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SYNTHETIC DETAILS
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Scheme S1. Synthesis of 3a

Table S1. Different reaction conditions employed to access 3a

Entry Conditions Result
1 AcOH, 120 °C, 24-72h incomplete
2 TFA, AcOH, 1,4-dioxane, 120 °C, 24-72h mixture
3 Ethanol, AcOH, reflux, 48h NR
4 Ethanol, reflux, 24-72h NR
5 Toluene, 120 °C, 24h NR
6 Pyridine, 115 °C, 24-72h promising
7 Pyridine, 80 °C, 36h 41%

N.R.= No Result
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Scheme S2. Synthesis of 7a

Table S2. Different conditions employed for the synthesis of 7a

Entry Conditions Result
1 AcOH, 120 °C, 12-72h mixture
2 TFA, AcOH, 1,4-dioxane, 120 °C, 12-72h mixture
3 Methanol or Ethanol, AcOH, reflux, 48h N.R.
4 Methanol or Ethanol, reflux, 12-72h N.R.
5 Toluene, 120 °C, 12-24h N.R.
6 Pyridine, 115 °C, 24-72h decomp.
7 Pyridine, 80 °C, 48h decomp.
8 Ethylene glycol, 135 °C, 48h 16a (18%)
9 DMF, 100 °C, 12h mixture
10 NEt; (0.2 or 2 eq), DMF or MeCN, reflux, 12h mixture
11 K2COs (1 eq), EtOH, reflux, 12h mixture
12 NEt; (30 eq), EtOH, rt, 72h 16b (45%)
13 KOH (10 eq), THF, H,0, rt, 12h 7b (61%)

N.R.= No Result
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Scheme S3. Oxidation of 10
Table S3. Different conditions employed for the oxidation of 10 to 7a
Entry Conditions Result
1 PbO,, CH.Cl,, rt mixture
2 MnO,, CHxCly, rt mixture
3 DDQ, CH,Cl, rt mixture
4 DDQ, THF, rt mixture
5 DDQ, DMSO, rt decomp.
6 DDQ, DMF, rt decomp.

NH,OH (10 eq)

O N._N.__NH,
L,
7 Z
16f

76%
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Scheme S4. Synthesis of substituted 6a derivatives, 16e and 16f.

SYNTHESIS OF COMPOUNDS
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5,6-Dioxo-1,4,5,6-tetrahydropyrazine-2,3-dicarbonitrile (14)

87%

NEt; (15 eq) O N._N._OEt
- 00X
EtOH, < 50°C. 24h O N7 SN okt

16e

A 2 L Erlenmeyer flask was charged with a 2.0 M solution of oxalyl chloride (140 mL, 278
mmol). To the solution stirring at a high rate, was slowly dropwise added a solution of
diaminomaleonitrile (DAMN) 15 (15.0 g, 139 mmol) in anhydrous 1,4-dioxane (300 mL) over the
course of one hour. The resulting pale-yellow suspension was gently warmed to 45 °C overnight.
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After this time the mixture, which turned yellow-brown was cooled, filtered, and washed with
copious amount of hexanes. The crude material was recrystallized from methanol to obtain off-
white crystals of 14 (11 g, 68 mmol, 49%). 3C NMR (151 MHz, DMSO-de): 6 106.17, 111.34,
155.21; HRMS (DART) calc’d for CgHaN4O2 [M+H]*: 163.0256, found: 163.0252; [M+NH4]*:
180.0521, found: 180.0518. The 3C NMR spectrum matches the values reported in the
literature.!

N CN
]
XX
N CN
13

5,6-Dichloropyrazine-2,3-dicarbonitrile (13)

A 500 mL round-bottom flask was charged with 5,6-dioxo-1,4,5,6-tetrahydropyrazine-2,3-
dicarbonitrile (14, 11.0 g, 67.9 mmol) and suspended in 1,4-dioxane (80 mL). Thionyl chloride
(75.0 mL, 1030 mmol) was added at a rate of 1 drop/s over the course of an hour using an addition
funnel. Additional 1,4-dioxane (10 mL) was used to rinse the addition funnel. After the addition,
DMF (0.8 mL, 10 mmol) was added dropwise to the yellow suspension. The reaction mixture was
heated to reflux at 100 °C for 5 hours at which point the suspension turned from yellow to brown.
After this time the flask was cooled and thionyl chloride was removed in vacuo to obtain a brown
solid. Column chromatography in CH,Cl, afforded an off-yellow crystalline product (10.0 g, 50.2
mmol, 74.0%). 3C NMR (125 MHz, CDCls): § 111.6, 130.3, 152.3. *H NMR spectra matches with
the literature.?

5,6-Diaminopyrazine-2,3-dicarbonitrile (12)

A 500 mL round-bottom flask was charged with 5,6-dichloropyrazine-2,3-dicarbonitrile
(13, 10.14 g, 51 mmol) and dissolved in dry THF (220 mL) and placed in a water bath at room
temperature. To the resulting red-brown solution was dropwise added ammonia (29% w/w) (34
mL, 510 mmol) using an addition funnel. The reaction mixture was heated to reflux for 20 hours.
After this time, the flask was cooled, and the contents transferred to 500 mL of ice and mixed
well. After extraction with EtOAc (4 x 100 mL) the combined organic layers were washed with
brine (100 mL) and dried with Na>SO4. The solvents were removed in vacuo to obtain pure orange
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amorphous solid (7.4 g, 46 mmol, 91%). *H NMR (500 MHz, DMSO-ds): 6 7.55 (br s, 4H); 3C NMR
(125 MHz, DMSO-dg): 6 115.8, 118.8, 145.5.

