

Supporting Information

for

One-pot Ugi-azide and Heck reactions for the synthesis of heterocyclic systems containing tetrazole and 1,2,3,4tetrahydroisoquinoline

Jiawei Niu, Yuhui Wang, Shenghu Yan, Yue Zhang, Xiaoming Ma, Qiang Zhang and Wei Zhang

Beilstein J. Org. Chem. 2024, 20, 912–920. doi:10.3762/bjoc.20.81

General reaction procedures, compound characterization data, and copies of NMR spectra

License and Terms: This is a supporting information file under the terms of the Creative Commons Attribution License (https://creativecommons.org/ licenses/by/4.0). Please note that the reuse, redistribution and reproduction in particular requires that the author(s) and source are credited and that individual graphics may be subject to special legal provisions.

The license is subject to the Beilstein Journal of Organic Chemistry terms and conditions: (https://www.beilstein-journals.org/bjoc/terms)

Table of contents

1.	General information	S1
2.	Analytical data of products	S1
3.	X-ray report of 6d and 8c	S6
4.	¹ H NMR, ¹³ C NMR of products 5a, 6 and 8	S8

1. General information

Chemicals and solvents were purchased from commercial source and used without further purification. ¹H (300 MHz, 400 MHz), ¹³C NMR spectra (75 MHz or 126 MHz) were recorded on a Bruker NMR spectrometer. LC–MS were performed on an Agilent 2100 system with C18 column (5.0 μ m, 6.0 × 50 mm). The mobile phases were MeOH and H₂O both containing 0.05% trifluoroacetic acid. A linear gradient was used to increase from 25:75 (v/v) MeOH/H₂O to 100% MeOH in 7.0 min at a flow rate of 0.7 mL/min. UV detections were conducted at 210 nm, 254 nm, and 365 nm. Low resolution mass spectra were recorded in APCI (atmospheric pressure chemical ionization). HRMS were performed on Agilent 6540 Q-TOF mass spectrometer (ESI). Flash column chromatography was performed using silica gel (200–300 mesh).

2. Analytical data of products

N-((2-Bromophenyl)(1-(tert-butyl)-1H-tetrazol-5-yl)methyl)prop-2-en-1-amine(5a)

White solid, 321mg, 92% yield. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.59 (dd, *J* = 7.9, 1.5 Hz, 1H), 7.20 (dd, *J* = 7.5, 1.4 Hz, 1H), 7.16 – 7.11 (m, 1H), 7.08 (dd, *J* = 7.6, 1.8 Hz, 1H), 5.94 (dddd, *J* = 18.4, 9.5, 7.2, 5.4 Hz, 1H), 5.72 (s, 1H), 5.10 (t, *J* = 1.5 Hz, 1H), 5.07 (dd, *J* = 6.2, 1.6 Hz, 1H), 3.42 – 3.32 (m, 1H), 3.19 – 3.12 (m, 1H), 2.36 (s, 1H), 1.57 (s, 9H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 154.7, 138.2, 136.0, 133.6, 130.0, 129.0, 128.3, 124.3, 117.6, 61.6, 56.2, 50.9, 29.8. HRMS (ESI) calcd for C₁₅H₂₀BrN₅ ([M+Na]⁺): 372.0800, found 372.0792.

1-(1-(tert-Butyl)-1H-tetrazol-5-yl)-4-methylene-1,2,3,4-tetrahydroisoquinoline(6a)

Light yellow oil, 161mg, 60% yield. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.73 (dd, J = 8.0, 1.4 Hz, 1H), 7.29 (d, J = 7.5 Hz, 1H), 7.17 (d, J = 1.3 Hz, 1H), 6.66 (d, J = 7.7 Hz, 1H), 5.74 (s, 1H), 5.61 (s, 1H), 5.04 (s, 1H), 3.80 (d, J = 15.2 Hz, 1H), 3.68 (s, 1H), 2.03 (d, J = 16.7 Hz, 1H), 1.85 (s, 9H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 155.5, 138.8, 133.9, 133.0, 128.2, 128.0, 126.7, 124.5, 108.3, 62.1, 53.1, 48.6, 30.2. HRMS (ESI) calcd for C₁₅H₁₉N₅ ([M+Na]⁺): 292.1538, found 292.1520.

