

Supporting Information

for

Activity assays of NnIA homologs suggest the natural product *N*-nitroglycine is degraded by diverse bacteria

Kara A. Strickland, Brenda Martinez Rodriguez, Ashley A. Holland, Shelby Wagner, Michelle Luna-Alva, David E. Graham and Jonathan D. Caranto

Beilstein J. Org. Chem. 2024, 20, 830–840. doi:10.3762/bjoc.20.75

Additional Figures and Tables

License and Terms: This is a supporting information file under the terms of the Creative Commons Attribution License (https://creativecommons.org/ licenses/by/4.0). Please note that the reuse, redistribution and reproduction in particular requires that the author(s) and source are credited and that individual graphics may be subject to special legal provisions.

Figure S1: Analytical size exclusion chromatography calibration curve of standards. Flow rate 0.75 mL/min, 100 mM tricine and 100 mM NaCl buffer pH 7.5.

Figure S2: Representative LC–MS EICs monitoring molecular anion of 2-NAE (m/z 105.03) in samples containing 2 mM 2-NAE, excess titanium citrate, and either no *Vs* NnIA for the control sample or 20 μ M reduced *Vs* NnIA (Fe^{II}-NnIA) for the reaction samples. Samples were incubated overnight at room temperature in deoxygenated 23.3 mM tricine buffer, pH 7.5.

Figure S3: Nitrite concentrations observed in overnight cultures of *E. coli* transformed with NnIA homologs or variants grown in the presence of 2-NAE. Cells were incubated overnight in diluted LB containing IPTG and 3 mM NNG and incubated overnight at 37 °C.

MBW2064617	MAGNGDKRLTELIRLAMECMGVAVTIIDPQGTLLYYNKQAEKILD R	46
MCK4988321	MNENERKTKLGELVNLAMDCLGVAVTIIDTKGTLLYYNQHSAKILDR	47
WP_189438608	MSQNQHSAFRKQVADRTLDGWELEGCAEWLIDQQGVGVSIIDTEGRLLFYNQWADNKMP R	60
WP_054784913	-MTDNNNELPEVTDQRILEAWKLSGWADRLLEEAGIGVTIIDKDGKLLYYNKWASENLDR	59
WP_282531508	MDEKLPEVTQQRVLPGWTVSQWAGGLIEHAGVGVTILDREGRVMFYNQWAANRLD R	56
NnlA_(0UM02170)	MNQVNTEELPEVVDQRILAGWRLSEWADRILEYAGVGVTLVDRLGRCVYYNQWAKDHLD R	60
WP_066989343	MTTHADLTEVFEHRIVADWALGEWADRLLEQAGLGVTIVDRHGVVMYYNKWAAEHLD R	58
WP_051342206	MTQAILPEVTDARILDGWQLSGWADRLLEQAGVGVTIVDRTGRVLYYNKWADEHLD R	57
WP_030511367	MTSQAEPAEAAESRIATDWGLDEWADRLIDQAGVGVTILNRHGTVMYYNKWASEHLD R	58
WP_191054027	MSSQVELAEVAESRIATDWGLDQWADRILEQAGFGVTVLDRHGTVMYYNKWASEHLD R	58
WP_195903080	MSSQVELAEVAESRIATDWGLDQWADRILEQAGVGVTILDRHGTVMYYNKWASEHLD R	58
	: : **::: * ::**: : . : *	