H
N N CN
~
@II
N N CN
H
8

5,10-Dihydropyrazino[2,3-b]quinoxaline-2,3-dicarbonitrile (8)

To a solution of 5,6-dichloropyrazine-2,3-dicarbonitrile (13, 50 mg, 0.25 mmol) in 1,4-
dioxane (3 mL) was added 1,2-phenylenediamine (60 mg, 0.55 mmol) in small portions. Within a
few minutes, an orange precipitate formed. The reaction proceeded at room temperature for 12
hours after which a pale orange solid was observed. The solid was filtered and washed with water
and diethyl ether and dried in vacuo to leave a bright orange amorphous material (45 mg, 0.46
mmol, 84%). *H NMR (500 MHz, DMSO-d): 6 6.36-6.38 (dd, 2H, J = 3.5 Hz, J = 6 Hz), 6.59-6.61
(dd, 2H, J=3.5 Hz, J = 6 Hz), 10.23 (s, 1H); HRMS (ESI) calculated for C12HsNe [M+H]*: 235.0732,

found: 235.0732.
H
N N CN
v
XIXX
N N CN
H

9

7,8-Dimethyl-5,10-dihydropyrazino[2,3-b]quinoxaline-2,3-dicarbonitrile (9)

To a purple solution of 5,6-dichloropyrazine-2,3-dicarbonitrile (13, 300 mg, 1.50 mmol),
in 1,4-dioxane (18 mL) was added 1,2-phenylene-4,5-diamine (359 mg, 3.31 mmol) in small
portions; within a few minutes, an orange precipitate formed. The reaction was allowed to
proceed at room temperature for 12 hours. The solid was filtered and washed with water (30 mL)
and diethyl ether (30 mL), then dried in vacuo to leave a bright orange amorphous material (300
mg, 2.81 mmol, 85%). *H NMR (500 MHz, DMSO-ds): § 1.92 (s, 6H), 6.18 (s, 2H), 10.15 (s, 2H).
Proton NMR spectra matches closely with the literature report.?

I\

N 2 0]

NN (o]
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Te

S5



1,10-Phenanthroline-5,6-dione (7€)

A cooled 500 mL round-bottom flask was charged with phenanthroline (7.0 g, 39 mmol),
potassium bromide (11.6 g, 58.3 mmol) to which then was added chilled (ca. 0 °C) conc. sulfuric
acid (70 mL) very slowly. After this time, conc. nitric acid (30 mL) was introduced to the dark
orange suspension and heated to 100 °C for 18 hours. After this time, the yellow solution was
cooled, added to ice (1 kg) and then slowly neutralized to pH = 7 with a solution of NaOH (=100
g) in water. After neutralization, the aqueous solution was extracted with dichloromethane (6 x
100 mL), the combined organic layer washed with brine (200 mL) and dried with anhydrous
Na,SO0a. After recrystallization of the crude residue with methanol, was left with yellow crystalline
powder of 7e (5.1 g, 63%). *H NMR (500 MHz, CDCls): 6 7.58-7.60 (dd, 2H, J = 5 Hz J = 8.0 Hz),
8.50-8.52 (d, 2H, J = 7.8 Hz), 9.12-9.13 (d, 2H, J = 5.0 Hz). Proton NMR matches the literature.*

N
N .~ NJ
2 "OH
NN \r}|
I/ OH

(5Z,6E)-1,10-Phenanthroline-5,6-dione dioxime (7d)

A 500 mL round-bottom flask was charged with 1,10-phenanthroline-5,6-dione (7e, 2.17
g, 10.3 mmol), hydroxyl amine hydrochloride (2.15 g, 31 mmol), barium carbonate (4.07 g, 20.64
mmol), and ethanol (220 mL). The resulting yellow suspension was heated to reflux for 24 hours.
After this time, the pale-yellow solid was collected by filtration and re-added to a new flask and
stirred in a solution of 0.2 N HCl overnight. After filtration, a pure, pale-yellow solid was obtained
which was washed with water and dried in vacuo (1.50 g, 60%). *H NMR (500 MHz, DMSO-ds): 6
7.51-7.57 (m, 2H), 8.25-8.29 (d, 1H, J = 13 Hz), 8.79-8.81 (d, 2H, J = 7 Hz), 8.92-8.95 (d, 1H, J =
13 Hz), 12.90 (s, 1H), 12.99 (brs, 1H). The proton NMR spectrum matches the literature.®

N
N 2 NH,
NTN NH,
l Z
7c

1,10-Phenanthroline-5,6-diamine (7c)

