

Supporting Information

for

General method for the synthesis of enaminones via photocatalysis

Paula Pérez-Ramos, Raquel G. Soengas and Humberto Rodríguez-Solla

Beilstein J. Org. Chem. 2025, 21, 1535-1543. doi:10.3762/bjoc.21.116

Additional optimization details, mechanistic studies, experimental details, characterization data and NMR spectra for enaminones 9

CONTENTS

1. Additional optimization details	S2
2. Mechanistic studies	S6
3. Experimental details and characterization data	S10
4. NMR spectra for enaminones 9	S14
5. References	S25

1. Additional optimization details

Because of limited space, some details of optimization of the enaminone formation were omitted from the main text. The full optimization data are reported here.

Table S1: Solvent effect.

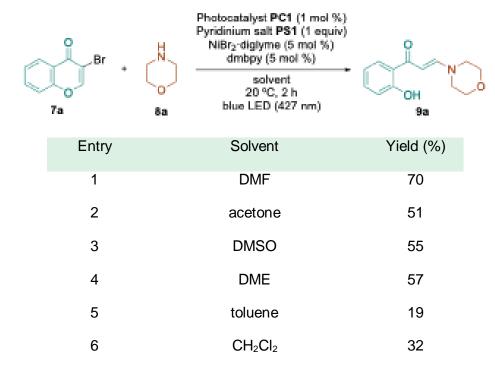
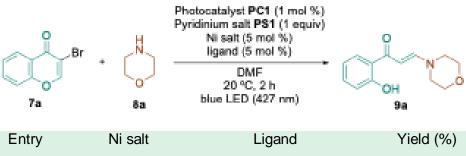



Table S2: Nickel salt and ligand.

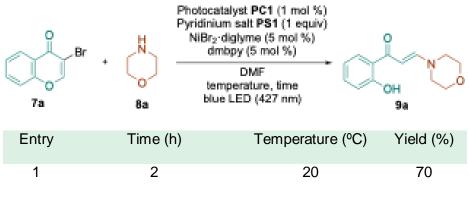
	Entry	INI Sait	Ligand	Yield (%)
	1	NiBr ₂ -diglyme	dmbpy	70
	2	Ni(OTf) ₂	dmbpy	62
	3	NiCl ₂ -diglyme	dmbpy	49
	4	NiBr₂-diglyme	dtbbpy	66
	5	NiBr₂∙diglyme	phenantroline	49
-				

Table S3: Photocatalyst screening.

Entry	Photocatalyst (PC)	Yield (%)
1	10-(3,5-dimethoxyphenyl)-9-mesityl-1,3,6,8-tetramethoxyacridin-10-ium tetrafluoroborate (PC1)	70
2	4-Czipn (PC2)	62 ^a
3	$[Ir(dF(CF_3)ppy)_2(dtbbpy)]PF_6$ (PC3)	49
4	Eosin Y	n.r. ^b
5	Ru(bpz) ₃	n.r.

^a Reaction performed at 440 nm. ^b Reaction performed at 525 nm

Table S4: Walelenght and light intensity.


Entry	Wavelenghth	Yield (%)
1	427	70
2	427	69ª
3	440	65
4	465	49
5	530	n.r. ^b

^a Reaction performed with two lamps. ^b Reaction performed at 525 nm

Table S5: Pyridinium salt and stoichiometry.

Entry	Pyridinium salt (PS)	equiv PS	equiv 8a	Yield (%)
1	1-[1-(<i>tert</i> -butoxycarbonyl)piperidin-4-yl]- 2,4,6-triphenylpyridin-1-ium (PS1)	1	1.5	70
2	1-benzyl-2,4,6-triphenylpyridin-1-ium (PS2)	1	1.5	34
3	1-[1-(<i>tert</i> -butoxycarbonyl)piperidin-4-yl]-2,4,6-triphenylpyridin-1-ium (PS1)	0.5	1.5	58
4	1-[1-(<i>tert</i> -butoxycarbonyl)piperidin-4-yl]- 2,4,6-triphenylpyridin-1-ium (PS1)	1	1.0	61
5	1-[1-(<i>tert</i> -butoxycarbonyl)piperidin-4-yl]- 2,4,6-triphenylpyridin-1-ium (PS1)	1	3.0	70

Table S6: Reaction time and temperature.

,		: op o ('5)	110101 (70)
1	2	20	70
2	2	40	18
3	2	0	42
4	6	1	61
5	16	1	18

Table S7: Halogen effect.

CI

I

31

n.r.

Table S8: Individual optimization.

2

3

Entry	Time (h)	solvent	equiv 8a	Yield (%)
1	2	DMF	1.5	45
2	2	DME	1.5	29
3	2	DMF	3.0	46
4	6	DMF	1.5	38

Entry	Time (h)	solvent	Yield (%)
1	2	DMF	39
2	2	DMF	39ª
3	6	DMF	31

^a Reaction performed with two lamps

2. Mechanistic studies

The identification of the TEMPO adduct was carried out using a high-resolution Quadrupole Time-of-flight mass spectrometry equipment coupled to a Gas Chromatograph (Agilent 7250) (GC-Q-TOF). UV-visible absorption spectra were obtained on a Cary 60 UV-vis spectrophotometer from Agilent Technologies (Palo Alto, CA, USA) by using a rectangular quartz cell (light path 10 × 10 mm, chamber volume: 3.5 mL). Excitation and emission luminescence spectra were obtained with a Varian Cary Eclipse (Agilent Technologies) with a semi-micro quartz fluorescence cell (light path: 10 × 4 mm, chamber volume 1400 μ L, excitation filter: auto and emission filter: open, excitation and emission slit: 5 nm). The progress of the reaction was monitored by 1 H-NMR in CDCl₃ at 300 MHz using methyl 3,5-dinitrobenzoate as internal standard.