MBW2064617	KPEYIGKDVHS HHK RAASNK <mark>K</mark> LDMMLEDFQ-KG R TEPFHYQARPYGE-TILVILSPIFED	104
MCK4988321	KPEYIGTDIHS HHK EAAINK <mark>K</mark> VDLMLKEFE-GG <mark>R</mark> KDHFHYEAKPYGK-IIFVTLAPIIKN	105
WP_189438608	EPEYLGQKVQE HHR KQITNV R FEAMLDLFRKEG R TEAVKYVAKPYEGLTIIVIVTPIIVE	120
WP_054784913	QPRHIGHNVKENHRRSITNPRFDAMLQLFR-DGRKDPVRYVANPYGTTTILVTVSPIHID	118
WP_282531508	KPEYIGKDVRNHHRRKITNPRFDAMLKLFE-EGRTDPVHYVARPYGKITILVTVSPIKVD	115
NnlA_(0UM02170)	KPGYIGDEIHNRHRRAITNPRFDAMLKLFE-EGRMEPVRYVARPYGKTTILVTVSPIYVE	119
WP_066989343	QPGYLGHSVHE RHH RKITNP R FDAMLKLFV-DG R IEPVQYVARPYGKTTILVTVSPIRIG	117
WP_051342206	KPEYIGNDVRDRHRQPITNPRFDAMIALFE-EGRVEPVRYVARPYGKTIILVTVSPIWVD	116
WP_030511367	RPEYIGNDVRK RHR RAVTNP R FDAMLKLFE-DG R VEPVRYVARPYGKTTILVTVSPIRVD	117
WP_191054027	KPEYIGNDVRK RHR RAVTNP R FDAMLRLFE-EG R VEPVRYVARPYGRTTILVTVSPIRVD	117
WP_195903080	MPEYIGNDVRKHHRRAVTNPRFDAMLRLFE-EGRVEPVSYVARPYGKITILVTVSPIRVN	117
	* ::* .:*:. * :.: *: * ** : . * *.** *:*	

MBW2064617	AKFVGCVQCVRL <mark>K</mark> DDTESR	123
MCK4988321	GEFLGCVQTVRL <mark>K</mark> NTVSANQ	125
WP_189438608	GELVAFCQTVLDKDEIQGMCETFDESGNITFQRDILPGSEPG	162
WP_054784913	EELVGFSQFVLL K EEVQELCCLFDQHGRDPFEKDMLPNGPPT	160
WP_282531508	GELVGYSQIVLMKDEIQELFRRFDESGRESFEKDMLPAWPFSGND	160
NnlA_(0UM02170)	GELVGYSQIVLLKDEVEALCQRFNASGRESFEREMLPDSTPSNDD	164
WP_066989343	GELVGLAQLVLL K DEVQELFSRFDDSGRESFERDMLPDGYPGA	160
WP_051342206	GELVGFSQIVLLKNEVQELCERFDASGRESFEREMLPNGATGYLTYKKNT	166
WP_030511367	GELVGFSQIVLLKDEVQELCARFDESGRESFEREMLPNGPPAT	160
WP_191054027	GELVGFSQVVLL K DEIQELCARFDESGRESFEREMLPDTPAVARDPAAGQCSSRRS-	173
WP_195903080	GELVGFSQIVLLKDEVQELFALFDESGRESFEREMLPNGLPTA	160
	···· * * *: .	

Figure S4: Amino sequence alignment of NnIA homologs shown in Figure 6 of main text. Conserved basic residues are colored red.

Figure S5: Gene neighborhoods of NnIA homologs. NnIA homologs in each neighborhood is color coded red in the middle of the figure.

Table S1: Elution times for standard by size exclusion chromatography. ^a					
Standards	MW	Elution	Gel phase distribution coefficient Kav		

		volumes		
Thyroglobulin	670000	10.19	0.07	73
γ-globulin	158000	13.82	0.31	17
Ovalbumin	44000	16.45	0.49	93
Myoglobin	17000	18.54	0.63	34
^a Flow rate 0.75 mL/min, 100 mM tricine and 100 mM NaCl buffer pH 7.5.				

Table S2: NnIA homologs analytical size exclusion values. ^a					
Protein sample	MW	Elution volume	Gel phase distribution coefficient		
			Kav		
<i>Pd</i> NnIA	49,000	16.23	0.478		
<i>P</i> s NnIA	38,200	16.79	0.516		
<i>M</i> s NnIA	36,400	16.90	0.523		
<i>Mr</i> NnIA	35,900	16.93	0.526		
Oligomer Vs NnIA	397,000	11.51	0.162		
Dimer Vs NnIA	41,400	16.61	0.504		
^a Flow rate 0.75 mL/min, 100 mM tricine and 100 mM NaCl buffer pH 7.5.					