A 100 mL 3-neck round-bottom flask was charged with (5Z, 6E)-1,10-phenanthroline-5,6-
dione dioxime (7d, 113 mg, 0.53 mmol), Pd/C (113 mg) and ethanol (30 mL). The suspension was
brought to a reflux for 26 hours as hydrazine monohydrate (N2H4.H20, 40 mL) was slowly added
using an addition funnel. After this time, the catalyst was filtered off at room temperature on a
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bed of celite. The red colored filtrate was concentrated in vacuo to obtain the crude solid. To the
solid was added water (30 mL); the mixture was then sonicated and stirred at room temperature
for 1 hour. After this time, the mixture was filtered and the solid residue was washed with water
to obtain pure yellow-green colored solid of 7¢ (58 mg, 0.24 mmol, 46%). *H NMR (500 MHz,
DMSO-de): 6 5.21 (s, 4H), 7.59-7.62 (dd, 2H, J =4 Hz, J = 8 Hz), 8.47-8.49 (d, 2H, J = 8 Hz), 8.77—
8.78 (d, 2H, J = 2.5 Hz). The proton NMR spectrum matches the literature.®
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9,14-Dihydropyrazino[2',3":5,6]pyrazino[2,3-f][1,10]phenanthroline-11,12-dicarbonitrile (10)

A 5 mL round-bottom flask was charged with 1,10-phenanthroline-5,6-diamine (7c, 50
mg, 0.24 mmol) and 5,6-dichloropyrazine-2,3-dicarbonitrile (13, 47.3 mg, 0.24 mmol), and
suspended in 1,4-dioxane (3 mL). The mixture was heated to 80 °C for 26 hours. After this time
the reaction mixture was filtered and washed with dichloromethane (15 mL) to obtain a light
brown solid (47 mg, 0.14 mmol, 59%). *H NMR (500 MHz, DMSO-dg): 6 7.99-8.01 (dd, 2H, J =5
Hz J = 8.5 Hz), 8.89-8.90 (d, 2H, J = 3.5 Hz), 8.93-8.95 (d, 2H, J = 8.5 Hz), 12.72 (brs, 2H); HRMS
(negative ESI) calculated for CisHgNs [M]: 336.0872, found: 336.0671; [M-2H]: 334.0716, found:
334.0737.

N~
N® "CN
16f

12-Aminodibenzo(f,h]pyrazino[2,3-b]quinoxaline-11-carbonitrile (16f)

A 50 mL round-bottom flask was charged with dibenzo[f,h]pyrazino[2,3-b]quinoxaline-
11,12-dicarbonitrile (6a, 64 mg, 0.20 mmol) and suspended in THF (15 mL). To the resulting red
suspension was dropwise added ammonium hydroxide (15 M; 0.13 mL, 2.0 mmol) in THF (5 mL)
and allowed to react overnight for 21 hours. After this time, the reaction mixture was diluted
with water (15 mL) and neutralized with 1 N HCl to pH of 7. The resulting orange solid was filtered
and dried in vacuo (45 mg, 0.15 mmol, 76%). *H NMR (600 MHz, DMSO-de): § 7.80-7.84 (m, 2H),
7.87-7.89 (t, 1H, J = 7.2 Hz), 7.93-7.95 (t, 1H, J = 7.2 Hz), 8.24 (br s, 2H), 8.79-8.82 (t, 1H, /= 7.5
Hz), 9.07-9.09 (d, 1H, J = 7.8 Hz), 9.13-9.15 (d, 1H, J = 7.8 Hz); 13C NMR (150 MHz, DMSO-d): &
114.60, 123.77, 123.83, 125.04, 125.35, 126.50, 128.41, 128.60, 128.73, 129.05, 130.68, 131.00,
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131.96, 132.56, 138.93, 140.57, 145.98, 146.06, 155.22; HRMS (ESI) calculated for CigHioNs
[M+H]*: 323.1045, found: 323.1025.

O N N OEt
N N
XX
N N OEt
16e

11,12-Diethoxydibenzo[f,h]pyrazino[2,3-b]quinoxaline (16e)

A 50 mL round-bottom flask was charged with dibenzo(f,h]pyrazino[2,3-b]quinoxaline-
11,12-dicarbonitrile (6a, 55 mg, 0.17 mmol) and the solid was suspended in ethanol (20 mL). To
the resulting red suspension was added trimethylamine (0.7 mL, 5 mmol). The mixture was
heated to 50 °C for 24 hours after which a bright yellow precipitate formed. The solid was
collected via filtration and dried in vacuo (53 mg, 0.14 mmol, 87%). *H NMR (500 MHz, DMSO-
ds): 6 1.50-1.52 (t, 6H, J = 7 Hz), 4.66—4.71 (q, 4H, J = 6 Hz), 7.81-7.84 (t, 2H, J = 7.5 Hz), 7.87-
7.90 (t, 2H, J = 8 Hz), 8.84-8.86 (d, 2H, J = 8.5 Hz), 9.16-9.18 (t, 2H, J = 7.5 Hz); HRMS (ESI)
calculated for C2H1sN4O> [M+H]*: 371.1508, found: 371.1495.