2.1. GC-Q-TOF spectrometry

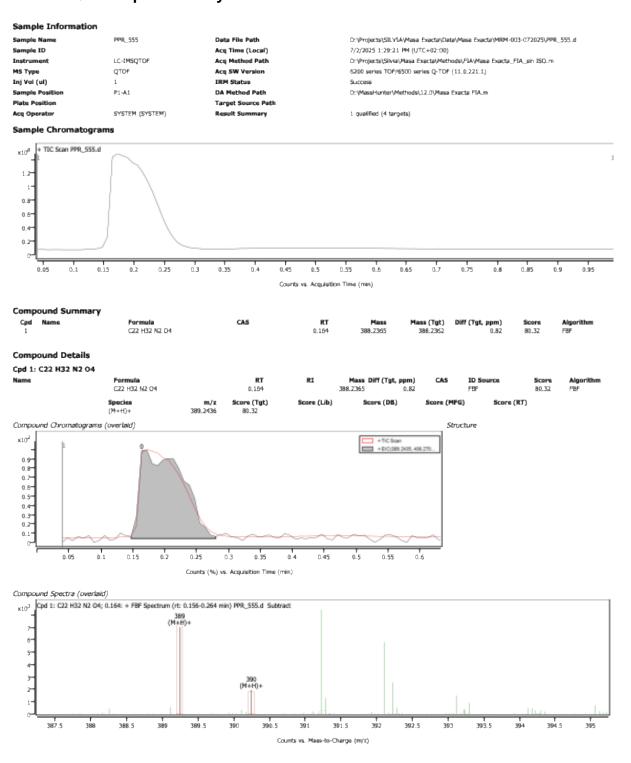


Figure S1: Identification of the TEMPO adduct of intermediate radical I.

2.2. UV-vis spectroscopy

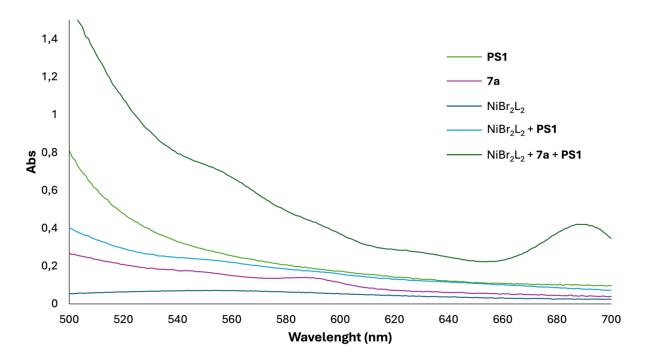


Figure S2: UV-vis studies.

2.3. Luminescence quenching experiments

Fluorescence quenching studies were carried out using a 5.0×10^{-6} M solution of **PC1** irradiated at 427 nm, with variable concentrations of morpholine in degassed DMF.

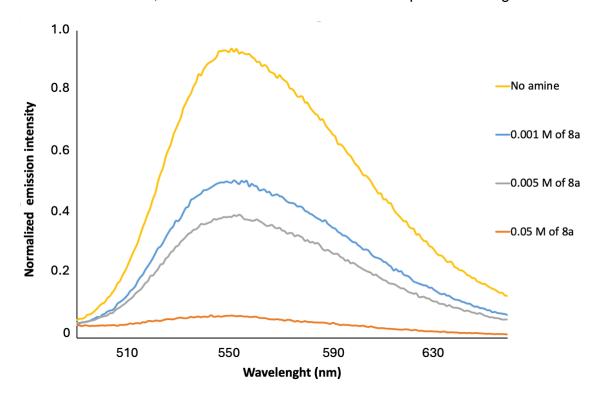


Figure S3: Fluorescence quenching of PC1* and morpholine.

2.4. Reaction progress analysis

The reaction of 3-bromochromone (**7a**) and morpholine (**8a**) to afford enaminone **9a** was carried out under the standard conditions and at varying concentrations of **7a**. At intervals of 15, 30, 60, 90 and 120 min, an aliquot was extracted from the reaction and, after aqueous work-up, analyzed by ¹H NMR (alkene signal at 5.91 ppm, methyl 3,5-dinitrobenzoate as internal standard).

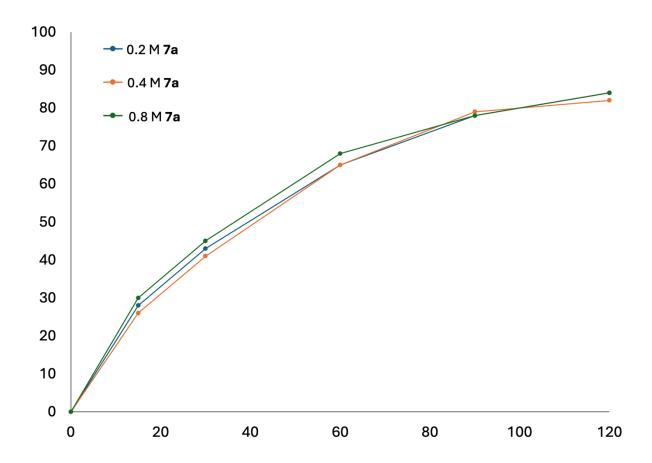


Figure S4: Monitoring of the formation of the enamine 9a by ¹H NMR.

3. Experimental details and characterization data

3.1. General experimental procedures

All 3-bromochromones **7** were prepared following previously reported methodologies [1]. The different reagents employed during the development of this work are commercially available and were purchased from Chemosapiens S. L. Dry DMF stored over molecular sieves commercially available from Sigma Aldrich Chemical co. was used for the photochemical reactions. NMR spectra were recorded in CDCl₃ at 300 MHz for ¹H and 75 MHz for ¹³C, with tetramethylsilane as internal standard for ¹H and the residual solvent signals as standard for ¹³C. The data is being reported as s = singlet, bs = broad singlet, d = doublet, dd = double doublet, t = triplet, dt = double triplet, q = quatriplet, p = quintuplet and m = multiplet or unresolved, chemical shifts in ppm and coupling constant(s) in Hz. The values of the chemical shift of the signals in the NMR reports are in ppm. HRMS were measured in ESI mode, and the mass analyzer of the HRMS was TOF (Bruker model Impact II).