1-(1-Benzyl-1H-tetrazol-5-yl)-4-methylene-1,2,3,4-tetrahydroisoquinoline(6b)

yellow oil, 174 mg, 58 yield. ¹H NMR (300 MHz, Chloroform-*d*) δ 7.67 (dd, *J* = 8.0, 1.3 Hz, 1H), 7.21 (dd, *J* = 5.2, 2.2 Hz, 4H), 7.09 – 7.03 (m, 2H), 6.99 (td, *J* = 7.6, 1.3 Hz, 1H), 6.52 (d, *J* = 7.8 Hz, 1H), 5.66 – 5.55 (m, 3H), 5.48 (d, *J* = 14.9 Hz, 1H), 5.04 (d, *J* = 1.4 Hz, 1H), 3.68 – 3.54 (m, 2H), 2.47 (s, 1H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 150.4, 133.5, 128.5, 127.6, 126.9, 123.5, 123.2, 123.0, 122.9, 122.7, 121.9, 119., 103.2, 72.4, 72.1, 71.8, 47.1, 46.2, 43.6. HRMS (ESI) calcd for C₁₈H₁₇Ns ([M+Na]⁺): 326.1832, found 326.1817.

9-Methylene-9,13b-dihydro-8H-tetrazolo[5',1':3,4]pyrazino[2,1-a]isoquinolin-6(5H)-one (6c)

Light yellow solid, 192 mg, 76% yield. ¹H NMR (400 MHz, Chloroform-d) δ 7.75 (d, J = 7.6 Hz, 1H), 7.70 (d, J = 7.7 Hz, 1H), 7.34 (dt, J = 15.8, 7.3 Hz, 2H), 6.33 (s, 1H), 5.75 (s, 1H), 5.43 (d, J = 15.0 Hz, 1H), 5.34 (s, 1H), 5.20 (d, J = 18.0 Hz, 1H), 4.98 (d, J = 18.0 Hz, 1H), 3.91 (d, J = 15.0 Hz, 1H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 159.5, 147.9, 135.5, 132.57, 129.8, 129.2, 129.0, 125.9, 124.9, 112.0, 53.7, 48.0, 47.8. HRMS (ESI) calcd for C₁₃H₁₁N₅O ([M+Na]⁺): 276.0866, found 276.0861.

White solid, 215 mg, 75% yield. ¹H NMR (400 MHz, Chloroform-d) δ 7.78 (d, J = 8.5 Hz, 1H), 7.68 (d, J = 1.9 Hz, 1H), 7.31 (dd, J = 8.5, 1.9 Hz, 1H), 6.31 (s, 1H), 5.77 (s, 1H), 5.45 (d, J = 15.1 Hz, 1H), 5.42 (s, 1H), 5.24 (d, J = 18.0 Hz, 1H), 5.03 (d, J = 18.0 Hz, 1H), 3.90 (d, J = 15.0 Hz, 1H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 159.4, 147.7, 135.4, 134.5, 134.3, 129.0, 128.1, 127.6, 124.9, 113.3, 53.3, 47.8, 47.6. HRMS (ESI) calcd for C₁₃H₁₀ClN₅O ([M+Na]⁺): 310.0472, found 310.0472.

