

Supporting Information

for

Synthesis of new representatives of A₃B-type carboranylporphyrins based on *meso*-tetra(pentafluorophenyl)porphyrin transformations

Victoria M. Alpatova, Evgeny G. Rys, Elena G. Kononova and Valentina A. Ol'shevskaya

Beilstein J. Org. Chem. 2024, 20, 767–776. doi:10.3762/bjoc.20.70

Experimental details and characterization data

License and Terms: This is a supporting information file under the terms of the Creative Commons Attribution License (https://creativecommons.org/ licenses/by/4.0). Please note that the reuse, redistribution and reproduction in particular requires that the author(s) and source are credited and that individual graphics may be subject to special legal provisions.

Table of contents

1.	Synthesis (general remarks)	S4
2.	Synthesis and characterization of new A ₃ B-type porphyrins	S4
3.	The ¹ H and ¹⁹ F NMR spectra of 5-(4-azido-2,3,5,6-tetrafluorophenyl)-	S13
	10,15,20-tris(pentafluorophenyl)porphyrin (2)	
4.	The ¹ H and ¹⁹ F NMR spectra of 5-(4-amino-2,3,5,6-tetrafluorophenyl)-	S14
	10,15,20-tris(pentafluorophenyl)porphyrin (3)	
5.	The ¹ H, ¹⁹ F and ¹¹ B NMR spectra of 5-[4-amino-2,3,5,6-	S15
	tetrafluorophenyl]-10,15,20-tris{[4-(<i>m</i> -carboran-9'-yl)thio]-2,3,5,6-	
	tetrafluorophenyl}porphyrin (5)	
6.	The ¹ H, ¹⁹ F and ¹¹ B NMR spectra of 5, 10, 15-tris{[4-(<i>m</i> -carboran-9'-	S16
	yl)thio]-2,3,5,6-tetrafluorophenyl}-20-(2,3,4,5,6-	
	pentafluorophenyl]porphyrin (6)	
7.	The ¹ H, ¹⁹ F and ¹¹ B NMR spectra of 5-[4-azido-2,3,5,6-	S17
	tetrafluorophenyl]-10,15,20-tris{[4-(m-carboran-9'-yl)thio]-2,3,5,6-	
	tetrafluorophenyl}porphyrin (7)	
8.	The ¹ H, ¹⁹ F and ¹¹ B NMR spectra of 5,10,15-tris{[(<i>m</i> -carboran-9'-yl)thio]-	S18
	2,3,5,6-tetrafluorophenyl}-20-{[4-(2',5'-dioxo-2',5'-dihydro-1 <i>H</i> -pyrrol-1'-	
	yl)benzamido]-2,3,5,6-tetrafluorophenyl}porphyrin (11)	
9.	The ¹ H, ¹⁹ F and ¹¹ B NMR spectra of 5,10,15-tris{[4,4,4-(<i>m</i> -carboran-9'-	S19
	yl)thio]-2,3,5,6-tetrafluorophenyl}-20-[4-(2'-chloroacetamido)-2,3,5,6-	
	tetrafluorophenyl]porphyrin (12)	
10.	The ¹ H, ¹⁹ F and ¹¹ B NMR spectra of 5,10,15-tris{[4,4,4-(<i>m</i> -carboran-9'-	S20
	yl)thio]-2,3,5,6-tetrafluorophenyl}-20-[4-(2'-(4'-(a'-carboxybutyl)-2-	
	oxohexahydro-1H-thieno[3,4-d]imidazol-1'-yl)acetamido)-2,3,5,6-	
	tetrafluorophenyl]porphyrin (14)	
11.	The ¹ H, ¹⁹ F and ¹¹ B spectra of 5,10,15-tris{[(<i>m</i> -carboran-9'-yl)thio]-	S21
	2,3,5,6-tetrafluorophenyl}-20-{[(4-(2'-hydroxyethyl)thio]-2,3,5,6-	
	tetrafluorophenyl}porphyrin (18)	
12.	The ¹ H, ¹⁹ F and ¹¹ B spectra of 5-{[4-(2'-aminoethyl)thio]-2,3,5,6-	S22
	tetrafluorophenyl}-10,15,20-tris{[4,4,4-(<i>m</i> -carboran-9'-yl)thio]-2,3,5,6-	

tetrafluorophenyl}porphyrin (19)

- 13. The ¹H, ¹⁹F and ¹¹B spectra of 5,10,15-tris{[4,4,4-(*m*-carboran-9'-yl)thio]- S23 2,3,5,6-tetrafluorophenyl}-20-{[(4-(3'-chloropropyl)thio]-2,3,5,6-tetrafluorophenyl]porphyrin (**20**)
- 14. The ¹H, ¹⁹F and ¹¹B spectra of 5-[(4-(2'-(2'-(2'- S24 aminoethoxy)ethoxy)ethyl)amino)-2,3,5,6-tetrafluorophenyl]-10,15,20-tris{[4,4,4-(*m*-carboran-9'-yl)thio]-2,3,5,6-tetrafluorophenyl}porphyrin
 (23)
- 15. The ¹H, ¹⁹F and ¹¹B spectra of 5-[(4-(((3'-(2'-(3'- S25 aminopropoxy)ethoxy)propyl)amino)-2,3,5,6-tetrafluorophenyl]10,15,20-tris{[4,4,4-(*m*-carboran-9'-yl)thio]-2,3,5,6-tetrafluorophenyl}porphyrin (24)
- 16. The ¹H, ¹⁹F and ¹¹B spectra of 5,10,15-tris{[4,4,4-(*m*-carboran-9'-yl)thio]- S26 2,3,5,6-tetrafluorophenyl}-20-[4-((2'-sulfoethyl)amino)-2,3,5,6-tetrafluorophenyl]porphyrin (26)
- MALDI-TOF mass spectrum for 5-(4-azido-2,3,5,6-tetrafluorophenyl) S27 10,15,20-tris(pentafluorophenyl)porphyrin (2)
- MALDI-TOF mass spectrum for 5-(4-amino-2,3,5,6-tetrafluorophenyl)- S28
 10,15,20-tris(pentafluorophenyl)porphyrin (3)
- MALDI-TOF mass spectrum for 5-[4-amino-2,3,5,6-tetrafluorophenyl]- S28
 10,15,20-tris{[4-(*m*-carboran-9'-yl)thio]-2,3,5,6 tetrafluorophenyl}porphyrin (5)
- 20. MALDI-TOF mass spectrum for 5, 10, 15-tris{[4-(*m*-carboran-9'-yl)thio] S29 2,3,5,6-tetrafluorophenyl}-20-(2,3,4,5,6-pentafluorophenyl]porphyrin (6)
- MALDI-TOF mass spectrum for 5-[4-azido-2,3,5,6-tetrafluorophenyl] S29 10,15,20-tris{[4-(*m*-carboran-9'-yl)thio]-2,3,5,6 tetrafluorophenyl}porphyrin (7)
- MALDI-TOF mass spectrum for 5,10,15-tris{[(*m*-carboran-9'-yl)thio]2,3,5,6-tetrafluorophenyl}-20-{[4-(2',5'-dioxo-2',5'-dihydro-1*H*-pyrrol-1'yl)benzamido]-2,3,5,6-tetrafluorophenyl}porphyrin (**11**)
- 23. MALDI-TOF mass spectrum for 5,10,15-tris{[4,4,4-(*m*-carboran-9'- S30 yl)thio]-2,3,5,6-tetrafluorophenyl}-20-[4-(2'-chloroacetamido)-2,3,5,6-

tetrafluorophenyl]porphyrin (12)