3.2. Photochemical reactions set-up

A Kessil® PR160 Rig equipped with a PR160-427nm lamp was used for the photochemistry setup. A glassware reactor developed in our group was used to run the photochemical reactions under controlled temperature. [2] The reactor was placed at approximately 5 cm away from the lamp prior to irradiation at maximum intensity (100% power) of the Kessil lamp.

3.3. Synthesis of enaminones 9

A solution of NiBr₂-diglyme (0.01 mmol) and dmbpy (0.01 mmol) in DMF (1 mL) was stirred for 5 min under N₂. Subsequently, was added 3-bromochromone **7** (0.2 mmol), amine **8** (0.3 mmol), **PC1** (0.002 mmol), **PS1** (0.2 mmol) and DMF (1.0 mL). Then the resulting mixture was stirred at 20 °C and irradiated with a 20 W 427 nm Kessil LEDs for 2 h. After the reaction was completed, the solvent was removed under reduced pressure, and the residue was extracted with ethyl acetate, washed with brine, and dried over anhydrous Na₂SO₄. The crude product was purified by flash column chromatography on silica gel using Hex/EtOAc (1:1) as the eluent to afford the title compounds **9**.

3.4. Characterization data of enaminones 9

(*E*)-1-(2-Hydroxyphenyl)-3-morpholinoprop-2-en-1-one (*9a*) [3]: 33 mg, 70% yield. Yellow solid. R_f = 0.42 (Hex/EtOAc 1:1); ¹H NMR (300 MHz, CDCl₃): δ 3.42 (t, J = 5.0 Hz, 4H, 2 x CH₂), 3.70 (t, J = 4.7 Hz, 4H, 2 x CH₂), 5.91 (d, J = 12.4 Hz, 1H, CH), 6.86-6.77 (m, 1H, ArH), 6.93 (dd, J = 8.3, 1.3 Hz, 1H, ArH), 7.35 (ddd, J = 8.6, 7.1, 1.7 Hz, 1H, ArH), 7.65 (dd, J = 8.1, 1.8 Hz, 1H, ArH), 7.80 (d, J = 12.4 Hz, 1H, CH), 13.78 (s, 1H, OH); ¹³C NMR (75 MHz, CDCl₃): δ 46.7, 52.8, 66.2, 89.8, 118.17, 118.23, 120.3, 128.3, 134.3, 153.2, 162.5, 192.1. HRMS (ESI⁺): m/z [M]⁺ calcd. for C₁₃H₁₅NO₃, 233.2670; found: 233.2672.

(*E*)-1-(2-Hydroxy-4-methylphenyl)-3-morpholinoprop-2-en-1-one (*9b*): 26 mg, 52% yield. Yellow solid. $R_f = 0.45$ (Hex/EtOAc 1:1); ¹H NMR (300 MHz, CDCl₃): δ 2.34 (s, 3H, CH₃), 3.45 (t, J = 4.9 Hz, 4H, 2 x CH₂), 3.79 (t, J = 4.9 Hz, 4H, 2 x CH₂), 5.92 (d, J = 12.4 Hz, 1H, CH), 6.65 (d, J = 8.1 Hz, 1H, ArH), 7.56 (d, J = 8.1 Hz, 1H, ArH), 7.65 (dd, J = 8.1, 1.8 Hz, 1H, ArH), 7.81 (d, J = 12.4 Hz, 1H, CH), 13.78 (s, 1H, OH); ¹³C NMR (75 MHz, CDCl₃): δ 21.7, 66.2, 90.2, 118.5, 119.3, 127.1, 128.1, 145.5, 152.8, 163.0, 191.9. HRMS (ESI⁺): m/z [M]⁺ calcd. for C₁₄H₁₇NO₃, 247.1208; found: 247.1212.

(*E*)-1-(2-Hydroxy-4-methoxyphenyl)-3-morpholinoprop-2-en-1-one (**9c**): 31 mg, 58% yield. Yellow solid. $R_f = 0.35$ (Hex/EtOAc 1:1); ¹H NMR (300 MHz, CDCl₃): δ 3.42 (t, J = 5.0 Hz, 4H, 2 x CH₂), 3.77 (t, J = 4.8 Hz, 4H, 2 x CH₂), 3.82 (s, 3H, CH₃), 5.84 (d, J = 12.4 Hz, 1H, CH), 6.44-6.36 (m, 2H, ArH), 7.59 (d, J = 8.9 Hz, 1H, ArH), 7.77 (d, J = 12.4 Hz, 1H, CH), 14.32 (s, 1H, OH); ¹³C NMR (75 MHz, CDCl₃): δ 55.4, 66.3, 90.0, 101.0, 106.6, 113.81, 129.7, 152.5, 164.6, 165.6, 191.1. HRMS (ESI⁺): m/z [M]⁺ calcd. for C₁₄H₁₇NO₄, 263.1158; found: 263.1157.