9-Methylene-9,15b-dihydro-8H-benzo[g]tetrazolo[5',1':3,4]pyrazino[2,1-a]isoquinolin-6(5H)-one (6e)

Light yellow solid, 230 mg, 76% yield. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.38 (d, *J* = 8.0 Hz, 1H), 7.91 – 7.85 (m, 1H), 7.78 (d, *J* = 8.6 Hz, 1H), 7.62 – 7.52 (m, 2H), 7.34 (d, *J* = 8.6 Hz, 1H), 6.15 (s, 1H), 5.89 (s, 1H), 5.75 (d, *J* = 1.9 Hz, 1H), 5.24 (d, *J* = 17.9 Hz, 1H), 5.01 (dd, *J* = 16.5, 7.9 Hz, 2H), 4.30 (d, *J* = 15.0 Hz, 1H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 159.2, 147.3, 134.9, 134.1, 132.9, 130.0, 129.5, 128.8, 128.7, 127.5, 126.9, 124.9, 120.6, 120.2, 52.6, 50.0, 47.8. HRMS (ESI) calcd for C₁₇H₁₃N₅O ([M+Na]⁺): 326.1011, found 326.1018.

12-Methoxy-9-methylene-9,13b-dihydro-8H-tetrazolo[5',1':3,4]pyrazino[2,1-a]isoquinolin-6(5H)-one (6f)

yellow solid, 206 mg, 73% yield. ¹H NMR (500 MHz, Chloroform-*d*) δ 7.60 (d, *J* = 8.8 Hz, 1H), 7.30 (d, *J* = 2.0 Hz, 1H), 6.85 (dd, *J* = 8.8, 2.6 Hz, 1H), 6.28 (s, 1H), 5.58 (d, *J* = 1.5 Hz, 1H), 5.38 (d, *J* = 14.9 Hz, 1H), 5.19 (s, 1H), 5.18 – 5.13 (m, 1H), 4.97 (dd, *J* = 17.9, 1.4 Hz, 1H), 3.85 (d, *J* = 14.9 Hz, 1H), 3.77 (s, 3H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 160.0, 159.4, 147.9, 135.0, 131.0, 126.3, 124.9, 115.7, 110.3, 109.5, 55.5, 53.8, 48.1, 47.7. HRMS (ESI) calcd for C₁₄H₁₃N₅O₂ ([M+Na]⁺): 306.0979, found 306.0967.

11-Methyl-9-methylene-9,13b-dihydro-8H-tetrazolo[5',1':3,4]pyrazino[2,1-a]isoquinolin-6(5H)-one (6g)

brown solid, 202 mg, 76% yield. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.63 (d, *J* = 8.1 Hz, 1H), 7.51 (s, 1H), 7.13 (d, *J* = 8.1 Hz, 1H), 6.29 (s, 1H), 5.74 (s, 1H), 5.42 (d, *J* = 15.0 Hz, 1H), 5.32 (s, 1H), 5.20 (d, *J* = 18.0 Hz, 1H), 4.97 (d, *J* = 17.9 Hz, 1H), 3.89 (d, *J* = 15.0 Hz, 1H), 2.35 (s, 3H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 159.5, 148.1, 139.1, 135.6, 132.3, 129.8, 127.0, 125.8, 125.3, 111.7, 53.6, 48.1, 47.8, 21.2. HRMS (ESI) calcd for C₁₄H₁₃N₅O ([M+Na]⁺): 290.1023, found 290.1018.

9-Methylene-9,14b-dihydro-8H-[1,3]dioxolo[4,5-g]tetrazolo[5',1':3,4]pyrazino[2,1-a]isoquinolin-6(5H)-one (6h)

brown solid, 225 mg, 76% yield. ¹H NMR (500 MHz, Chloroform-*d*) δ 7.28 (s, 1H), 7.10 (s, 1H), 6.24 (s, 1H), 5.99 (d, *J* = 1.1 Hz, 1H), 5.94 (d, *J* = 1.1 Hz, 1H), 5.55 (d, *J* = 1.3 Hz, 1H), 5.39 (d, *J* = 14.9 Hz, 1H), 5.24 (s, 1H), 5.20 (d, *J* = 18.1 Hz, 1H), 4.99 (dd, *J* = 18.0, 1.3 Hz, 1H), 3.84 (d, *J* = 14.9 Hz, 1H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 159.5, 148.5, 148.5, 148.0, 135.3, 127.0, 123.9, 110.4, 106.1, 104.5, 101.8, 53.6, 47.9, 47.7. HRMS (ESI) calcd for C₁₄H₁₁N₅O₃ ([M+Na]⁺): 320.0753, found 320.0760.