X
No .~ |Nj:N\j:0\
N X NN N
~
16¢c

11,12-Dimethoxypyrazino[2',3":5,6]pyrazino[2,3-f][1,10]phenanthroline (16c)

A 25 mL round-bottom flask was charged with 5,6-diaminopyrazine-2,3-dicarbonitrile (12,
55 mg, 0.34 mmol) and 1,10-phenanthroline-5,6-dione (7e, 72.5 mg, 0.312 mmol), and the
mixture was dissolved in methanol (10 mL). To the resulting light orange solution was dropwise
added a solution of trimethylamine (3.0 mL, 26 mmol), which turned the solution red. The
reaction was gently heated to 50 °C for 16 hours at which point a yellow precipitate became
apparent. The solids were collected via filtration and washed with copious amounts of methanol
and dried in vacuo to obtain pale yellow material (56 mg, 0.20 mmol, 52%). *H NMR (500 MHz,
DMSO-ds): & 4.26 (s, 6H) 7.96-7.98 (dd, 2H, J = 4.5 Hz, J = 8 Hz), 9.24-9.25 (d, 2H, J = 4.5 Hz),
9.51-9.52 (d, 2H, J = 8 Hz); 3C NMR (125 MHz, CDCl5): § 56.17, 124.14, 126.95, 134.08, 140.24,
142.72,148.07,152.67, 154.37; HRMS (ESI) calculated for C1gsH12N6O2 [M+Na]*: 367.0919, found:
367.0907.
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11,12-Diethoxypyrazino[2',3':5,6]pyrazino[2,3-f][1,10]phenanthroline (16b)

A 50 mL round-bottom flask was charged with 5,6-diaminopyrazine-2,3-dicarbonitrile (12,
100 mg, 0.62 mmol) and 1,10-phenanthroline-5,6-dione (7e, 84 mg, 0.42 mmol), and the solids
were dissolved in methanol (24 mL). To the resulting orange solution was added trimethylamine
(6 mL, 100 mmol) and the solution was left to react at room temperature for 72 hours. After this
time, the reaction mixture was filtered to obtain a pale yellow solid (70 mg, 0.19 mmol, 45%). *H
NMR (500 MHz, DMSO-ds): § 1.51-1.53 (t, 6H, J = 7 Hz), 4.70-4.73 (q, 4H, J = 7 Hz), 7.94-7.97 (dd,
2H, J =4 Hz, J = 7.5 Hz), 9.22-9.23 (d, 2H, J = 3.5 Hz), 9.48-9.50 (d, 2H, J = 8 Hz); 3C NMR (125
MHz, CDCl3): 6 14.63, 65.54, 124.33, 127.28, 134.30, 140.22, 143.01, 148.22, 152.76, 154.40;
HRMS (DART) calculated for C0H16N6O2 [M+H]*: 373.1413, found: 373.1424.

X
No .~ IN\:[N\]:O\/\OH
NI X NN o O
—~
16a

2,2'-(Pyrazino[2',3":5,6]pyrazino[2,3-f][1,10]phenanthroline-11,12-diylbis(oxy))bis(ethan-1-ol)
(16a)

A 25 mL round-bottom flask was charged with 5,6-diaminopyrazine-2,3-dicarbonitrile (12, 55 mg,
0.34 mmol), 1,10-phenanthroline-5,6-dione (7e, 73 mg, 0.31 mmol), and ethylene glycol (10 mL).
The suspension was warmed to 50 °C before addition of triethylamine (0.65 mL, 4.7 mmol), and
heated at this temperature for 9 hours. After this time the reaction mixture was allowed to cool
and filtered to obtain a solid material which was washed with methanol to obtain an off-white
solid 16a (74 mg, 59%).

1H NMR (500 MHz, DMSO-de): 6 3.92-3.95 (g, 4H, J = 5 Hz), 4.70—4.72 (br s, 4H), 5.06—5.08 (t, 2H,
J=5.5Hz), 7.93-7.96 (dd, 2H), 9.22-9.23 (br s, 2H), 9.41-9.46 (d, 2H); 3C NMR (125 MHz, DMSO-
de): 6 58.63, 69.90, 125.29, 126.40, 132.86, 138.58, 142.33, 146.94, 151.70, 153.72; HRMS (ESI)
calculated for Ca0H16NsO4 [M+H]*: 405.1311, found: 405.1323.
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2,2'-(((Pyrazino[2',3":5,6]pyrazino[2,3-f][1,10]phenanthroline-11,12-diylbis(oxy))bis(ethane-
2,1-diyl))bis(oxy))bis(ethan-1-ol) (16d)

A 25 mL round-bottom flask was charged with 5,6-diaminopyrazine-2,3-dicarbonitrile (12,
55 mg, 0.34 mmol) and 1,10-phenanthroline-5,6-dione (7e, 72.5 mg, 0.312 mmol), and the solids
were suspended in diethylene glycol (10 mL). The suspension was warmed to 50 °C before adding
triethylamine (0.65 mL, 4.70 mmol) and heating was continued at this temperature for 16 hours.
After this time the reaction mixture was cooled and filtered to obtain a solid material which was
washed with copious amounts of methanol. An off-white solid was obtained (67 mg, 0.13 mmol,
43%). 'H NMR (300 MHz, CDCl3): § 1.81 (br s, 2H), 3.74-3.76 (dd, 4H, J = 5.0 Hz, J = 3.1 Hz), 3.80—
3.83 (dt, 4H, J=5.3 Hz, J = 2.9 Hz), 4.04-4.07 (m, 4H), 4.93-4.96 (m, 4H), 7.78-7.82 (dd, 2H, J =
8.2 Hz, J = 4.4 Hz), 9.29-9.30 (d, 2H, J = 4.4. Hz), 9.61-9.65 (d, 2H, J = 8.2 Hz); 13C NMR (75 MHz,
CDCl3): 6 61.78, 68.39, 68.63, 72.95, 124.16, 126.95, 134.08, 140.39, 142.55, 148.13, 152.72,
153.73.
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THERMOGRAVIMETRIC ANALYSIS (TGA)
TGA was conducted on a TA Instruments TGA Q5000 V3.8 Build 256 using 1 mg of sample in a
100 pL platinum pan.