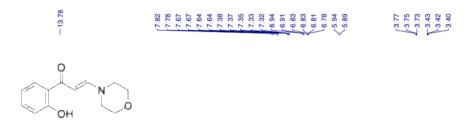
(*E*)-1-(*4*-Bromo-2-hydroxyphenyl)-3-morpholinoprop-2-en-1-one (*9d*): 28 mg, 45% yield. Yellow solid. R_f = 0.43 (Hex/EtOAc 7:3); ¹H NMR (300 MHz, CDCl₃): δ 3.46 (t, J = 5.0 Hz, 4H, 2 x CH₂), 3.79 (t, J = 4.9 Hz, 4H, 2 x CH₂), 5.84 (d, J = 12.3 Hz, 1H, CH), 6.92 (dd, J = 8.6, 2.0 Hz, 1H, ArH), 6.95 (d, J = 2.0 Hz, 1H, ArH), 7.49 (d, J = 8.6 Hz, 1H, ArH), 7.82 (d, J = 12.3 Hz, 1H, CH), 13.98 (s, 1H, OH); ¹³C NMR (75 MHz, CDCl₃): δ 45.9, 53.5, 65.7, 89.7, 119.8, 121.0, 122.7, 127.6, 133.9, 153.7, 161.4, 190.8. HRMS (ESI⁺): m/z [M]⁺ calcd. for C₁₃H₁₄BrNO₃, 311.0157; found: 311.0172.

(*E*)-1-(5-Chloro-2-hydroxyphenyl)-3-morpholinoprop-2-en-1-one (**9e**) [4]: 32 mg, 60% yield. Yellow solid. $R_f = 0.12$ (Hex/EtOAc 1:1); ¹H NMR (300 MHz, CDCl₃): δ 3.49 (t, *J*

= 5.7 Hz, 4H, 2 x CH₂), 3.79 (t, J = 4.2 Hz, 4H, 2 x CH₂), 5.84 (d, J = 12.2 Hz, 1H, CH), 6.93-6.88 (m, 1H, ArH), 7.30 (dd, J = 8.8, 2.3 Hz, 1H, ArH), 7.61 (t, J = 2.6 Hz, 1H, ArH), 7.85 (d, J = 12.3 Hz, 1H, CH), 13.76 (s, 1H, OH); ¹³C NMR (75 MHz, CDCl₃): δ 46.0, 53.5, 66.6, 89.7, 119.8, 121.0, 122.6, 127.6, 133.9, 153.7, 161.4, 190.8. HRMS (ESI⁺): m/z [M]⁺ calcd. for C₁₃H₁₄CINO₃, 267.0662; found: 267.0667.

(*E*)-1-(2-Fluoro-6-hydroxyphenyl)-3-morpholinoprop-2-en-1-one (*9f*): 25 mg, 50% yield. Yellow solid. $R_f = 0.40$ (Hex/EtOAc 1:1); ¹H NMR (300 MHz, CDCl₃): δ 3.45 (bs, 4H, 2 x CH₂), 3.77 (t, J = 4.9 Hz, 4H, 2 x CH₂), 6.04 (d, J = 12.4 Hz, 1H, CH), 6.51 (ddd, J = 12.3, 8.3, 1.2 Hz, 1H, ArH), 6.72 (d, J = 8.3 Hz, 1H, ArH), 7.20–7.28 (m, 1H, ArH), 7.92 (dd, J = 12.3, 3.0 Hz, 1H, CH), 14.23 (s, 1H, OH); ¹³C NMR (75 MHz, CDCl₃): δ 46.0, 55.1, 67.4, 96.1 (d, J = 18.9 Hz), 105.6 (d, J = 25.7 Hz), 110.4 (d, J = 13.0 Hz), 114.1 (d, J = 2.8 Hz), 133.5 (d, J = 13.0 Hz), 153.9, 162.4 (d, J = 252.3 Hz), 164.5 (d, J = 5.4 Hz), 189.4 (d, J = 4.5 Hz). HRMS (ESI⁺): m/z [M]⁺ calcd. for C₁₃H₁₄FNO₃, 251.0954; found: 251.0958.

(*E*)-1-(2-Hydroxyphenyl)-3-(piperidin-1-yl)prop-2-en-1-one (**9g**) [5]: 18 mg, 40% yield. Yellow solid. R_f = 0.58 (Hex/EtOAc 1:1); 1 H NMR (300 MHz, CDCl₃): δ 1.71 (s, 6H, 3 x CH₂), 3.44 (s, 4H, 2 x CH₂), 5.90 (d, J = 12.2 Hz, 1H, CH), 6.82 (t, J = 7.6 Hz, 1H, ArH), 6.95 (d, J = 8.3 Hz, 1H, ArH), 7.36 (t, J = 7.7 Hz, 1H, ArH), 7.69 (d, J = 8.0 Hz, 1H, ArH), 7.88 (d, J = 12.2 Hz, 1H, CH), 14.04 (s, 1H, OH); 13 C NMR (75 MHz, CDCl₃): δ 25.0, 26.5, 46.6, 55.5, 80.0, 117.9, 118.2, 120.5, 128.1, 133.9, 153.5, 162.9, 191.7. HRMS (ESI⁺): m/z [M]⁺ calcd. for C₁₇H₁₇NO₂, 231.1259; found: 231.1257.


(*E*)-1-(2-Hydroxyphenyl)-3-[4-(pyridin-2-yl)piperazin-1-yl]prop-2-en-1-one (**9h**): 28 mg, 46% yield. Yellow solid. R_f = 0.52 (Hex/EtOAc 1:1); ¹H NMR (300 MHz, CDCl₃): δ 3.55 (t, J = 5.5 Hz, 4H, 2 x CH₂), 3.68 (dd, J = 6.3, 4.3 Hz, 4H, 2 x CH₂), 5.96 (d, J = 12.4 Hz, 1H, CH), 6.67-6.74 (m, 2H, ArH), 6.83 (ddd, J = 8.4, 7.2, 1.3 Hz, 1H, ArH), 6.94 (dd, J = 8.3, 1.3 Hz, 1H, ArH), 7.36 (ddd, J = 8.6, 7.1, 1.7 Hz, 1H, ArH), 7.53 (ddd, J = 8.9, 7.1, 2.0 Hz, 1H, ArH), 7.71 (dd, J = 8.1, 1.8 Hz, 1H, ArH), 7.90 (d, J = 12.4 Hz, 1H, CH), 8.21 (dd, J = 5.0, 2.2 Hz, 1H, ArH), 13.84 (s, 1H, OH); ¹³C NMR (75 MHz, CDCl₃): δ 45.2, 53.0, 90.1, 107.3, 114.3, 118.1, 118.3, 120.9, 128.3, 134.2, 137.9, 148.1 153.1, 158.6, 162.9, 192.0. HRMS (ESI⁺): m/z [M]⁺ calcd. for C₁₈H₁₉N₃O₂, 309.1477; found: 309.1484.