11,12-Dimethoxy-9-methylene-9,13b-dihydro-8H-tetrazolo[5',1':3,4]pyrazino[2,1-a]isoquinolin-6(5H)-one (6i)

brown solid, 247 mg, 79% yield. ¹H NMR (500 MHz, Chloroform-*d*) δ 7.40 (s, 1H), 7.11 (s, 1H), 6.31 (s, 1H), 5.59 (d, *J* = 1.5 Hz, 1H), 5.43 (d, *J* = 14.8 Hz, 1H), 5.25 (s, 1H), 5.23 – 5.18 (m, 1H), 5.02 (dd, *J* = 18.0, 1.4 Hz, 1H), 3.90 (s, 3H), 3.86 (s, 3H), 3.84 (d, *J* = 14.8 Hz, 1H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 159.4, 149.9, 149.4, 148.2, 135.2, 125.0, 122.4, 109.5, 108.4, 106.8, 56.1, 56.0, 53.6, 48.1, 47.7. HRMS (ESI) calcd for C₁₅H₁₅N₅O₃ ([M+Na]⁺): 336.1069, found 336.1069.

9-Methylene-11-(trifluoromethyl)-9,13b-dihydro-8H-tetrazolo[5',1':3,4]pyrazino[2,1-a]isoquinolin-6(5H)-one (6j)

White solid, 237 mg, 74% yield. ¹H NMR (500 MHz, Chloroform-*d*) δ 8.02 (d, J = 8.3 Hz, 1H), 7.95 (s, 1H), 7.59 (d, J = 8.3 Hz, 1H), 6.38 (s, 1H), 5.86 (s, 1H), 5.53 – 5.48 (m, 2H), 5.26 (d, J = 18.4 Hz, 1H), 5.04 (dd, J = 18.1, 1.2 Hz, 1H), 3.93 (d, J = 15.0 Hz, 1H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 159.4, 147.5, 134.4, 133.5, 133.1, 131.8, 131.6, 127.0, 125.5, 121.9, 113.9, 53.5, 47.8, 47.7. ¹⁹F NMR (282 MHz, Chloroform-*d*) δ -63.0. HRMS (ESI) calcd for C₁₄H₁₀F₃N₅O ([M+Na]⁺): 344.0759, found 344.0735.

12-Fluoro-9-methylene-9,13b-dihydro-8H-tetrazolo[5',1':3,4]pyrazino[2,1-a]isoquinolin-6(5H)-one (6k)

Light yellow solid, 208 mg, 77% yield. ¹H NMR (500 MHz, Chloroform-*d*) δ 7.70 (dd, *J* = 8.8, 5.5 Hz, 1H), 7.59 (dd, *J* = 9.4, 2.4 Hz, 1H), 7.08 (td, *J* = 8.4, 2.6 Hz, 1H), 6.32 (s, 1H), 5.69 (s, 1H), 5.45 (d, *J* = 15.0 Hz, 1H), 5.34 (s, 1H), 5.24 (d, *J* = 18.0 Hz, 1H), 5.06 – 4.99 (m, 1H), 3.90 (d, *J* = 15.0 Hz, 1H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 163.6, 161.6, 159.4, 147.6, 134.5, 131.7, 128.7, 127.0, 127.0, 116.7, 116.6, 113.4, 113.2, 111.8, 53.5, 47.9, 47.8. ¹⁹F NMR (282 MHz, Chloroform-*d*) δ -109.9. HRMS (ESI) calcd for C₁₃H₁₀FN₅O ([M+Na]⁺): 294.0771, found 294.0767.