24.	MALDI-TOF mass spectrum for 5,10,15-tris{[4,4,4-(<i>m</i> -carboran-9'-	S31
	yl)thio]-2,3,5,6-tetrafluorophenyl}-20-[4-(2'-(4'-(4'-carboxybutyl)-2-	
	oxohexahydro-1H-thieno[3,4-d]imidazol-1'-yl)acetamido)-2,3,5,6-	
	tetrafluorophenyl]porphyrin (14)	
25	MALDLTOE mass spectrum for 5 10 15 tris $\left(\left(m \operatorname{carboran} 0^{2} \cdot y\right)\right)$ this]	S 21

- MALDI-TOF mass spectrum for 5,10,15-tris{[(*m*-carboran-9'-yl)thio] S31 2,3,5,6-tetrafluorophenyl}-20-{[(4-(2'-hydroxyethyl)thio]-2,3,5,6 tetrafluorophenyl}porphyrin (18)
- MALDI-TOF mass spectrum for 5-{[4-(2'-aminoethyl)thio]-2,3,5,6 tetrafluorophenyl}-10,15,20-tris{[4,4,4-(*m*-carboran-9'-yl)thio]-2,3,5,6 tetrafluorophenyl}porphyrin (**19**)
- 27. MALDI-TOF mass spectrum for 5,10,15-tris{[4,4,4-(*m*-carboran-9'- S32 yl)thio]-2,3,5,6-tetrafluorophenyl}-20-{[(4-(3'-chloropropyl)thio]-2,3,5,6-tetrafluorophenyl]porphyrin (**20**)
- 28. MALDI-TOF mass spectrum for 5-[(4-(2'-(2'-(2'- S33 aminoethoxy)ethoxy)ethyl)amino)-2,3,5,6-tetrafluorophenyl]-10,15,20-tris{[4,4,4-(*m*-carboran-9'-yl)thio]-2,3,5,6-tetrafluorophenyl}porphyrin
 (23)
- MALDI-TOF mass spectrum for 5-[(4-(((3'-(2'-(3'- S33 aminopropoxy)ethoxy)propyl)amino)-2,3,5,6-tetrafluorophenyl]10,15,20-tris{[4,4,4-(*m*-carboran-9'-yl)thio]-2,3,5,6tetrafluorophenyl}porphyrin (14)
- 30. MALDI-TOF mass spectrum for 5,10,15-tris{[4,4,4-(*m*-carboran-9'- S33 yl)thio]-2,3,5,6-tetrafluorophenyl}-20-[4-((2'-sulfoethyl)amino)-2,3,5,6-tetrafluorophenyl]porphyrin (26)
- 31. References

S33

1. Synthesis (general remarks)

General remarks on instrumentation and chemicals

All reactions were performed in an atmosphere of dry argon. All chemicals were without further commercially available and used purification. 5.10.15.20-Pentafluorophenylporphyrin (1) was synthesized according to the reported procedure [1]. Mercaptocarborane **4** was prepared according to the published data [2]. The solvents were purified by conventional methods before being used. DMSO HPLC was used as a solvent. ¹H, ¹¹B, and ¹⁹F NMR spectra were recorded on a Bruker Avance-400 spectrometer operating at 400.13 MHz for ¹H NMR, 128.38 MHz for ¹¹B NMR, and 376.50 MHz for ¹⁹F NMR. ¹H and ¹⁹F NMR spectra for compounds **7**, **11**, **12**, **14**, **19**, **23**, **24**, and **26** were recorded on a Bruker Avance-300 spectrometer operating at 300.13 MHz for ¹H NMR and 282.40 MHz for ¹⁹F NMR. Chemical shifts (δ) were referenced to the residual solvent peak (CDCl₃, ¹H: 7.26 ppm; acetone-*d*₆, ¹H: 2.05 ppm; THF-*d*₈, ¹H: 1.73, 3.58 ppm; (CD₃)₂SO ¹H: 2.50 ppm) for ¹H, external BF₃·OEt₂ for ¹¹B and external CFCl₃ for ¹⁹F. IR spectra were recorded on a Bruker FTIR spectrometer Tensor 37 in KBr pellets. The UV-vis spectra were measured on a computerized spectrophotometer Specord M 40 Carl Zeiss in CH₂Cl₂, (CH₃)₂CO or THF. The course of reactions and purity of compounds were monitored by TLC using Sorbfil plates. Merck silica gel L 0.040-0.060 mesh was used for column chromatography. The MALDI TOF mass spectra were recorded with a Shimadzu Axima Confidence time-of-flight spectrometer (Shimadzu Biotech, Kyoto, Japan) in the reflectron high resolution mode with a nitrogen laser (λ = 337 nm). Positive ions were registered. The mass range between 200 and 2000 was scanned. DCTB was used as a matrix.

2. Synthesis and characterization of new A₃B-type porphyrins

5-(4-Azido-2,3,5,6-tetrafluorophenyl)-10,15,20-tris(pentafluorophenyl)porphyrin (2)

A mixture of porphyrin **1** (400 mg, 0.41 mmol) and sodium azide (50 mg, 0.77 mmol) in DMF (8 mL) was stirred at room temperature under argon for 4 h. The obtained mixture was poured into water (100 mL), extracted with CH₂Cl₂ (3 × 30 mL), dried over Na₂SO₄, and filtered. After evaporation of the solvent, the residue was purified by column chromatography on silica gel, using hexane–CH₂Cl₂ 8:2 as an eluent to afford azidoporphyrin **2** (165 mg, 40%). IR (KBr) v_{max}, cm⁻¹: 3321 (NH), 2127 (N₃), 1498 (CF). UV-vis (CH₂Cl₂): λ_{max} [nm] (log ϵ) = 412 (5.02), 506 (3.81), 584 (3.40). ¹H NMR (400.13 MHz,

CDCl₃), δ : -2.90 (br s, 2H, porphyrin NH), 8.94 (br s, 6H, β -H), 8.96 (br s, 2H, β -H). ¹⁹F NMR (376.5 MHz, CDCl₃), δ : -136.5 (d, J = 19.2 Hz, 6F), -137.1 (dd, J = 22.0, 8.3Hz, 2F), -151.2 (t, J = 19.2 Hz, 3F), -151.5 (dd, J = 22.0, 11.0 Hz, 2F), -161.3 (t, J = 19.2 Hz, 6F). MALDI-MS: m/z found 997.84 [M]⁺, calcd. for C₄₄H₁₀F₁₉N₇ 997.57.