(*E*)-1-(2-Hydroxyphenyl)-3-(4-methylpiperidin-1-yl)prop-2-en-1-one (*9i*): 19 mg, 39% yield. Yellow solid. R_f = 0.72 (Hex/EtOAc 1:1); ¹H NMR (300 MHz, CDCl₃): δ 1.05-0.97 (m, 3H, CH₃), 1.65-1.82 (m, 5H, CH, 2 x CH₂), 3.00, 3.34, 3.59, 3.81 (4 x bs, 4H, 2 x CH₂), 5.91 (dt, J = 12.1, 3.3 Hz, 1H, CH), 6.82 (td, J = 8.0, 4.3 Hz, 1H, ArH), 6.94 (dd, J = 7.8, 3.7 Hz, 1H, ArH), 7.36 (t, J = 8.8 Hz, 1H, ArH), 7.74-7.65 (m, 1H, ArH), 7.89 (dt, J = 12.3, 3.3 Hz, 1H, CH), 14.03 (s, 1H, OH); ¹³C NMR (75 MHz, CDCl₃): δ 28.4, 34.1, 46.0, 53.8, 66.2, 90.2, 118.17, 118.23, 120.3, 128.3, 134.3, 153.2, 162.5, 192.1. HRMS (ESI⁺): m/z [M]⁺ calcd. for C₁₅H₁₉NO₂, 245.1416; found: 245.1418.

tert-Butyl (E)-4-[3-(2-hydroxyphenyl)-3-oxoprop-1-en-1-yl]piperazine-1-carboxylate (9j): 23 mg, 35% yield. Yellow solid. R_f = 0.69 (Hex/EtOAc 1:1); 1 H NMR (300 MHz, CDCl₃): δ 1.48 (s, 9H, 3 x CH₃), 3.41 (t, J = 5.8 Hz, 4H, 2 x CH₂), 3.54 (dd, J = 6.7, 3.8 Hz, 4H, 2 x CH₂), 5.93 (d, J = 12.5 Hz, 1H, CH), 6.82 (ddd, J = 8.0, 6.9, 1.2 Hz, 1H, ArH), 6.93 (dd, J = 8.3, 1.1 Hz, 1H, ArH), 7.36 (ddd, J = 8.6, 7.2, 1.7 Hz, 1H, ArH), 7.66 (dd, J = 8.1, 1.6 Hz, 1H, ArH), 7.84 (d, J = 12.6 Hz, 1H, CH), 13.74 (s, 1H, OH); 13 C NMR (75 MHz, CDCl₃): δ 28.3, 43.6, 49.7, 80.8, 90.4, 118.1, 118.3, 120.2, 128.3, 134.3, 153.1, 154.3, 162.9, 192.2. HRMS (ESI $^+$): m/z [M] $^+$ calcd. for C₁₈H₂₄NO₂, 332.4000; found: 332.4018.

(*E*)-1-(2-Hydroxyphenyl)-3-(pyrrolidin-1-yl)-prop-2-en-1-one (**9k**): 14 mg, 26% yield. Yellow solid. R_f = 0.56 (Hex/EtOAc 1:1); 1 H NMR (300 MHz, CDCl₃): δ 2.09 (p, J = 6.4 Hz, 2H), 2.17 (p, J = 6.4 Hz, 2H), 3.44 (t, J = 6.7 Hz, 2H), 3.71 (t, J = 6.7 Hz, 2H), 5.85 (d, J = 12.2 Hz, 1H, CH), 6.93 (t, J = 7.6 Hz, 1H, ArH), 7.05 (d, J = 7.6 Hz, 1H, ArH), 7.46 (t, J = 7.7 Hz, 1H, ArH), 7.81 (dd, J = 7.9, 1.4 Hz, 1H, ArH), 8.21 (d, J = 12.2 Hz, 1H, CH), 14.17 (s, 1H, OH); 13 C NMR (75 MHz, CDCl₃): δ 25.2, 47.2, 52.7, 90.9, 117.9, 118.2, 120.4, 128.2, 133.8, 150.5, 163.0, 191.2. HRMS (ESI⁺): m/z [M]⁺ calcd. for C₁₃H₁₅NO₂, 217.1103; found: 217.1109.

4. NMR spectra for enaminones 9

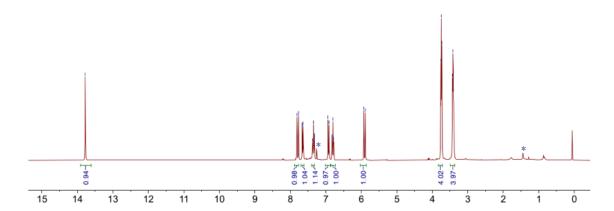


Figure S4: ¹H NMR spectra of 9a.

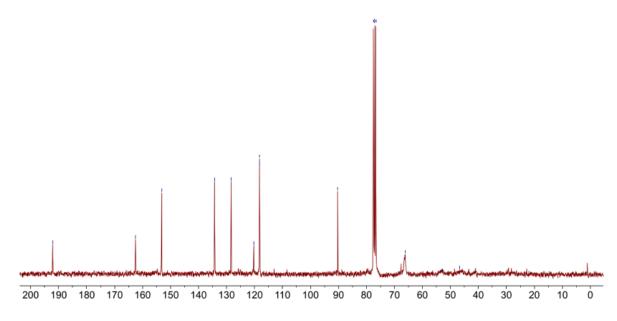


Figure S5: ¹³C NMR spectra of **9a**.