Table S4. Thermogravimetric analysis of 1a-6a and 1b-7b

compound 5% mass loss (°C)
AnthCN (3a) 353
AnthHB (3b) 332
BenzCN (1a) 232
BenzHB (1b) 331
BenzilCN (5a) 238
BenzilHB (5b) 288
NaphCN (4a) 304
NaphHB (4b) 324
PhenCN (6a) 312
PhenHB (6b) 305
PhenNNHB (7b) 361
XyICN (2a) 244
XyIHB (2b) 297
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ELECTROCHEMISTRY
Cyclic Voltammetry (CV) measurements were performed on DCPQs 4a and 6a and DPQDs 4b and

6b, using a single-compartment three-electrode cell with a gold counter electrode, an Ag/Ag*
reference electrode, and a platinum disk (0.02 cm?) as the working electrode (Figure S1).
Electrodes were purchased from CH Instruments. Tetrabutylammonium hexafluorophosphate
(TBAPFg) was purchased from Aldrich and kept dry under vacuum. DMF was collected from an
Innovative Technologies solvent system, sparged with Ar and passed over two columns of 5 A
activated molecular sieves. The compounds were dissolved to a concentration of 1 mMin a 0.1
M TBAPF¢/DMF electrolyte. Potential sweeps were controlled by a Princeton Applied Research
VersaSTATII potentiostat. The scan rate for CV was 100 mV/s. The boxed equation in Figure S1
was used to estimate LUMO levels from the CV data.” A reported CV of 6a in benzonitrile exhibits
two reversible reduction peaks? instead of one observed in DMF (Figure S1, in red).

6 30
—4a —4b
41 — 6a —— 6b
20 -
T3 3
= = 10
g o E
] 3
5] ] 04
2
'4 T T T T T T >1 D T T T T T T
-10 -08 -06 -04 -02 0.0 25 2.0 -1.5 -1.0 -05 0.0
Potential (V) vs Ag/Ag+ Potential (V) vs Ag/Ag+
E umo = «(Ereg™*5.1eV)
4a 4b
Epeqomet = -0.716 V Eeq™t=-1.25V
E;imo = -4.38 eV E umo=- 3.85¢eV
6a 6b
E,q®™ = -0.506 V Epq™t=-1.15V

Figure S1. CV of DCPQs 4a and 6a (on left) and DPQDs 4b and 6b (on right).
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MASS SPECTROMETRY

x10#4 [+ Scan (0.507-0.757 min, 31 Scans) 22342_TA-3112_ESI.d Subtract Theoretical [M+H]* = 315.0877 (0.6 ppm)

1 [M+NH,]* = 332.1142 (0.3 ppm)
324 [M+Na]* = 337.0696 (0.3 ppm)

8]
781

;—f- 0 " 337,0695
55 N 0
X,
7 >
S

6.64
6.4
6.2 Chemical Formula: CysHioN4O2

61 Exact Mass: 314.08
584

56
54 6b
5.2 315.0875

54
43
461
444
42
4]
38
36
34
32

284 332.1143

1.8+ 338.0723

1.2 316.0905

333.1180

041
5 ~ 190813
029 314 0307 317.0846 3202029 wsy7is B 7m0 9116 3311505 BT 3369007

34 315 3le 317 3is als o 21 3k a3 2k 35 36 3 als 3o ko 3k 3 3 3k ads a2l a3k 3de 2l 3o
Counts vs. Mass-to-Charge (miz)

x10% [+ Scan (0.1604-0.3214 min, 30 Scans) 23043_TA-3124_ESI_ACN+H20.d Subiract Theoretical [M+K]* = 327.0279 (0.9 ppm)

BT

24  Chemical Formula: CyHeN,0,
Exact Mass: 288.06

ab

1.8

328.0302

0.2
021 ELPALP?

129.0302

0.1

) J 21 augel  3BEE0  amesry
= . A

» .
3le al7 2le 2le 2o 2kt 3l al3 ade 25 3k 327 2l 39 330 3h 332 333 334 2% 3% 337 33 339 340 34
Counts vs. Mass-to-Charge (miz)
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x104 |+ESI Scan (0.271-0.246 min, 10 Scans) Frag=175.0V 24615_TA-462_ESId Subtract . . .
* Mostintense ion is consistent with a 316-Da compound (X).