5-(4-Amino-2,3,5,6-tetrafluorophenyl)-10,15,20-tris(pentafluorophenyl)porphyrin (3)

A mixture of porphyrin **2** (1010 mg, 1.01 mmol) and SnCl₂·2H₂O (685 mg, 3.04 mmol) in dry MeOH (30 mL) was stirred at room temperature under argon for 10 h. After completion of the reaction (TLC control), MeOH was evaporated and the residue was purified by column chromatography on silica gel, using hexane–CH₂Cl₂ 6:4 as an eluent to give 983 mg (82%) of aminoporphyrin **3**. UV-vis (CH₂Cl₂): λ_{max} [nm] (log ϵ) = 413 (5.16), 507 (3.98), 584 (3.53). IR (KBr) v_{max}, cm⁻¹: 3321 (NH), 1499 (CF). ¹H NMR (400.13 MHz, CDCl₃), δ : –2.86 (br s, 2H, porphyrin NH), 4.50 (br s, 2H, NH₂), 8.95 (br s, 6H, β -H), 9.06 (br s, 2H, β -H). ¹⁹F NMR (376.50 MHz, CDCl₃), δ : –136.5 (d, *J* = 19.2 Hz, 6F), –140.5 (d, *J* = 16.5 Hz, 2F), –151.5 (dd, *J* = 38.5, 19.2 Hz, 3F), –161.5 (t, *J* = 16.3 Hz, 6F), –161.9 (d, *J* = 13.7 Hz, 2F). MALDI-MS: *m/z* found 971.12 [M]⁺, calcd. for C₄₄H₁₂F₁₉N₅ 971.08.

Synthesis of 5-[4-amino-2,3,5,6-tetrafluorophenyl]-10,15,20-tris{[4-(*m*-carboran-9'yl)thio]-2,3,5,6-tetrafluorophenyl}porphyrin (5)

Method A. To a solution of aminoporphyrin 3 (150 mg, 0.155 mmol) in DMF (10 mL) mercaptocarborane 4 (165 mg, 0.94 mmol) and anhydrous NaOAc (38 mg, 0.46 mmol) were added. The reaction mixture was stirred for 1 h under argon at room temperature. After completion the reaction (TLC control, hexane-CHCl₃ 1:1) the reaction mixture was treated with water (100 mL) and extracted with CHCl₃ (3 × 20 mL). The obtained organic solution was dried over Na₂SO₄, the solvent was removed in vacuo, the residue was purified by column chromatography on SiO₂ using CH₂Cl₂ as an eluent to yield boronated porphyrin **5** (198 mg, 89%). IR (KBr) v_{max}, cm⁻¹: 3324 (NH₂), 3064 (carborane CH), 2607 (BH), 1467 (CF). UV-vis (CH₂Cl₂): λ_{max} [nm] (log ϵ) = 417 (5.31), 509 (4.11), 541 (3.42), 586 (3.66). ¹H NMR (400.13 MHz, Acetone-d₆), δ : -2.85 (br s, 2H, porphyrin NH), 3.91 (br s, 6H, carborane CH), 6.05 (br s, 2H, NH₂), 9.22 (br s, 6H, β-H), 9.35 (br s, 2H, β-H). ¹⁹F NMR $(376.50 \text{ MHz}, \text{Acetone-d}_6), \delta$: -133.8 (dd, J = 24.7, 13.7 Hz, 6F), -139.7 (dd, J = 24.7, 13.7 Hz, 6F) Hz, 6F), -144.1 (d, J = 16.5 Hz, 2F), -164.0 (d, J = 16.5 Hz, 2F). ¹¹B NMR (128.38 MHz, Acetone-d₆), δ : -0.9 (br s, 3B, B⁹), -6.3 (d, J = 152 Hz, 6B), -9.7 (d, J = 156 Hz, 3B), -12.47 (d, J = 135 Hz, 6B), -13.6 (d, J = 163 Hz, 6B), -16.9 (d, J = 189 Hz, 3B). MALDI-MS: m/z found 1440.56 [M]⁺, calcd. for C₅₀H₄₅B₃₀F₁₆N₅S₃ 1440.43.

Method B. To a solution of azidoporphyrin **2** (50 mg, 0.05 mmol) in DMF (5 mL) mercaptocarborane **4** (53 mg, 0.3 mmol) and anhydrous NaOAc (8 mg, 0.01 mmol) were added. The reaction mixture was stirred for 15 h under argon at 45 °C. After completion of the reaction the treatment as described for aminoporphyrin **3** (procedure a) was applied. The residue was purified by column chromatography on silica gel using hexane– CH_2Cl_2 1:1 to give 23 mg (32%) of boronated porphyrin **5**.

5, 10, 15-Tris{[4-(*m*-carboran-9'-yl)thio]-2,3,5,6-tetrafluorophenyl}-20-(2,3,4,5,6pentafluorophenyl]porphyrin (6)

To a solution of porphyrin **1** (265 mg, 0.27 mmol) in DMSO (10 mL) mercaptocarborane **4** (190 mg, 1.08 mmol) and anhydrous NaOAc (67 mg, 0.82 mmol) were added and the reaction mixture was stirred for 1 h under argon at ambient temperature. Then, the mixture was treated with water (100 mL) and extracted with CH₂Cl₂ (3 × 30 mL). The combined organic solution was dried over Na₂SO₄. After removal of the solvent in vacuo, the residue was purified by column chromatography on SiO₂ using a hexane–CH₂Cl₂ 1:1 as an eluent to afford 153 mg (39%) of boronated porphyrin **6** as purple solid. IR (KBr) v_{max}, cm⁻¹: 3435 (NH), 3065 (carborane CH), 2608 (BH), 1497 (CF). UV-vis (CH₂Cl₂ λ_{max} [nm] (log ϵ) = 415 (5.26), 508 (4.13), 586 (3.68), 649 (3.19). ¹H NMR (400.13 MHz, Acetone-d₆), δ : –2.86 (br s, 2H, porphyrin NH), 3.84 (br s, 6H, carborane CH), 9.27 (br s, 6H, β-H), 9.39 (br s, 2H, β-H). ¹⁹F NMR (376.50 MHz, Acetone-d₆), δ : –133.7 (dd, *J* = 24.7, 13.7 Hz, 6F), –139.6 (dd, *J* = 27.5, 13.7 Hz, 6F), –139.8 (dd, *J* = 22.0, 5.5 Hz, 2F), –155.4 (t, *J* = 22.0 Hz, 1F), –164.4 (td, *J* = 22.0, 13.7 Hz, 2F). ¹¹B NMR (128.38 MHz, Acetone-d₆), δ : –0.9 (br s, 3B, B⁹), –6.2 (d, *J* = 147 Hz, 6B), –9.7 (d, *J* = 142 Hz, 3B), –13.4 (m, 15B), –16.9 (d, *J* = 192 Hz, 3B). MALDI-MS: *m/z* found 1442.62 [M]⁺, calcd. for C₅₀H₄₃B₃₀F₁₇N₄S₃ 1442.54.