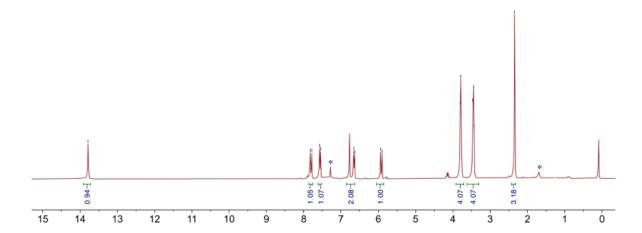


Figure S5: ¹H NMR spectra of 9b.

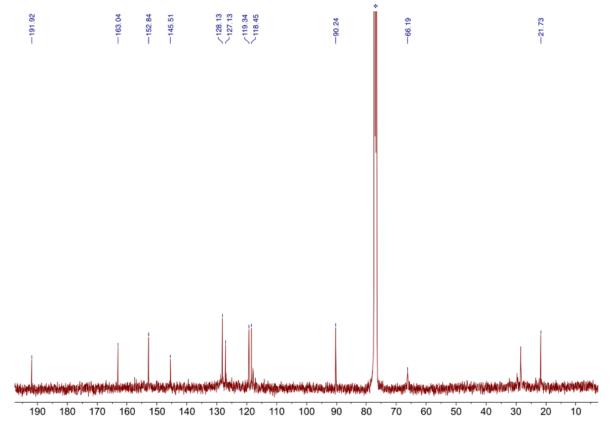


Figure S6: ¹³C NMR spectra of 9b.

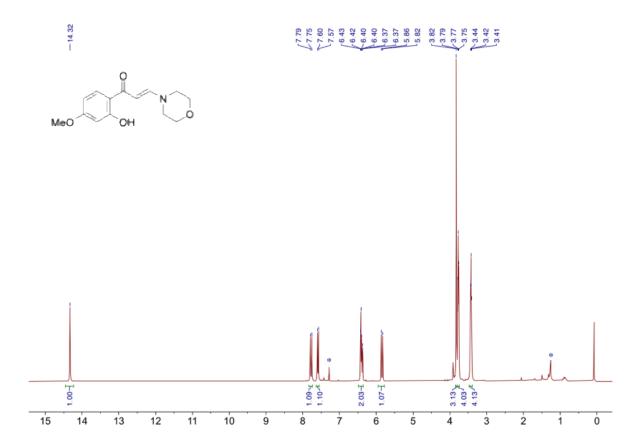


Figure S7: ¹H NMR spectra of 9c.

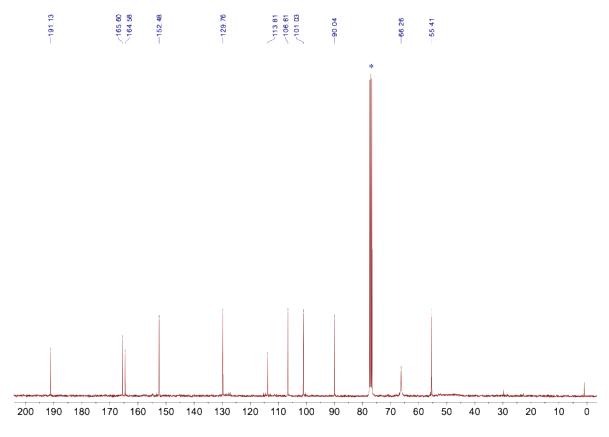


Figure S8: ¹³C NMR spectra of 9c.

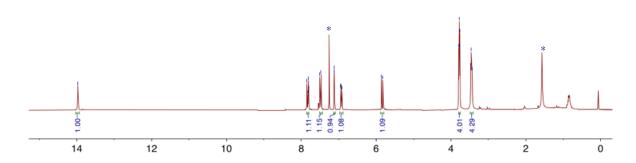


Figure S9: ¹H NMR spectra of 9d.

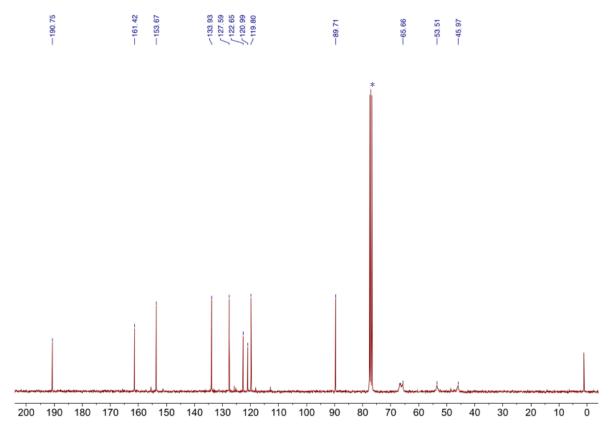


Figure S10: ¹³C NMR spectra of 9d.

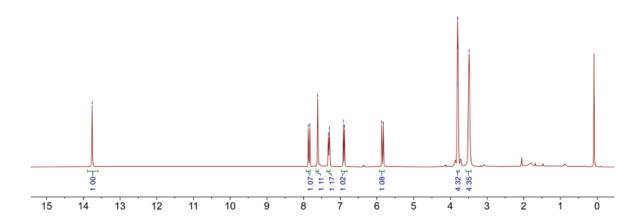


Figure S11: ¹H NMR spectra of **9e**.