NnIA ^a Reduced NnIA [NO ₂ -] _{final} As Isolated NnIA [
	(µM)] _{final} (µM)		
Mr	250 ± 10	10.6 ± 1.7		
Pd	260 ± 10	51.3 ± 5.3		
Ps	250 ± 10	31.0 ± 6.7		
Ms	250 ± 20	22.2 ± 8.5		
^a Reaction conditions: 5 μ M NnIA, 10 μ M sodium dithionite for reduced NnIA and no reducing agent for as isolated NnIA, 350 μ M NNG in 30 mM tricine buffer at pH 7.5 and room temperature in anaerobic glovebox.				

Table S4: Test of 2-NAE degradation Vs NnIA (m/z 105.03). ^a				
Sample	[NO₂ ⁻] _{final} (µM)	Area of Integration		
Control samples	-5.5 ± 1.4	2.4 ± 0.4 x 10 ⁶		
Reaction samples	1.8 ± 11.0	2.0 ± 0.5 x 10 ⁶		
^a Samples containing 2 mM 2-NAE, excess titanium citrate, and either no Vs NnIA for				
the control samples or 20 μM reduced NnIA (Fe ^{ll} -NnIA) for the reaction samples.				
Samples were incubated overnight at room temperature in deoxygenated 23.3 mM				
tricine buffer pH 7.5				

Table S5: Expected NNG degrading bacteria based on this study.					
Species	Bacterial class	Location isolated	Ref.		
<i>Variovorax sp.</i> Strain <i>JS 1663</i>	betaproteobacteria	USA: activated sludge from Ammunition Plant	[1]		
<i>Pseudovibrio denitrificans</i> JCM 12308	alphaproteobacteria	Taiwan: seawater	[2]		
<i>Pseudovibrio japonicus</i> strain KCTC 12861	alphaproteobacteria	Japan: seawater	[3]		
Pseudonocardia spinosispora DSM 44797	actinomycetia	S. Korea: soil	[4]		
<i>Mycobacterium sp.</i> 1465703.0	actinomycetia	Mozambique: Host cultures	J. Craig Venter Institute Genome Center for Infectious Diseases.Accession: PRJNA305922		
<i>Microbispora rosea</i> <i>subsp.</i> <i>nonnitritogenes</i> strain NRRL B- 2631	actinomycetia	Unknown: acidic volcanic ash	Ref. [5]		

References

- Mahan, K. M.; Zheng, H.; Fida, T. T.; Parry, R. J.; Graham, D. E.; Spain, J. C., A novel, iron-dependent enzyme that catalyzes the initial step in the biodegradation of N-nitroglycine by Variovorax sp. strain JS1663. *Appl. Environ. Microbiol.* 2017, 83, e00457-17.
- Shieh, W. Y., Lin, Y. T., Jean, W. D. Pseudovibrio denitrificans gen. nov., sp. nov., a marine, facultatively anaerobic, fermentative bacterium capable of denitrification. *International journal of systematic and evolutionary microbiology*, 2004, 54(6), 2307-2312
- Hosoya, S., Yokota, A., Pseudovibrio japonicus sp. nov., isolated from coastal seawater in Japan. *International journal of systematic and evolutionary microbiology*. 2007, 57(9) 1952-1955.
- Lee, S. D., Kim, E. S., Kang, S. O., Hah, Y. C. Pseudonocardia spinosispora sp. nov., isolated from Korean soil. *International journal of systematic and evolutionary microbiology*, **2002**, *52*(5), 1603-1608.
- Nonomura, H. Distribution of actinomycetes in the soil. IV. Isolation and taxonomy of the genus Microbispora. *J. Ferment. Technol.* **1960**, 38, 401-405.