5-[4-Azido-2,3,5,6-tetrafluorophenyl]-10,15,20-tris{[4-(*m*-carboran-9'-yl)thio]-2,3,5,6tetrafluorophenyl}porphyrin (7)

A mixture of porphyrin **6** (100 mg, 0.069 mmol), sodium azide (68 mg, 1.05 mmol) in DMSO (5 mL) was stirred at room temperature under argon for 48 h under argon until the completion of the reaction (monitored by TLC). Then the reaction mixture was treated with water (100 mL) and extracted with CH₂Cl₂ (3 × 20 mL). The combined organic extracts were dried over Na₂SO₄, the solvent was removed under reduced pressure, and the residue was purified by column chromatography on silica gel using hexane–CHCl₃ 1:1 as an eluent to give porphyrin **7** 67 mg (66%) as violet solid. IR (KBr) v_{max}, cm⁻¹: 3435 (NH), 3065 (carborane CH), 2608 (BH), 2127 (N₃), 1467 (CF). UV-vis (CH₂Cl₂): λ_{max} [nm] (log ϵ) = 415

(5.52), 508 (4.35), 585 (3.96). ¹H NMR (300.13 MHz, Acetone-d₆), δ: –2.86 (s, 2H, porphyrin NH), 3.86 (br s, 6H, carborane CH), 9.26 (br s, 6H, β-H), 9.35 (br s, 2H, β-H). ¹⁹F NMR (282.40 MHz, Acetone-d₆), δ: –133.7 (dd, J = 25.2, 13.8 Hz, 6F), –139.6 (dd, J = 25.2, 13.8 Hz, 6F), –140.7 (dd, J = 21.8, 12.6 Hz, 2F), –153.84 (dd, J = 21.8, 12.6 Hz, 2F). ¹¹B NMR (128.38 MHz, Acetone-d₆), δ: –0.97 (br s, 3B, B⁹), –6.2 (d, J = 142 Hz, 6B), –9.7 (d, J = 142 Hz, 3B), –12.4 (d, J = 151 Hz, 6B), –13.6 (d, J = 165 Hz, 9B), –17.0 (d, J = 180 Hz, 3B). MALDI-MS: m/z 1467.99 found [M+H]⁺, calcd. for C₅₀H₄₄B₃₀F₁₆N₇S₃ 1467.55.

Synthesis of 5-[4-amino-2,3,5,6-tetrafluorophenyl]-10,15,20-tris{[4-(*m*-carboran-9'yl)thio]-2,3,5,6-tetrafluorophenyl}porphyrin (5)

A mixture of azidoporphyrin **7** (50 mg, 0.034 mmol) and SnCl₂·2H₂O (31 mg, 0.138 mmol) in dry MeOH (5 mL) was stirred at room temperature under argon for 30 min. After completion of the reaction (TLC control) MeOH was evaporated and the residue was purified by column chromatography on silica gel, using hexane–CH₂Cl₂ 4:6 as an eluent to give 45 mg (92%) of aminoporphyrin **5**.

5,10,15-Tris{[(*m*-carboran-9'-yl)thio]-2,3,5,6-tetrafluorophenyl}-20-{[4-(2',5'-dioxo-2',5'-dihydro-1*H*-pyrrol-1'-yl)benzamido]-2,3,5,6-tetrafluorophenyl}porphyrin (11)

A mixture of N-(4-carboxyphenyl)maleimide (9, 30 mg, 0.138 mmol) and oxalyl chloride (0.5 mL) was stirred at room temperature under argon for 2 h until compete dissolution of 9. The excess of oxalyl chloride was removed in vacuum to give the corresponding acyl chloride 8 as a white solid. Then, compound 8 was dissolved in CH₂Cl₂ (2 mL) and a solution of porphyrin 5 (66 mg, 0.0458 mmol) and Et₃N (40 μ L, 0.288 mmol) in CH₂Cl₂ (5 mL) was added dropwise at 5 °C under argon for 30 min until the completion of the reaction (monitored by TLC). The reaction mixture was treated with water (100 mL) and extracted with CH_2Cl_2 (3 × 10 mL). The combined organic solution was dried over Na₂SO₄. After the removal of the solvent the product was purified by column chromatography on silica gel using CH₂Cl₂ as an eluent to give 47 mg of porphyrin **11** in 63% yield as violet solid. IR (KBr) v_{max}, cm⁻¹: 3435 (NH), 3066 (carborane CH), 2609 (BH), 1797, 1723 (C=O), 1607 (maleimide C=C), 1467 (CF). UV-vis (CH₂Cl₂): λ_{max} [nm] (log ϵ) = 415 (5.46), 508 (4.29), 586 (3.87). ¹H NMR (300.13 MHz, Acetone-d₆), δ: –2.84 (br s, 2H, porphyrin NH), 3.90 (br s, 6H, carborane CH), 7.13 (s, 2H, maleimide CH=CH), 7.72 (d, J = 8.3 Hz, 2H, Ph), 8.35 (d, J = 8.5 Hz, 2H, Ph), 9.25 (br s, 6H, β-H), 9.38 (br s, 2H, β-H), 10.28 (s, 1H, NHC=O). ¹⁹F NMR (282.40 MHz, Acetone-d₆), δ: –133.7 (dd, J = 25.2, 14.9 Hz, 6F), –139.5 (dd, J = 25.2, 14.9 Hz, 6F), -141.0 (dd, J = 23.0, 13.6 Hz, 2F), -146.3 (dd, J = 23.0, 13.7 Hz, 2F). ¹¹B NMR (128.38 MHz, Acetone-d₆), δ : -0.9 (br s, 3B, B⁹), -6.4 (d, J = 142 Hz, 6B), -9.6 (d, J = 132 Hz, 3B), -12.3 (d, J = 165 Hz, 6B), -13.6 (d, J = 161 Hz, 9B), -16.9 (d, J = 180 Hz, 3B). MALDI-MS: m/z found 1640.36 [M]⁺, calcd. for C₆₁H₅₀B₃₀F₁₆N₆O₃S₃ 1639.59.