2-Benzyl-1-(1-benzyl-1H-tetrazol-5-yl)-4-methylene-1,2,3,4-tetrahydroisoquinoline (8a)

Light yellow solid, 290 mg, 74% yield. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.74 – 7.66 (m, 1H), 7.37 – 7.29 (m, 3H), 7.25 – 7.14 (m, 6H), 7.03 (d, *J* = 1.3 Hz, 1H), 6.86 – 6.78 (m, 2H), 6.53 (d, *J* = 7.8 Hz, 1H), 5.70 (s, 1H), 5.58 (d, *J* = 15.0 Hz, 1H), 5.36 (s, 1H), 5.23 (d, *J* = 15.0 Hz, 1H), 5.09 (s, 1H), 3.70 (dd, *J* = 27.4, 13.5 Hz, 2H), 3.51 (d, *J* = 13.5 Hz, 1H), 3.28 – 3.20 (m, 1H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 155.9, 137.7, 136.7, 135.0, 132.7, 130.9, 129.5, 129.2, 128.9, 128.8, 128.7, 128.6, 128.4, 128.2, 127.9, 124.2, 111.0, 57.5, 56.5, 51.4, 50.7. HRMS (ESI) calcd for C₂₅H₂₃N₅ ([M+Na]⁺): 416.1851, found 416.1834.

2-Benzyl-1-(1-benzyl-1H-tetrazol-5-yl)-6-methyl-4-methylene-1,2,3,4-tetrahydroisoquinoline (8b)

Colorless oil, 288 mg, 71% yield. ¹H NMR (300 MHz, DMSO-d₆) δ 7.71 – 7.63 (m, 1H), 7.31 (d, J = 2.2 Hz, 2H), 7.30 – 7.28 (m, 2H), 7.27 (d, J = 1.9 Hz, 2H), 7.14 (dd, J = 7.0, 2.5 Hz, 2H), 7.07 – 6.95 (m, 3H), 6.63 (d, J = 7.9 Hz, 1H), 5.82 (s, 1H), 5.78 – 5.70 (m, 1H), 5.51 (t, J = 7.7 Hz, 2H), 4.99 (s, 1H), 3.74 – 3.49 (m, 3H), 3.17 (d, J = 14.5 Hz, 1H), 2.31 (s, 3H). ¹³C NMR (75 MHz, DMSO-d₆) δ 156.0, 137.7, 137.6, 136.9, 135.0, 132.4, 129.8, 129.5, 129.1, 129.0, 128.8, 128.6, 128.5, 128.2, 128.1, 127.9, 124.4, 110.7, 57.6, 56.4, 51.6, 50.7, 21.3. HRMS (ESI) calcd for C₂₆H₂₅N₅ ([M+Na]⁺): 430.2008, found 430.2052.

2-Benzyl-1-(1-benzyl-1H-tetrazol-5-yl)-6-chloro-4-methylene-1,2,3,4-tetrahydroisoquinoline (8c)

Light yellow solid, 281 mg, 66 % yield. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.93 (d, J = 2.2 Hz, 1H), 7.35 – 7.31 (m, 3H), 7.26 (dt, J = 5.9, 2.5 Hz, 4H), 7.16 – 7.10 (m, 2H), 7.08 (dd, J = 4.5, 1.8 Hz, 2H), 6.89 (d, J = 8.3 Hz, 1H), 5.97 (s, 1H), 5.74 (d, J = 15.5 Hz, 1H), 5.56 (d, J = 15.6 Hz, 2H), 5.08 (s, 1H), 3.68 (d, J = 13.0 Hz, 1H), 3.57 (d, J = 13.1 Hz, 1H), 3.50 (d, J = 14.7 Hz, 1H), 3.19 (d, J = 14.9 Hz, 1H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 160.4, 142.4, 140.0, 139.8, 139.5, 138.1, 135.7, 134.3, 133.9, 133.6, 133.4, 133.3, 132.8, 132.7, 128.6, 117.8, 62.0, 60.7, 55.4. HRMS (ESI) calcd for C₂₅H₂₂ClN₅ ([M+Na]⁺): 450.1461, found 450.1505.