* Presence of X was also caonfirmed by(-)ESI-TOF-MS

[X+Na]*
339.0615

Chemical Formula: GgHNeO,
1 Exact Mass: 316.07

7b

0.85 [X+H™
izl 3170776
0.75
074
0.65
06
0.5
05
0.45

0.35
0.3

el 2271439

340.0621
02
o 3180791 323 1489
325.1578

01

0,05 316.0830 0080 2 ﬁesn

335.1643 337'T6:3580795
3331559
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3l 317 38 319 30 321 32 W3 34 35 306 37 38 39 30 3 32 33 3% 3l 3k 3y 3k 3ds a0 3k 3D
Counts vs. Mass-to-Charge (miz)

324.1483
A

x10# |+ESI Scan (0.178-0.196 min, 3 Scans) Frag=175 0V 24683_TA-480-MeOH_ESI3d Subtract Theoretical [M+Na]* = 361.0696 (<1 ppm)

271 [M+K]* = 377.0435 (3.2 ppm)
1 BN N

(T L

N Yas
241 4P 77,0423
23
224 Chemical Formula: CogHoN.Os

21 Exact Mass: 338.08 361.0695

A4 3b
19
184
17
16
154

06
05
04
03
02

378.0455
362.0705

379.0399

357.1190
0.1 3630749 ~ 711164 3731310 4
388.1271 167.1127 3681148 375.1283 380.0411 3831291
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+ES| Scan (0.285-0.318 min. 5 Scans) Frag=175.0V 24743_TA-435_ESI2d Subtract

COXL

N
'CN

Chemical Formula: GHgNg
Exact Mass: 234.07

8

[M+H]*

2350732

0651

234
2360732 2322245
2330553

i

l 241.0%63
4, ol

2521018

2450728 251 ;\QGBA

i

Theoretical [M+Na]* = 257.0546 (4.3 ppm)

[M+Na]*

257.0557

258.0579

l 2551239
)

20 2h 22 233 2% 2% 26 2%

+Scan (1.0345-1 0511 min, 4 Scans) 23772_TA-3173_DART-350C.d Sublract
S

N N N0~ [X+H]"

D
> 3731610

Chemical Formula: CygHgNs0
Exact Mass: 372.13

16b

[X+H+Br]*

451 EE?!

Ay

238 2% 200 251 282 243 244 245 2B 247 288 2hy

ounts vs. Mass-to-Lharge (mz)

[2X+H]*

745.3133

[2X+H+Br]*

225, ‘2223

250 251 2 253 24 2% 2% 27

Full spectrum

[3X+H]*

1117.4456

[4X+H]*

1490.5599
[3X+H+Br]*

1197.3530

50 100

180 200 2% 300 3% 400 4% sho se0 eho eho o 7RO

Counts vs. Mass-to-Charge (m/z)
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x102 |+ESI Scan (0.198-0.274 min, 10 Scans) Frag=175.0V 24526_TA-451_ES|.d Subtract Full spectrum
3.3
32
314
NZ SN ~._-CH

25 405.1323

254 Chemical Formula: CogH N0,
24 Exact Mass: 404.12
234

224 16a

2.1

1.9
1.8

74
164
154
14
134

0.7 4582257

4392478

0.4 589.2020
0.3
0.2
0.1

6473258

53678 8174130
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Counts vs. Mass-to-Charge (miz)

Theoretical [(M-2H)*]- =334.0721 (4.8ppm)
s
2.24 NI 2

%10 4 |-ESI Scan (0.238-0.879 min, 78 Scans) Frag=175.0V 24747_TA-4101_2ESI.d Subtract (3)
2.14 NI A

H
N My CN
IX
b N ONTTen [M*]-
2 336.0671

194 chemical Formula: G,gHeNg
Exact Mass: 336.09

71 6a

[(M-2H)*]-

334.0737

0.9+
0.8
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0.6
0.5
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0.2

0.1

o Ll i .
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x106
1.45+
1.4+
1.354
1.34
1.254
1.24
1.15
1.14
1.05

0.95
0.9
0.85
08
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0.7
0.65-
0.6
0.55+
0.5
0.454
0.4
0.354
0.3+
0.254
0.2+
0.15
0.1
0.05+

+ESI Scan (rt: 3.723-3.756 min, 5 scans) Frag=175.0V 34176-BenzCN_DART-250C.d Subtract

N._N._CN
N N
QX
N” "N” “CN
[M+H]* 1la
233.0574

234.0600

235.0677

Theoretical [M+H]* = 233.0570 (1.7 ppm)
[M+NH,]* = 250.0836 (1.2 ppm)

[M+NH,]*
250.0839

),

251.0851

252.0966

A
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Counts vs. Mass-to-Charge (m/z)
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0.7
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0.55+
0.5+
0.45
0.4
0.35+
0.3+
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0.2
0.15
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0.05

+ESI Scan (rt: 1.603-1.686 min, 11 scans) Frag=175.0V 34173-XyICN_DART-250C.d Subtract

[M+HI* NN _CN
261.0889 I I
N <
N7 N7 e

2a

262.0916
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2.1
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+ESI Scan (rt: 4.041-4.124 min, 11 scans) Frag=175.0V 34174-Ph2CN(5a) DART-250C.d Subtract

[M+H]* O
335.1094 N N CN
Cd ~N
LI
O N~ N7 CN
5a

336.1116

337.1105
A
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NMR SPECTROSCOPY
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Figure S2. 'H NMR spectrum of 8 in DMSO-de.
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Figure S13. 'H NMR spectrum of 4b in DMSO-ds after heating to 200 °C for 7 days.
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Figure S17. gHSQCAD spectrum of 4b in DMSO-ds after heating to 200 °C for 7 days.
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X-RAY DIFFRACTION

X-ray experimental of 6b: X-Ray intensity data were collected at 100 K on a Bruker DUO

diffractometer using MoKo. radiation (A = 0.71073 A) and an APEXII CCD area detector.