5,10,15-Tris{[4,4,4-(*m*-carboran-9'-yl)thio]-2,3,5,6-tetrafluorophenyl}-20-[4-(2'-chloroacetamido)-2,3,5,6-tetrafluorophenyl]porphyrin (12)

To a solution of porphyrin 5 (100 mg, 0.0694 mmol) in CH₂Cl₂ (8 mL) chloroacetyl chloride **10** (17 mg, 0.214 mmol) and Et₃N (30 µl, 0.216 mmol) were added at room temperature under argon, and the reaction mixture was stirred for 1 h at ambient temperature. After completion of the reaction (TLC control) the reaction mixture was treated with water (150 mL) and extracted with CH_2Cl_2 (2 × 20 mL). The obtained organic solution was dried over Na₂SO₄, the solvent was removed in vacuo, the residue was purified by column chromatography on SiO₂ using hexane-CH₂Cl₂ 2:8 as an eluent to give 90 mg (85%) of acylated porphyrin **12**. IR (KBr) v_{max} , cm⁻¹: 3468 (NH), 3066 (carborane CH), 2609 (BH), 1716 (C=O), 1468 (CF). UV-vis (CH₂Cl₂): λ_{max} [nm] (log ϵ) = 415 (5.47), 507 (4.33), 586 (3.89). ¹H NMR (300.13 MHz, Acetone-d₆), δ: –2.83 (s, 2H, porphyrin NH), 3.82 (br s, 6H, carborane CH), 4.62 (br s, 2H, CH₂), 9.27 (br s, 6H, β -H), 9.37 (d, J = 3.6 Hz, 2H, β -H), 10.00 (s, 1H, NHC=O). ¹⁹F NMR (282.40 MHz, Acetone-d₆), δ : –133.6 (dd, J = 25.2, 13.8 Hz, 6F), -139.5 (dd, J = 25.2, 13.8 Hz, 6F), -140.8 (dd, J = 22.9, 12.6 Hz, 2F), -146.4 (dd, J = 22.9, 12.6 Hz, 2F). ¹¹B NMR (128.38 MHz, Acetone-d₆), δ : -0.9 (br s, 3B, B⁹), -6.3 (d, J = 156 Hz, 6B), -9.7 (d, J = 154 Hz, 3B), -12.4 (d, J = 147 Hz, 6B), -13.6 (d, J = 161 Hz, 9B), -17.0 (d, J = 170 Hz, 3B). MALDI-MS: m/z found 1517.96 [M+H]⁺, calcd. for C₅₂H₄₇B₃₀CIF₁₆N₅OS₃ 1517.91.

5,10,15-Tris{[4,4,4-(*m*-carboran-9'-yl)thio]-2,3,5,6-tetrafluorophenyl}-20-[4-(2'-(4'-(4'carboxybutyl)-2-oxohexahydro-*1H*-thieno[3,4-d]imidazol-1'-yl)acetamido)-2,3,5,6tetrafluorophenyl]porphyrin (14)

To a solution of porphyrin **12** (60 mg, 0.0391 mmol) in dry pyridine (5 mL) biotin (**13**, 15 mg, 0.0669 mmol), Et₃N (10 μ L, 0.072 mmol) and DMAP (2 mg, 0.0164mmol) were added at room temperature under argon, and the reaction mixture was stirred overnight under argon at ambient temperature. After completion of the reaction (TLC control) the solvents were removed in vacuo, and the residue was dissolved in CH₂Cl₂ (40 mL) and washed with water (3 × 50 mL). The organic solution was dried over Na₂SO₄, filtered and the residue was purified by column chromatography on SiO₂ using CH₂Cl₂–MeOH 9:1 as an eluent to give 51 mg of biotin-substituted porphyrin **14** in 76% yield. IR (KBr) v_{max}, cm⁻¹: 3468 (OH and

NH), 3069 (carborane CH), 2609 (BH), 1715, 1641 (C=O), 1468 (CF). UV-vis ((CH₃)₂CO): λ_{max} [nm] (logε) = 412 (5.33), 505 (4.47), 585 (4.06). ¹H NMR (300.13 MHz, DMSO-d₆), δ: – 3.16 (br s, 2H, porphyrin NH), 1.08 (t, *J* = 6.2 Hz, 4H, (CH₂)₂), 2.07 (d, *J* = 9.6 Hz, 2H, CH₂), 2.24 (t, *J* = 7.1 Hz, 2H, *CH*₂COOH), 2.68 (m, 1H, SCH₂), 2.90 (m, 1H, SCH₂), 3.14 (d, *J* = 5.7 Hz, 1H, SCH), 4.14 (br s, 6H, carborane CH), 4.36 (m, 1H, CH), 4.47 (m, 1H, CH), 6.17 (br s, 2H, CH₂), 7.84 (t, *J* = 6.4 Hz, 1H, biotin NH), 8.80 (br s, 1H, NHC=O), 9.17 (br s, 2H, β-H), 9.22 (br s, 2H, β-H), 9.30 (d, *J* = 6.0 Hz, 2H, β-H), 9.38 (br s, 2H, β-H), 12.06 (br s, 1H, COOH). ¹⁹F NMR (282.40 MHz, DMSO-d₆), δ: –132.9 (dd, *J* = 26.8, 11.5 Hz, 6F), – 138.7 (dd, *J* = 26.8, 11.5 Hz, 6F), –140.3 (d, *J* = 18.7 Hz, 2F), –144.2 (d, *J* = 16.5 Hz, 2F). ¹¹B NMR (128.38 MHz, DMSO-d₆), δ: –0.9 (br s, 3B, B⁹), –6.1 (d, *J* = 149 Hz, 6B), –9.6 (d, *J* = 144 Hz, 3B), –12.4 (d, *J* = 149 Hz, 6B), –13.6 (d, *J* = 161 Hz, 9B), –16.9 (d, *J* = 180 Hz, 3B). MALDI-MS: *m*/z found 1722.56 [M]⁺, calcd. for C₆₂H₆₁B₃₀F₁₆N₇O4S4 1722.65.

General procedure for preparation of boronated porphyrins 18–20

To a mixture of porphyrin **6** (52 mg, 0.036 mmol) and mercaptoethanol (**15**, 5 μ L, 0.071 mmol) or cysteamine hydrochloride (**16**, 20 mg, 0.176 mmol) or 3-chloro-1propanethiol (**17**, 7 μ L, 0.072 mmol) in DMSO (5 mL) anhydrous NaOAc (6 mg, 0.073 mmol) was added and the reaction mixture was stirred for 10 min at ambient temperature under argon until the completion of the reaction (monitored by TLC). Then, the reaction mixture was treated with water (100 mL) (for porphyrin **19** also treated Et₃N (1 mL)), and extracted with CH₂Cl₂ (3 × 20 mL). The combined organic extracts were dried over Na₂SO₄, the solvent was removed under reduced pressure and the residue was purified by column chromatography on silica gel using CHCl₃ as an eluent (for porphyrin **18** and **19**) or hexane–CHCl₃ 1:1 mixture as an eluent (for porphyrin **20**) to give porphyrins **18–20** in 80–87%yields as violet solids.