Light yellow solid, 331 mg, 72% yield.¹H NMR (400 MHz, DMSO-*d*₆) δ 8.19 (d, J = 1.9 Hz, 1H), 7.55 (dd, J = 8.2, 1.9 Hz, 1H), 7.34 – 7.30 (m, 3H), 7.26 (d, J = 2.5 Hz, 3H), 7.18 – 7.11 (m, 3H), 7.11 – 7.05 (m, 2H), 6.07 (d, J = 1.3 Hz, 1H), 5.77 (d, J = 15.5 Hz, 1H), 5.71 (d, J = 3.6 Hz, 1H), 5.60 (d, J = 15.5 Hz, 1H), 5.15 (s, 1H), 3.71 (d, J = 13.1 Hz, 1H), 3.64 – 3.50 (m, 2H), 3.24 (d, J = 15.0 Hz, 1H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 155.5, 137.6, 135.2, 134.0, 134.9, 133.8, 130.3, 129.5, 129.5, 129.3, 129.1, 129.1, 129.1, 129.0, 128.8, 128.6, 128.6, 128.1, 128.0, 127.9, 125.9, 125.0, 124.9, 123.2, 121.1, 121.1, 113.6, 57.3, 56.2, 50.7. ¹⁹F NMR (376 MHz, DMSO-*d*₆) δ -61.1. HRMS (ESI) calcd for C₂₆H₂₂F₃N₅ ([M+Na]⁺):

484.1725, found 484.1752.

2-Benzyl-1-(1-benzyl-1H-tetrazol-5-yl)-7-methoxy-4-methylene-1,2,3,4-tetrahydroisoquinoline (8e)

Light yellow solid, 287 mg, 68% yield. ¹H NMR (400 MHz, DMSO-*d*₆) δ 7.80 (d, *J* = 8.8 Hz, 1H), 7.34 – 7.30 (m, 3H), 7.28 (d, *J* = 2.0 Hz, 1H), 7.27 (d, *J* = 1.9 Hz, 2H), 7.19 – 7.10 (m, 2H), 7.10 – 7.01 (m, 2H), 6.91 (dd, *J* = 8.8, 2.7 Hz, 1H), 6.28 (d, *J* = 2.6 Hz, 1H), 5.74 (s, 3H), 5.68 (s, 1H), 5.55 – 5.48 (m, 2H), 4.87 (s, 1H), 3.66 (d, *J* = 13.1 Hz, 1H), 3.61 (s, 3H), 3.17 (d, *J* = 14.7 Hz, 1H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 159.7, 155.8, 137.8, 136.3, 135.1, 132.2, 129.5, 129.1, 128.8, 128.6, 128.1, 127.9, 125.8, 125.5, 115.1, 112.7, 108.6, 57.5, 56.5, 55.6, 55.3, 51.5, 50.7. HRMS (ESI) calcd for C₂₆H₂₅N₅O ([M+Na]⁺): 446.1957, found 446.1961.

6-Benzyl-5-(1-benzyl-1H-tetrazol-5-yl)-8-methylene-5,6,7,8-tetrahydro-[1,3]dioxolo[4,5-g]isoquinoline (8f)

Light yellow solid, 319 mg, 73% yield.¹H NMR (400 MHz, DMSO-*d*₆) δ 7.39 (s, 1H), 7.36 – 7.30 (m, 3H), 7.27 (dd, *J* = 5.0, 1.9 Hz, 3H), 7.17 – 7.10 (m, 2H), 7.09 – 7.02 (m, 2H), 6.27 (s, 1H), 6.02 (d, *J* = 1.0 Hz, 1H), 5.98 (d, *J* = 1.0 Hz, 1H), 5.74 – 5.68 (m, 2H), 5.52 (d, *J* = 15.4 Hz, 1H), 5.42 (s, 1H), 4.89 (s, 1H), 3.74 – 3.55 (m, 2H), 3.54 – 3.45 (m, 1H), 3.14 (d, *J* = 14.7 Hz, 1H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 155.9, 148.1, 148.0, 137.8, 136.4, 135.1, 129.5, 129.1, 128.8, 128.6, 128.1, 127.9, 127.0, 124.7, 109.7, 107.8, 103.7, 101.7, 57.4, 56.5, 51.3, 50.6. HRMS (ESI) calcd for C₂₆H₂₃N₅O₂ ([M+Na]⁺): 460.1749, found 460.1803.