Raw data frames were read by the program SAINT and integrated using 3D profiling algorithms.
The resulting data were reduced to produce hkl reflections and their intensities and estimated
standard deviations. The data were corrected for Lorentz and polarization effects and numerical
absorption corrections were applied based on indexed and measured faces.

The structure was solved and refined in SHELXTL2014, using full-matrix least-squares
refinement. The non-H atoms were refined with anisotropic thermal parameters. All O-bound
and N-bound protons were obtained from a Difference Fourier map and refined freely. All C-
bound hydrogen atoms were calculated in idealized positions and refined riding on their parent
atoms. The non-coordinated ethylene glycol molecule was disordered and was refined in two
parts. Their site occupation factors were fixed to 0.600(2) and 0.400(2) for the major and minor
parts, respectively. All protons of the disordered solvent molecule including those bound to the
oxygen atoms were calculated in idealized positions. The nitrogen bound protons of the main
molecule were obtained from a Difference Fourier maps and refined freely. In the final cycle of
refinement, 3818 reflections (of which 1826 are observed with | > 26(l)) were used to refine 273
parameters and the resulting R1, wR; and S (goodness of fit) were 5.70%, 11.42% and 0.914,
respectively. The refinement was carried out by minimizing the wR; function using F2 rather than
F values. R1 is calculated to provide a reference to the conventional R value but its function is not

minimized.
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Figure S42. A representation of the structure is shown with thermal displacement
ellipsoids at 50%. The ethylene glycol is disordered, and one disordered part is
omitted for clarity.

Table S5. Crystal data and structure refinement for 6b

Identification code turald

CCDC Number 2324698

Empirical formula C20 H16 N4 04

Formula weight 376.37

Temperature 100(2) K

Wavelength 0.71073 A

Crystal system Monoclinic

Space group P21/n

Unit cell dimensions a=12.925(3) A a=90°
b =7.4475(19) A B =101.499(5)°
c=17.574(5) A y=90°

Volume 1657.8(7) A3

z 4

Density (calculated) 1.508 mg/m3

Absorption coefficient 0.108 mm-

F(000) 784

Crystal size 0.455 x 0.145 x 0.014 mm3
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Theta range for data collection 1.796 to 27.497°.

Index ranges -16<h<16, -9<k<9, -22<I<22
Reflections collected 18003

Independent reflections 3818 [R(int) = 0.1244]
Completeness to theta = 25.242° 100.0 %

Absorption correction Analytical

Max. and min. transmission 0.9988 and 0.9751
Refinement method Full-matrix least-squares on F2
Data / restraints / parameters 3818 /240/ 273
Goodness-of-fit on F2 0.914

Final R indices [I>2sigma(l)] R1=0.0570, wR2 =0.1142 [1826]
R indices (all data) R1=0.1407, wR2 = 0.1370
Extinction coefficient n/a

Largest diff. peak and hole 0.291 and -0.296 e.A3
RL=X(1IFol - IFcI )/ ZIFol  wR2=[Z[w(Fo? - Fc2)?] / Z[w(Fo?) 1Y/

S= [Z[W(Fo2 - FCZ)Z] / (n-p)]l/2 w= 1/[62(F02)+(m*p)2+n*p], p= [max(F02,0)+ 2% Fcz]/s, m & n are constants.
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2.028A—> ",

H-bonded dimer

Figure S43. Asymmetric unit of 6b with important bond lengths highlighted (a). Unit cell
comprised of 4 molecules of 6b (b). Close packing of 6b showing the average distance between
adjacent ring centroids (c). Packing diagram showing the average intermolecular N—-H---:0=C
distance between 6b molecules and solvent diethylene glycol molecules (d). Atom color code:
blue N, gray C, red O, and white H, magenta H-bond.

Table S6. Crystal data and structure refinement for 5b

Identification code
CCDC Number

Empirical formula

tural3
2324697
C18 H12 N4 02

Formula weight 316.32

Temperature 100(2) K

Wavelength 0.71073 A

Crystal system Monoclinic

Space group P2i1/c

Unit cell dimensions a=17.0068(19) A a =90°.
b=7.2123(8) A B =107.5554(19)°.
c=11.9963(14) A ¥ =90°.

Volume

1402.9(3) A3
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z

Density (calculated)
Absorption coefficient

F(000)

Crystal size

Theta range for data collection
Index ranges

Reflections collected
Independent reflections
Completeness to theta = 25.242°
Absorption correction

Max. and min. transmission
Refinement method

Data / restraints / parameters
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Largest diff. peak and hole
R1=2(I1Fol - IFcl1) / ZIFol

S = [X[w(Fo2 - F2)21 / (n-p) /2

4

1.498 mg/m?3

0.102 mm-?

656

0.434 x0.130 x 0.052 mm3
2.512 to 27.500°.