5,10,15-Tris{[(*m*-carboran-9'-yl)thio]-2,3,5,6-tetrafluorophenyl}-20-{[(4-(2'hydroxyethyl)thio]-2,3,5,6-tetrafluorophenyl}porphyrin (18)

Yield: 47 mg (87 %). IR (KBr) v_{max}, cm⁻¹: 3435 (NH), 3065 (carborane CH), 2609 (BH), 1468 (CF). UV-vis (CH₂Cl₂): λ_{max} [nm] (logε) = 416 (5.40), 509 (4.23), 585 (3.78). ¹H NMR (400.13 MHz, Acetone-d₆), δ: -2.87 (s, 2H, porphyrin NH), 3.44 (t, *J* = 6.4 Hz, 2H, CH₂), 3.88 (br s, 6H, carborane CH), 4.02 (q, *J* = 5.8 Hz, 2H, CH₂), 4.27 (t, *J* = 5.1 Hz, 1H, OH), 9.25 (br s, 6H, β-H), 9.37 (br s, 2H, β-H). ¹⁹F NMR (376.50 MHz, Acetone-d₆), δ: -133.8 (dd, *J* = 24.7, 13.7 Hz, 6F), -135.7 (dd, *J* = 24.7, 13.7 Hz, 2F), -139.7 (dd, *J* = 27.5, 13.7 Hz, 6F), -140.2 (dd, *J* = 24.7, 13.7 Hz, 2F). ¹¹B NMR (128.38 MHz, Acetone-d₆), δ: -0.9 (br s, 3B, B⁹), -6.3

(d, J = 149 Hz, 6B), -9.6 (d, J = 156 Hz, 3B), -12.5 (d, J = 130 Hz, 6B), -13.6 (d, J = 161 Hz, 9B), -17.0 (d, J = 184 Hz, 3B). MALDI-MS: m/z found 1501.00 [M]⁺, calcd. for $C_{52}H_{48}B_{30}F_{16}N_4OS_4$ 1500.55.

5-{[4-(2'-Aminoethyl)thio]-2,3,5,6-tetrafluorophenyl}-10,15,20-tris{[4,4,4-(*m*-carboran-9'-yl)thio]-2,3,5,6-tetrafluorophenyl}porphyrin (19)

Yield: 43 mg (80%). IR (KBr) v_{max}, cm⁻¹: 3437 (NH), 3064 (carborane CH), 2609 (BH), 1468 (CF). UV-vis (CH₂Cl₂): λ_{max} [nm] (logε) = 414 (5.30), 508 (4.15), 585 (3.73). ¹H NMR (300.13 MHz, Acetone-d₆), δ: –2.87 (s, 2H, porphyrin NH), 3.54 (t, J = 6.5 Hz, 2H, CH₂), 3.72 (t, J = 6.5 Hz, 2H, CH₂), 3.89 (br s, 6H, carborane CH), 9.27 (br s, 8H, β-H). ¹⁹F NMR (282.40 MHz, Acetone-d₆), δ: –133.7 (dd, J = 24.1, 13.8 Hz, 6F), –135.6 (dd, J = 25.2, 14.9 Hz, 2F), –139.6 (dd, J = 25.2, 12.6 Hz, 6F), –140.3 (dd, J = 26.4, 13.8 Hz, 2F). ¹¹B NMR (128.38 MHz, Acetone-d₆), δ: –0.9 (br s, 3B, B⁹), –6.2 (d, J = 151 Hz, 6B), –9.7 (d, J = 156 Hz, 3B), –12.5 (d, J = 132 Hz, 6B), –13.6 (d, J = 163 Hz, 9B), –16.9 (d, J = 189 Hz, 3B). MALDI-MS: *m/z* found 1500.84 [M+H]⁺, calcd. for C₅₂H₅₀B₃₀F₁₆N₅S4 1500.56.

5,10,15-Tris{[4,4,4-(*m*-carboran-9'-yl)thio]-2,3,5,6-tetrafluorophenyl}-20-{[(4-(3'-chloropropyl)thio]-2,3,5,6-tetrafluorophenyl]porphyrin (20)

Yield: 47 mg (85%). IR (KBr) v_{max}, cm⁻¹: 3322 (NH), 3064 (carborane CH), 2607 (BH), 1467 (CF). UV-vis (CH₂Cl₂): λ_{max} [nm] (logε) = 415 (5.42), 508 (4.26), 541 (3.58), 585 (3.82), 657 (3.46). ¹H NMR (300.13 MHz, Acetone-d₆), δ : –2.87 (br s, 2H, porphyrin NH), 2.35 (t, *J* = 6.6 Hz, 2H, CH₂), 3.45 (t, *J* = 7.0 Hz, 2H, CH₂), 3.92 (br s, 6H, carborane CH), 3.94 (t, *J* = 6.0 Hz, 2H, CH₂), 9.25 (br s, 6H, β-H), 9.35 (br s, 2H, β-H). ¹⁹F NMR (376.50 MHz, Acetone-d₆), δ : –133.7 (dd, *J* = 24.8, 13.8 Hz, 6F), –135.6 (dd, *J* = 24.8, 13.8 Hz, 2F), –139.7 (dd, *J* = 24.8, 13.8 Hz, 8F). ¹¹B NMR (128.38 MHz, Acetone-d₆), δ : –0.9 (br s, 3B, B⁹), –6.3 (d, *J* = 149 Hz, 6B), –9.7 (d, *J* = 152 Hz, 3B), –12.4 (d, *J* = 147 Hz, 6B), –13.6 (d, *J* = 161 Hz, 9B), –16.9 (d, *J* = 182 Hz, 3B). MALDI-MS: *m*/z found 1534.07 [M+H]⁺, calcd. for C_{53H50}B₃₀CIF₁₆N₄S₄ 1533.53.

General procedure for preparation of boronated porphyrins 23, 24, 26

To a mixture of porphyrin **6** (52 mg, 0.036 mmol) and 1,8-diamino-3,6-dioxaoctane (**21**, 27 μ L, 0.184 mmol) or 1,13-diamino-4,7,10-trioxatridecane (**22**, 40 μ L, 0.184 mmol) or taurine (**25**, 23 mg, 0.184 mmol) in DMSO (5 mL) anhydrous NaOAc (15 mg, 0.184 mmol) was added and the reaction mixture was stirred for 30 min at 70 °C for conjugates **23** and **24** and 72 h at room temperature for conjugate **26** under argon until the completion of the

reaction (monitored by TLC). Then the reaction mixture was treated with water (100 mL) and extracted with ethyl acetate (3×20 mL). The combined organic extracts were dried over Na₂SO₄, the solvent was removed under reduced pressure and the residue was purified by column chromatography on silica gel using acetone as an eluent.