$2-Methyl-4-methylene-1-(1-(2,4,4-trimethylpentan-2-yl)-1H-tetrazol-5-yl)-1,2,3,4-tetrahydroisoquinoline\ (8g)$

White solid, 230 mg, 68% yield. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.78 (d, J = 7.9 Hz, 1H), 7.31 (t, J = 7.6 Hz, 1H), 7.22 (t, J = 7.5 Hz, 1H), 6.81 (d, J = 7.7 Hz, 1H), 5.76 (s, 1H), 5.33 (s, 1H), 5.12 (s, 1H), 3.85 (d, J = 14.4 Hz, 1H), 3.23 (d, J = 14.4 Hz, 1H), 2.43 (s, 3H), 2.11 (d, J = 14.7 Hz, 2H), 1.81 (s, 6H), 0.85 (s, 9H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 155.0, 132.4, 128.4, 127.8, 123.8, 110.0, 53.3, 31.6, 30.8, 29.8. HRMS (ESI) calcd for C₂₀H₂₉N₅ ([M+Na]⁺): 362.2321, found 362.2314.

$\label{eq:charge} 6-Chloro-2-methyl-4-methylene-1-(1-(2,4,4-trimethylpentan-2-yl)-1H-tetrazol-5-yl)-1,2,3,4-tetrahydroisoquinoline ({\it 8h})-1,2,3,4-tetrahydroisoquinoline ({\it 8h})-1,2,3,4-tetrahydroisoqui$

8h

Light yellow solid, 257 mg, 69% yield.¹H NMR (400 MHz, Chloroform-*d*) δ 7.71 (d, J = 2.2 Hz, 1H), 7.16 (dd, J = 8.2, 2.1 Hz, 1H), 6.75 (d, J = 8.3 Hz, 1H), 5.72 (s, 1H), 5.23 (s, 1H), 5.13 (s, 1H), 3.77 (d, J = 14.8 Hz, 1H), 3.18 (d, J = 14.7 Hz, 1H), 2.40 (s, 3H), 2.19 (d, J = 15.3 Hz, 1H), 2.05 (d, J = 14.9 Hz, 1H), 1.80 (s, 6H), 0.82 (s, 9H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 154.5, 134.2, 133.9, 129.6, 128.5, 123.8, 111.6, 66.3, 53.3, 31.6, 30.8, 30.1, 29.7. HRMS (ESI) calcd for C₂₀H₂₈ClN₅ ([M+Na]⁺): 396.1931, found 396.1923.

Light yellow solid, 263 mg, 66% yield. ¹H NMR (400 MHz, Chloroform-*d*) & 7.16 (s, 1H), 6.18 (s, 1H), 5.54 (s, 1H), 5.22 (s, 1H), 4.99 (s, 1H), 3.90 (s, 3H), 3.74 (dd, *J* = 14.3, 2.7 Hz, 1H), 3.69 (s, 3H), 3.16 (d, *J* = 14.3 Hz, 1H), 2.38 (s, 3H), 2.13 (d, *J* = 10.3 Hz, 2H), 1.76 (d, *J* = 8.8 Hz, 6H), 0.82 (s, 9H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 155.07, 149.6, 148.7, 125.2, 108.0, 105.9, 55.9, 55.8, 53.3, 31.6,
30.9, 30.1. HRMS (ESI) calcd for C₂₂H₃₃N₅O₂ ([M+Na]⁺): 422.2532, found 422.2106

6-Methyl-8-methylene-5-(1-(2,4,4-trimethylpentan-2-yl)-1H-tetrazol-5-yl)-5,6,7,8-tetrahydro-[1,3]dioxolo[4,5-g]isoquinoline (8j)