-22<h<22, -9<k<9, -15<I<15
19520

3220 [R(int) = 0.0254]

99.9 %

Analytical

0.9959 and 0.9780

Full-matrix least-squares on F2
3220/195/ 225

1.089

R1=0.0332, wR2 =0.0916 [2727]
R1 =0.0400, wR2 = 0.0953

n/a

0.361 and -0.190 e.A-3

WR2 = [S[w(Fo? - Fc2)2] / T[w(Fo2)2]1 /2

w= 1/[02(F02)+(m*p)2+n*p], p= R[max(F02,0)+ 2* Fcz]/3, m & n are constants.

Figure S44. ORTEP of the asymmetric unit of 5b at 50% probability level.
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Figure S45. Asymmetric unit of 5b with important bond lengths highlighted (a). Unit cell
comprised of 4 molecules of 5b (b). Close packing of 5b showing the average distance between
adjacent ring centroids (c). Packing diagram showing the average intermolecular N—H---:0=C
distance between 6b molecules (d). Atom color code: blue N, gray C, red O, and white H, magenta
H-bond.

Table S7. Crystal data and structure refinement for 2b

Identification code tural5
CCDC Number 2324699
Empirical formula C12 H12 N4 02
Formula weight 244.26
Temperature 100(2) K
Wavelength 0.71073 A
Crystal system Monoclinic
Space group P21/n
Unit cell dimensions a=11.084(2) A a=90°.
b = 4.4996(10) A B = 105.040(4)°.
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c=21.335(5) A ¥ =90°.
1027.6(4) A3

4

1.579 Mg/m3

0.112 mm-?

512

0.202 x 0.101 x 0.056 mm3

1.902 to 27.493°.

-14<h<14, -55k<5, -27<1<27
15752

2517 [R(int) = 0.0400]

100.0 %

Analytical

0.9965 and 0.9856

Full-matrix least-squares on F2
2517 /150/174

0.987

R1=0.0324, wR2 = 0.0752 [2043]
R1=0.0452, wR2 =0.0789

n/a

0.260 and -0.195 e.A3

WR2 = [S[w(Fo? - Fc2)2] / S[w(Fo2)2]) /2

w= 1/[02(F02)+(m*p)2+n*p], p= [max(F02,0)+ 2* Fcz]/3, m & n are constants.
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/

Figure S46. A representation of the molecule 2b shown using thermal displacement ellipsoids at

50%.

S58



REFERENCES

1.

M@rkved, E. H.; Holmaas, L. T.; Kj@sen, H.; Hvistendahl, G., Preparation of Magnesium
Azaphthalocyanines by Cyclotetramerisation of S-Substituted 4,5-Disulfanylpyrazine-
2,3,dicarbonitriles. Acta Chemica Scandinavica 1996, 50, 1153-1156.

Bures, F.; Cermakova, H.; Kulhanek, J.; Ludwig, M.; Kuznik, W.; Kityk, I. V.; Mikysek, T.; RGzicka,
A., Structure—Property Relationships and Nonlinear Optical Effects in Donor-Substituted
Dicyanopyrazine-Derived Push—Pull Chromophores with Enlarged and Varied n-Linkers.
European Journal of Organic Chemistry 2012, 2012 (3), 529-538.

Ried, W.; Tsiotis, G., Neue kondensierte Stickstoff-reiche Heterocyclen aus 5,6-Dichlorpyrazin-
2,3-dicarbonitril. Liebigs Annalen der Chemie 1988, 1988 (12), 1197-1199.

Wang, C.; Lystrom, L.; Yin, H.; Hetu, M.; Kilina, S.; McFarland, S. A.; Sun, W., Increasing the triplet
lifetime and extending the ground-state absorption of biscyclometalated Ir(iii) complexes for
reverse saturable absorption and photodynamic therapy applications. Dalton Transactions 2016,
45 (41), 16366-16378.

Irudaya Jothi, A.; Alexander, V., Organic NLO material with H-bonded 1D helical self-assembly:
synthesis, X-ray crystal structure, DFT calculations, SHG measurements and thermal studies of
(5Z,6E)-1,10-phenanthroline-5,6-dione dioxime. CrystEngComm 2017, 19 (35), 5251-5258.
Alrefai, R.; Horner, G.; Schubert, H.; Berkefeld, A., Broadly versus Barely Variable Complex
Chromophores of Planar Nickel(ll) from x 3-N,N’ ,Cand x 3-N,N’ ,0 Donor Platforms.
Organometallics 2021, 40 (8), 1163-1177.

Thompson, B. C.; Kim, Y.-G.; McCarley, T. D.; Reynolds, J. R., Soluble Narrow Band Gap and Blue
Propylenedioxythiophene-Cyanovinylene Polymers as Multifunctional Materials for Photovoltaic
and Electrochromic Applications. Journal of the American Chemical Society 2006, 128 (39),
12714-12725.

Richards, G. J.; Hill, J. P.; Subbaiyan, N. K.; D’Souza, F.; Karr, P. A.; Elsegood, M. R. J.; Teat, S. J,;
Mori, T.; Ariga, K., Pyrazinacenes: Aza Analogues of Acenes. The Journal of Organic Chemistry
2009, 74 (23), 8914-8923.

S59



	Cover
	Main file