5-[(4-(2'-(2'-(2'-Aminoethoxy)ethoxy)ethyl)amino)-2,3,5,6-tetrafluorophenyl]-10,15,20tris{[4,4,4-(*m*-carboran-9'-yl)thio]-2,3,5,6-tetrafluorophenyl}porphyrin (23)

Yield: 40 mg (71 %). IR (KBr) v_{max}, cm⁻¹: 3429 (NH and NH₂), 3061 (carborane CH), 2605 (BH), 1466 (CF). UV-vis (CH₂Cl₂): λ_{max} [nm] (log ϵ) = 415 (5.22), 508 (4.23), 587 (3.85), 651 (3.85). ¹H NMR (300.13 MHz, Acetone-d₆), δ : –2.86 (br s, 2H, porphyrin NH), 2.97 (br s, 2H, CH₂), 3.73 (br s, 4H, CH₂), 3.86 (br s, 6H, CH₂), 3.92 (br s, 6H, carborane CH), 9.22 (br s, 6H, β -H), 9.35 (br s, 2H, β -H). ¹⁹F NMR (282.40 MHz, Acetone-d₆), δ : –133.8 (dd, *J* = 18.4, 6.9 Hz, 6F), –139.7 (dd, *J* = 26.4, 13.8 Hz, 6F), –143.5 (dd, *J* = 22.2, 9.2 Hz, 2F), – 161.7 (dd, *J* = 25.2, 4.6 Hz, 2F). ¹¹B NMR (128.38 MHz, Acetone-d₆), δ : –0.9 (br s, 3B, B⁹), –6.2 (d, *J* = 135 Hz, 6B), –9.7 (d, *J* = 158 Hz, 3B), –12.4 (d, *J* = 142 Hz, 6B), –13.6 (d, *J* = 163 Hz, 9B), –17.0 (d, *J* = 182 Hz, 3B). MALDI-MS: *m*/*z* found 1572.44 [M+H]⁺, calcd. for C_{56H59B30F16N6O₂S₃ 1571.65.}

5-[(4-(((3'-(2'-(2'-(3'-Aminopropoxy)ethoxy)ethoxy)propyl)amino)-2,3,5,6tetrafluorophenyl]-10,15,20-tris{[4,4,4-(*m*-carboran-9'-yl)thio]-2,3,5,6tetrafluorophenyl}porphyrin (24)

Yield: 50 mg (84%). IR (KBr) v_{max}, cm⁻¹: 3430 (NH and NH₂), 3062 (carborane CH), 2606 (BH), 1466 (CF). UV-vis (CH₂Cl₂): λ_{max} [nm] (log ϵ) = 415 (5.22), 508 (4.18), 587 (3.81). ¹H NMR (400.13 MHz, Acetone-d₆), δ: –2.86 (br s, 2H, porphyrin NH), 2.97 (br s, 2H, CH₂), 3.05 (t, *J* = 6.4 Hz, 4H, (CH₂)₂), 3.56 (m, 10H, CH₂), 3.67 (br s, 2H, CH₂), 3.75 (br s, 2H, CH₂), 3.91 (br s, 6H, carborane CH), 9.23 (br s, 6H, β-H), 9.35 (br s, 2H, β-H). ¹⁹F NMR (282.40 MHz, Acetone-d₆), δ: –133.8 (dd, *J* = 25.2, 13.8 Hz, 6F), –139.7 (dd, *J* = 25.2, 13.8 Hz, 6F), –143.7 (dd, *J* = 19.7, 11.5 Hz, 2F), –161.7 (dd, *J* = 19.7, 11.5 Hz, 2F). ¹¹B NMR (128.38 MHz, Acetone-d₆), δ: –0.9 (br s, 3B, B⁹), –6.2 (d, *J* = 135 Hz, 6B), –9.7 (d, *J* = 154 Hz, 3B), –12.4 (d, *J* = 149 Hz, 6B), –13.6 (d, *J* = 165 Hz, 9B), –17.0 (d, *J* = 182 Hz, 3B). MALDI-MS: *m/z* found 1642.77 [M]⁺, calcd. for C₆₀H₆₆B₃₀F₁₆N₆O₃S₃ 1642.71.

5,10,15 -Tris{[4,4,4-(*m*-carboran-9'-yl)thio]-2,3,5,6-tetrafluorophenyl}-20-[4-((2'-sulfoethyl)amino)-2,3,5,6-tetrafluorophenyl]porphyrin (26)

Yield: 44 mg (78%). IR (KBr) v_{max}, cm⁻¹: 3434 (NH), 3063 (carborane CH), 2608 (BH), 1468 (CF). UV-vis (THF): λ_{max} [nm] (logε) = 416 (5.33), 508 (4.25), 586 (3.87). ¹H NMR (300.13 MHz, THF-d₈), δ: -2.83 (br s, 2H, porphyrin NH), 3.52 (br s, 2H, CH₂), 3.83 (br s, 6H, carborane CH), 4.32 (br s, 2H, CH₂), 6.43 (br s, 1H, NH), 9.04 (br s, 6H, β-H), 9.22 (br s, 2H, β-H). ¹⁹F NMR (282.40 MHz, THF-d₈), δ: -129.8 (dd, *J* = 25.2, 13.8 Hz, 6F), -135.6 (dd, *J* = 25.2, 14.98 Hz, 6F), -139.2 (d, *J* = 17.2 Hz, 2F), -158.3 (d, *J* = 14.9 Hz, 2F). ¹¹B NMR (128.38 MHz, THF-d₈), δ: -0.9 (br s, 3B, B⁹), -6.3 (d, *J* = 144 Hz, 6B), -9.7 (d, *J* = 140 Hz, 3B), -12.5 (d, *J* = 140 Hz, 6B), -13.6 (d, *J* = 163 Hz, 9B), -17.0 (d, *J* = 184 Hz, 3B). MALDI-MS: *m*/*z* found 1547.97 [M]⁺, calcd. for C₅₂H₄₉B₃₀F₁₆N₅O₃S₄ 1547.55.

3. The ¹H and ¹⁹F NMR spectra of 5-(4-azido-2,3,5,6-tetrafluorophenyl)-10,15,20tris(pentafluorophenyl)porphyrin (2)

Figure S1. The ¹H, ¹⁹F NMR spectra of 2 in CDCl₃.

4. The ¹H and ¹⁹F NMR spectra of 5-(4-amino-2,3,5,6-tetrafluorophenyl)-10,15,20-tris(pentafluorophenyl)porphyrin (3)

5. The ¹H, ¹⁹F and ¹¹B NMR spectra of 5-[4-amino-2,3,5,6-tetrafluorophenyl]-10,15,20-tris{[4-(*m*-carboran-9'-yl)thio]-2,3,5,6-tetrafluorophenyl}porphyrin (5)

7. The ¹H, ¹⁹F and ¹¹B NMR spectra of 5-[4-azido-2,3,5,6-tetrafluorophenyl]-

Figure S5. The ¹H, ¹⁹F, ¹¹B NMR spectra of porphyrin **7** in (CD₃)₂CO.

