound **8** was determined by comparison of its spectroscopic data with curvulopyran in the literature [5].

Figure S33. ¹H NMR spectrum (600 MHz, chloroform-d) of 9

¹H NMR (600 MHz, chloroform-d) δ 7.18 (s, 1H), 2.65 (dd, J = 7.1, 1.9 Hz, 2H), 2.55 (h, J = 7.1 Hz, 1H), 2.21 (dh, J = 13.5, 6.7 Hz, 1H), 1.75 (dt, J = 13.7, 7.5 Hz, 1H), 1.65 (dp, J = 14.4, 7.3 Hz, 2H), 1.32 (d, J = 7.0 Hz, 3H), 0.97 (d, J = 6.7 Hz, 6H), 0.91 (t, J = 7.4 Hz, 3H). Compound **9** was determined by comparison of its spectroscopic data with (S)-6-(sec-butyl)-3-isobutylpyrazin-2(1H)-one in the literature [6].

Figure S34. ¹H NMR spectrum (600 MHz, chloroform-d) of **10**

¹H NMR (600 MHz, chloroform-d) δ 7.19 (s, 1H), 3.23 (h, J = 6.9 Hz, 1H), 2.53 (h, J = 7.1 Hz, 1H), 1.87 – 1.77 (m, 1H), 1.71 (dt, J = 13.8, 7.5 Hz, 1H), 1.64 (dt, J = 14.1, 7.2 Hz, 1H), 1.54 (dt, J = 13.4, 7.3 Hz, 1H), 1.30 (d, J = 7.0 Hz, 3H), 1.21 (d, J = 6.9 Hz, 3H), 0.90 (td, J = 7.4, 2.9 Hz, 6H). Compound **10** was determined by comparison of its spectroscopic data with 3,6-di-sec-butyl-2(1H)-pyrazinone in the literature [6].

Figure S35. ¹H NMR spectrum (600 MHz, acetone-*d*₆) of **11**

¹H NMR (600 MHz, acetone- d_6) δ 8.13 (s, 1H), 8.05 (d, J = 8.7 Hz, 1H), 7.47 (d, J = 8.5 Hz, 2H), 6.98 (dd, J = 8.8, 2.3 Hz, 1H), 6.88 (d, J = 2.6 Hz, 2H), 6.87 (d, J = 2.3 Hz, 1H). Compound **11** was determined by comparison of its spectroscopic data with daidzein in the literature [7].

Figure S36.1H NMR spectrum (600 MHz, methanol-d₄) of **12**

¹H NMR (600 MHz, methanol- d_4) δ 8.02 (s, 1H), 7.36 (d, J = 8.3 Hz, 2H), 6.84 (d, J = 8.3 Hz, 2H), 6.31 (d, J = 2.1 Hz, 1H), 6.20 (d, J = 2.1 Hz, 1H). Compound **12** was determined by comparison of its spectroscopic data with genistein in the literature [8].

Figure S37. The biosynthetic pathways of the quinoline ring formation

A: The formation of primary metabolic pathways of quinoline rings [9] **B**: The formation of secondary metabolic pathways reported on quinoline rings[10]

Supplementary References

 Dai XM; Pan HL; Lan WJ; Chen LP; Feng GK; Deng R; Zhu XF; Li HJ. *Phytochemistry.* 2022, 204, 113456. doi: 10.1016/j.phytochem.2022.113456
Arai, K; Rawlings, B.J; Yoshizawa, Y; Vederas, J.C. J. Am. Chem. Soc. 1989, 111, 3391-3399. doi: 10.1021/JA00191A042

3. Liu Y; Li Z; Vederas J.C. *Tetrahedron.* **1998**, *54*, 15937-15958. doi: 10.1016/S0040-4020(98)01003-5

4. Ghisalberti E.L; Hockless D.C; Rowland C.Y; White A.H. *Aust. J. Chem.* **1993**, *46*, 571-575. doi: 10.1002/CHIN.199330293

5. Choochuay J; Xu X; Rukachaisirikul V; Guedduaythong P; Phongpaichit S; Sakayaroj J; Chen J; Shen X. *Phytochem. Lett.* **2017**, *22*, 122-127. doi: 10.1016/J.PHYTOL.2017.09.011

Shaala L.A; Youssef D.T; Badr J.M; Harakeh S.M. *Molecules*. 2016, *21*, 1116. doi: 10.3390/molecules21091116.

7. Lee S. J; Baek H. J; Lee C. H; Kim H. P. *Arch. Pharm. Res.* **1994**, *17*, 31-35. doi: 10.1007/BF02978244.

 Selepe M.A; Drewes S.E; van Heerden F.R. *J. Nat. Prod.* 2010, 73, 1680– 1685. doi: 10.1021/np100407n. doi:10.1126/science.aaf9794

9. Červenka I; Agudelo L.Z; Ruas J.L. Science. **2017**, *357*, 6349. doi:10.1126/science.aaf9794

10. Trenti F; Yamamoto K; Hong B; Paetz C; Nakamura Y; O'Connor S.E. Early and Late Steps of Quinine Biosynthesis. Org. Lett. **2021**, *23*, 1793-1797. doi:10.1021/acs.orglett.1c00206