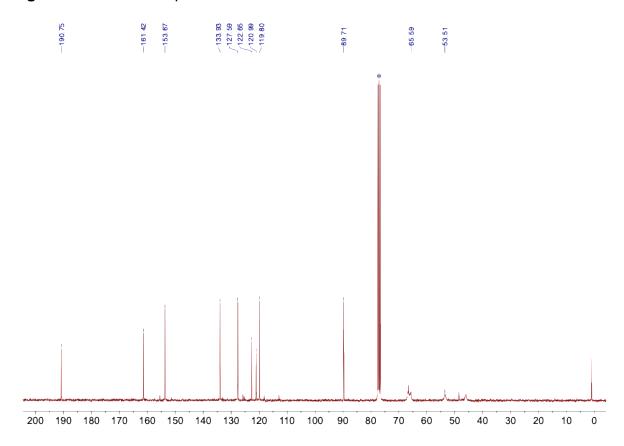


Figure S12: 13 C NMR spectra of 9e.

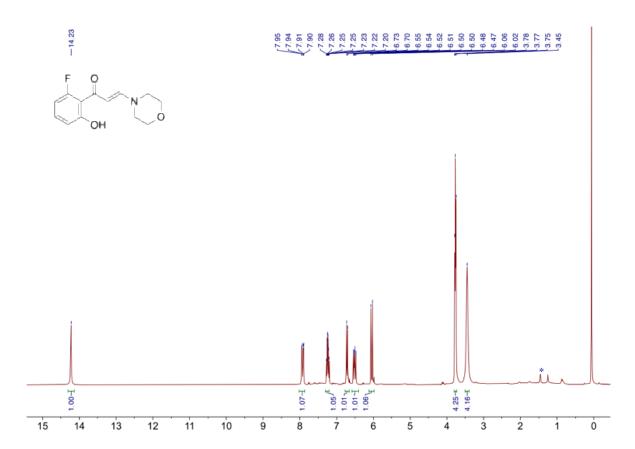


Figure S13: ¹H NMR spectra of 9f.

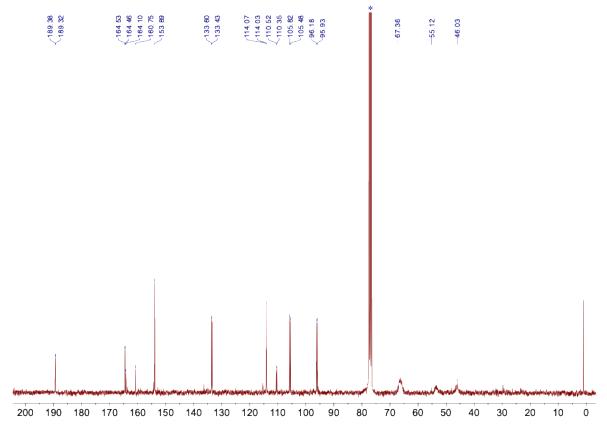


Figure S14: ¹³C NMR spectra of 9f.

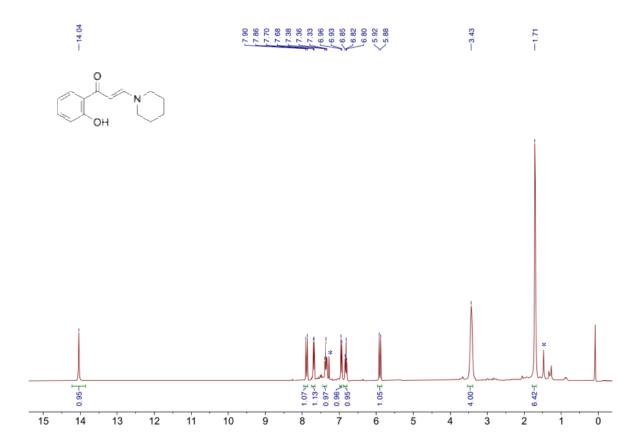


Figure S15: ¹H NMR spectra of 9g.

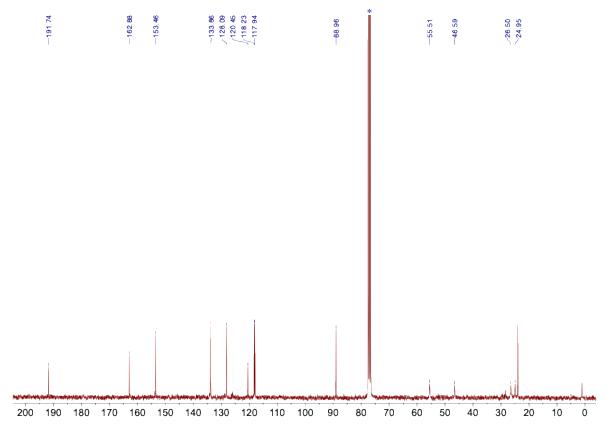


Figure S16: 13 C NMR spectra of 9g.



Figure S17: ¹H NMR spectra of 9h.

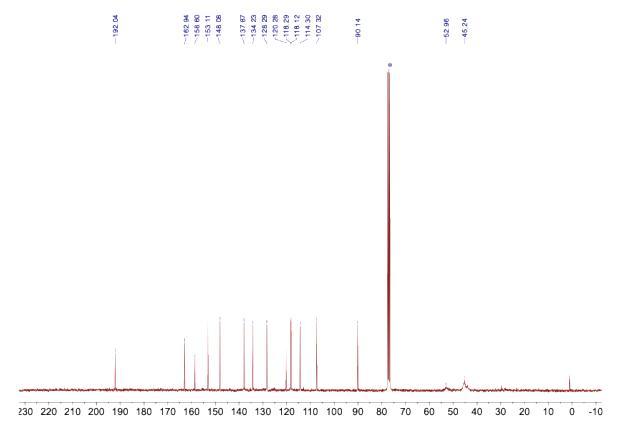


Figure S18: ¹³C NMR spectra of 9h.