8. The ¹H, ¹⁹F and ¹¹B NMR spectra of 5,10,15-tris{[(*m*-carboran-9'-yl)thio]-2,3,5,6tetrafluorophenyl}-20-{[4-(2',5'-dioxo-2',5'-dihydro-1*H*-pyrrol-1'-yl)benzamido]-2,3,5,6tetrafluorophenyl}porphyrin (11)

Figure S6. The ¹H, ¹⁹F, ¹¹B NMR spectra of porphyrin **11** in (CD₃)₂CO.

9. The ¹H, ¹⁹F and ¹¹B NMR spectra of 5,10,15-tris{[4,4,4-(*m*-carboran-9'-yl)thio]-2,3,5,6-tetrafluorophenyl}-20-[4-(2'-chloroacetamido)-2,3,5,6-tetrafluorophenyl]porphyrin (12)

Figure S7. The ¹H, ¹⁹F, ¹¹B NMR spectra of porphyrin **12** in (CD₃)₂CO.

Figure S9. The ¹H, ¹⁹F, ¹¹B NMR spectra of porphyrin **18** in (CD₃)₂CO.

12. The ¹H, ¹⁹F and ¹¹B spectra of 5-{[4-(2'-aminoethyl)thio]-2,3,5,6tetrafluorophenyl}-10,15,20-tris{[4,4,4-(*m*-carboran-9'-yl)thio]-2,3,5,6tetrafluorophenyl}porphyrin (19)

Figure S10. The ¹H, ¹⁹F, ¹¹B NMR spectra of porphyrin $\overline{19}$ in (CD₃)₂CO.

13. The ¹H, ¹⁹F and ¹¹B spectra of 5,10,15 -tris{[4,4,4-(*m*-carboran-9'-yl)thio]-2,3,5,6-tetrafluorophenyl}-20-{[(4-(3'-chloropropyl)thio]-2,3,5,6tetrafluorophenyl]porphyrin (20)

Figure S11. The ¹H, ¹⁹F, ¹¹B NMR spectra of porphyrin 20 in (CD₃)₂CO.

Figure S12. The ¹H, ¹⁹F, ¹¹B NMR spectra of porphyrin 23 in (CD₃)₂CO.

Figure S13. The ¹H, ¹⁹F, ¹¹B NMR spectra of porphyrin **24** in (CD₃)₂CO.

Figure S14. The ¹H, ¹⁹F, ¹¹B NMR spectra of porphyrin **26** in THF-d₈.

17. MALDI-TOF mass spectrum for 5-(4-azido-2,3,5,6-tetrafluorophenyl)-10,15,20-tris(pentafluorophenyl)porphyrin (2)

18. MALDI-TOF mass spectrum for 5-(4-amino-2,3,5,6-tetrafluorophenyl)-10,15,20-tris(pentafluorophenyl)porphyrin (3)

19. MALDI-TOF mass spectrum for 5-[4-amino-2,3,5,6-tetrafluorophenyl]-10,15,20-tris{[4-(*m*-carboran-9'-yl)thio]-2,3,5,6-tetrafluorophenyl}porphyrin (5)

20. MALDI-TOF mass spectrum for 5, 10, 15-tris{[4-(*m*-carboran-9'-yl)thio]-2,3,5,6-tetrafluorophenyl}-20-(2,3,4,5,6-pentafluorophenyl]porphyrin (6)

21. MALDI-TOF mass spectrum for 5-[4-azido-2,3,5,6-tetrafluorophenyl]-

10,15,20-tris{[4-(*m*-carboran-9'-yl)thio]-2,3,5,6-tetrafluorophenyl}porphyrin (7)

22. MALDI-TOF mass spectrum for 5,10,15-tris{[(*m*-carboran-9'-yl)thio]-2,3,5,6tetrafluorophenyl}-20-{[4-(2',5'-dioxo-2',5'-dihydro-1*H*-pyrrol-1'-yl)benzamido]-2,3,5,6-tetrafluorophenyl}porphyrin (11)

23. MALDI-TOF mass spectrum for 5,10,15-tris{[4,4,4-(*m*-carboran-9'-yl)thio]-

2,3,5,6-tetrafluorophenyl}-20-[4-(2'-chloroacetamido)-2,3,5,6-

tetrafluorophenyl]porphyrin (12)

24. MALDI-TOF mass spectrum for 5,10,15-tris{[4,4,4-(*m*-carboran-9'-yl)thio]-2,3,5,6-tetrafluorophenyl}-20-[4-(2'-(4'-(4'-carboxybutyl)-2-oxohexahydro-*1H*thieno[3,4-d]imidazol-1'-yl)acetamido)-2,3,5,6-tetrafluorophenyl]porphyrin (14)

25. MALDI-TOF mass spectrum for 5,10,15-tris{[(*m*-carboran-9'-yl)thio]-2,3,5,6tetrafluorophenyl}-20-{[(4-(2'-hydroxyethyl)thio]-2,3,5,6tetrafluorophenyl}porphyrin (18)

27. MALDI-TOF mass spectrum for 5,10,15-tris{[4,4,4-(*m*-carboran-9'-yl)thio]-2,3,5,6-tetrafluorophenyl}-20-{[(4-(3'-chloropropyl)thio]-2,3,5,6tetrafluorophenyl]porphyrin (20)

28. MALDI-TOF mass spectrum for 5-[(4-(2'-(2'-(2'aminoethoxy)ethoxy)ethyl)amino)-2,3,5,6-tetrafluorophenyl]-10,15,20tris{[4,4,4-(*m*-carboran-9'-yl)thio]-2,3,5,6-tetrafluorophenyl}porphyrin (23)

29. MALDI-TOF mass spectrum for 5-[(4-(((3'-(2'-(3'-

aminopropoxy)ethoxy)ethoxy)propyl)amino)-2,3,5,6-tetrafluorophenyl]-10,15,20-tris{[4,4,4-(*m*-carboran-9'-yl)thio]-2,3,5,6-tetrafluorophenyl}porphyrin (24)

30. MALDI-TOF mass spectrum for 5,10,15-tris{[4,4,4-(*m*-carboran-9'-yl)thio]-2,3,5,6-tetrafluorophenyl}-20-[4-((2'-sulfoethyl)amino)-2,3,5,6-tetrafluorophenyl]porphyrin (26)

References

- 1. Lindsey, J.S.; Schreiman, I.C.; Hsu, H.C.; Kearney, P.C.; Marguerettaz A.M. *J. Org. Chem.* **1987**, *52*, 827–836.
- 2. Plešek, J.; Janoušek, Z.; Heřmánek, S. *Collect. Czech. Chem. Commun.* **1978**, *43*, 1332–1338.