White solid, 252 mg, 66% yield. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.18 (s, 1H), 6.22 (s, 1H), 5.94 (d, J = 1.2 Hz, 1H), 5.91 (d, J = 1.3 Hz, 1H), 5.53 (s, 1H), 5.15 (s, 1H), 4.98 (s, 1H), 3.75 (d, J = 14.6 Hz, 1H), 3.13 (d, J = 14.6 Hz, 1H), 2.41 (s, 3H), 2.20 (d, J = 15.4 Hz, 1H), 2.06 (s, 1H), 1.83 (d, J = 13.0 Hz, 6H), 0.84 (s, 9H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 154.9, 148.1, 147.7, 126.7, 108.6, 107.3, 103.4, 101.2, 53.2, 31.6, 30.8, 29.6. HRMS (ESI) calcd for C₂₁H₂₉N₅O₂ ([M+Na]⁺): 406.2219, found 406.2231.

3. X-ray report of 6d and 8c

6d

CCDC: 2164364

Bond precision:	C-C = 0.002	20 A	Wavelength=		=0.71073
Cell:	a=8.5083(11) alpha=90)	b=14.3480(beta=105.0	17) 64(2)	c=10.4672(13) gamma=90
Temperature:	296 K				-
	Calculated			Reported	
Volume	1233.9(3)			1233.9(3)	
Space group	P 21/c			P 21/c	
Hall group	-P 2ybc			-P 2ybc	
Moiety formula	C13 H10 C1 N	5 0		?	
Sum formula	C13 H10 Cl N	5 0		C13 H10 C	L N5 O
Mr	287.71			287.71	
Dx,g cm-3	1.549			1.549	
Z	4			4	
Mu (mm-1)	0.313			0.313	
F000	592.0			592.0	
F000′	592.78				
h,k,lmax	10,17,12			10,17,12	
Nref	2165			2159	
Tmin, Tmax	0.922,0.928				
Tmin'	0.922				
Correction metho	d= Not given				
Data completeness= 0.997			Theta(ma	ax)= 24.993	3
R(reflections)=)			wR2(reflections) = $0.0829(.2159)$	
S = 1.086	Np	ar= 1	90		0.0029(2139)

CCDC: 2321622

Bond precision:	C-C = 0.0034 A	Wavelength=0.71073			
Cell:	a=21.3467(15) alpha=90	b=14.9952(11) beta=90.794(1)	c=6.8948(5) gamma=90		
Temperature:	296 K		-		
	Calculated	Reported			
Volume	2206.8(3)	2206.8(3)			
Space group	P 21/c	P 21/c			
Hall group	-P 2ybc	-P 2ybc			
Moiety formula	C25 H22 Cl N5	?			
Sum formula	C25 H22 Cl N5	C25 H22 C1	N5		
Mr	427.93	427.92			
Dx,g cm-3	1.288	1.288			
Z	4	4			
Mu (mm-1)	0.195	0.195			
F000	896.0	896.0			
F000′	896.86				
h,k,lmax	25,17,8	25,17,8			
Nref	3888	3882			
Tmin,Tmax	0.954,0.973				
Tmin'	0.951				
Correction metho	od= Not given				
Data completene:	ss= 0.998	Theta(max)= 24.999			
R(reflections)=	0.0424(2407)		<pre>wR2(reflections) = 0 1147(3882)</pre>		
S = 0.862	Npar= 2	88	0.114/(3002)		

4. ¹H NMR, ¹³C NMR of products 5a, 6 and 8

S9

3.5 3.0 2.5 2.0

0.5

1.5

1.0

0.0 -0.

7.70 7.768 7.688 7.3287 7.328 7.3277 7.328 7.328 7.329 7.328 7.329 7.320

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

210 200 190 180 170 150 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 r1 (ppm)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 11 (ppm)

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

7.81 7.733 7.734 7.735 7.735 7.735 7.736 7.737 7.738 7.738 7.739 7.736 7.737 7.738 7.738 7.739 7.737 7.738 7.739 7.739 7.739 7.739 7.739 7.741 7.751</t

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

-10

S31