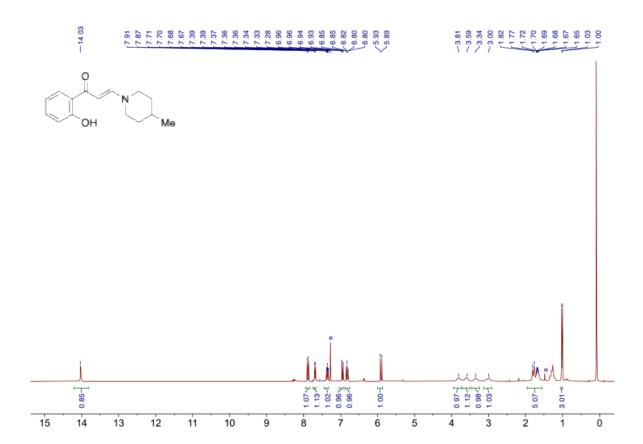


Figure S19: ¹H NMR spectra of 9i.

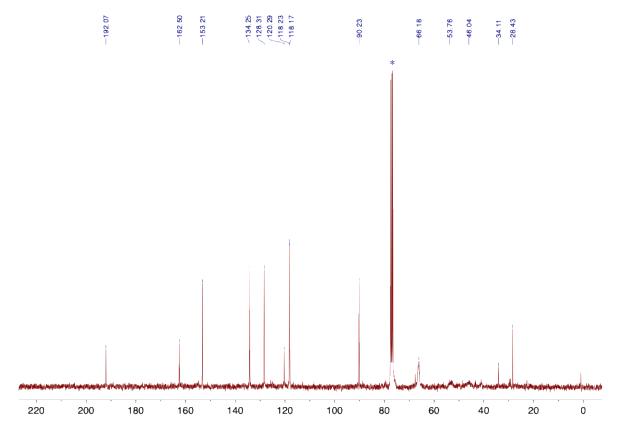


Figure S20: ¹³C NMR spectra of 9i.

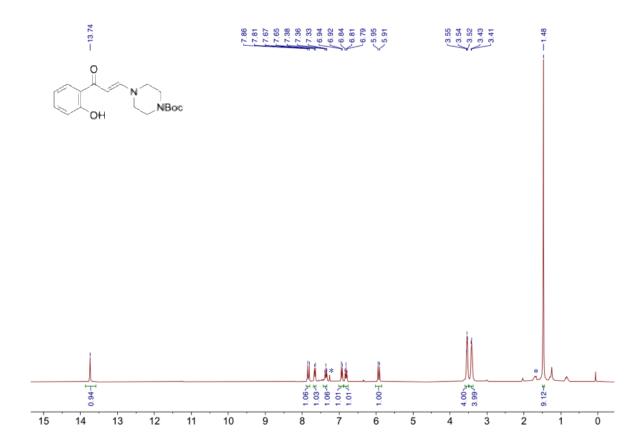


Figure S21: ¹H NMR spectra of 9j.

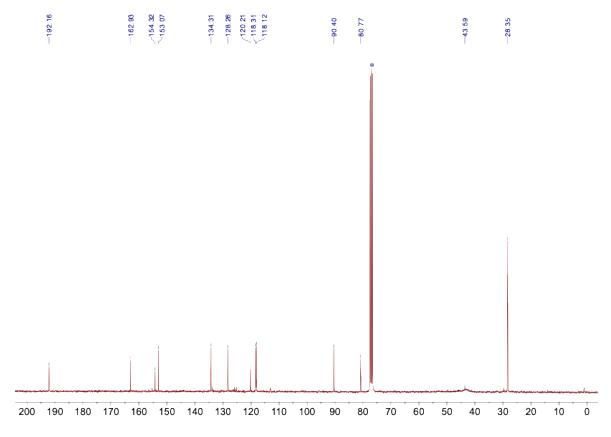


Figure S22: ¹³C NMR spectra of 9j.

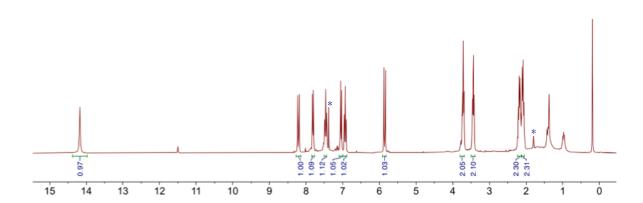


Figure S23: ¹H NMR spectra of 9k.

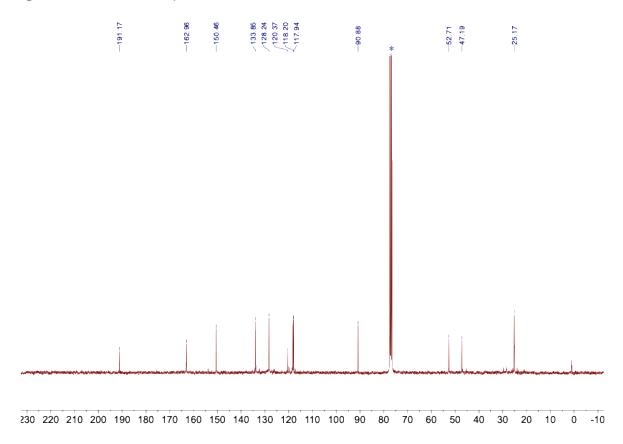


Figure S23: ¹³C NMR spectra of 9k.

4. References

- [1] Zhao, Y.; Liao, J.; Huang, J.; Xiang, S.; Liu C. *Org. Chem. Front.* **2024**, *11*, 2579–2584.
- [2] Pérez-Ramos, P.; Godinho, P. I. C.; Soengas, R. G.; Rodríguez-Solla, H. *RSCAdvances* **2025**, *15*, 15155–15163.
- [3] Sosnovskikh, V. Ya.; Irgashev, R. A.; Barabanov, M. A. Synthesis 2006, 2707–2718.
- [4] Ghosh, C. K.; Bandyopadhyay, C.; Morin, C. *J. Chem. Soc. Perkin Trans.* 1 **1983**, 9, 1989–1994.
- [5] Ghosh, C. K.; Khan, S. Synthesis 1981, 719–721.