

Supporting Information

for

On the photoluminescence in triarylmethyl-centered mono-, di-, and multiradicals

Daniel Straub, Markus Gross, Mona E. Arnold, Julia Zolg and Alexander J. C. Kuehne

Beilstein J. Org. Chem. **2025**, 21, 964–998. doi:10.3762/bjoc.21.80

Information about performed DFT calculations and photoluminescence quantum yield measurements

DFT calculations

The theoretical calculations of PTM-PTM and *m*-PTH were performed with ORCA 5.0.3.^[1] The molecular geometry optimizations were carried out with the UB3LYP functional at the def2-SVP level of theory in vacuum using dispersion correction with the Becke-Johnson damping scheme (D3BJ).^[2]

The singlet-triplet energy gap (ΔE_{ST}) was calculated with the Yamaguchi spin decontamination correction according to the following equation:^[3]

$$\Delta E_{ST} = 2J = -\frac{2(E_T - E_{BS})}{\langle S^2 \rangle_T - \langle S^2 \rangle_{BS}}$$

Here, J corresponds to the intramolecular exchange interaction within the diradicals, E_T and E_{BS} represent the total energy of the calculated triplet and broken-symmetry state and $\langle S^2 \rangle_T$ and $\langle S^2 \rangle_{BS}$ correspond to the respective expectation value of the total spin squared operator. The diradical character y_0 was calculated from the occupation number of the highest occupied natural orbital (n_{HONO}) and of the lowest unoccupied natural orbital (n_{LUNO}) according to Yamaguchi:^[4]

$$y_0 = 1 - \frac{2T_0}{1 + T_0^2}$$

$$T_0 = \frac{n_{HONO} - n_{LUNO}}{2}$$

Table S1: Calculated electronic properties of PTM-PTM and *m*-PTH at the UB3LYP/def2-SVP level of theory.

	PTM-PTM	<i>m</i> -PTH
E_T [kcal mol ⁻¹]	-8993695.883	-7695210.997
E_{BS} [kcal mol ⁻¹]	-8993695.891	-7695210.244
ΔE_{ST} [kcal mol ⁻¹]	<0.1	1.6
$\langle S^2 \rangle_T$	2.0418	2.0509
$\langle S^2 \rangle_{BS}$	1.0423	1.0226
y_0	0.998	0.777

Photoluminescence Quantum Yield

Photoluminescence quantum yields ϕ are determined with a Hamamatsu Quantaurus-QY (C11347) for cyclohexane solutions (10^{-5} M) at room temperature (293 K).

References

- (1) F. Neese, *WIREs Comput. Mol. Sci.* **2022**, 12, e1606. <https://doi.org/10.1002/wcms.1606>.
- (2) a) F. Weigend, *Phys. Chem. Chem. Phys.* **2006**, 8, 1057-1065. <https://doi.org/10.1039/B508541A>; b) F. Weigend and R. Ahlrichs, *Phys. Chem. Chem. Phys.* **2005**, 7, 3297-3305. <https://doi.org/10.1039/B515623H>; c) S. Grimme, J. Antony, S. Ehrlich and H. Krieg, *J. Chem. Phys.* **2010**, 132, 154104. <https://doi.org/10.1002/jcc.21759>; d) S. Grimme, S. Ehrlich and L. Goerigk, *J. Comput. Chem.* **2011**, 32, 1456-1465. <https://doi.org/10.1063/1.3382344>.

(3) a) K. Yamaguchi, Y. Takahara and T. Fueno, *Applied Quantum Chemistry* (Dordrecht) **1986**, pp. 155- 184. https://doi.org/10.1007/978-94-009-4746-7_11. b) T. Soda et al. *Chem. Phys. Lett.* **2000**, *319*, 223-230. [https://doi.org/10.1016/S0009-2614\(00\)00166-4](https://doi.org/10.1016/S0009-2614(00)00166-4).

(4) K. Yamaguchi, *Chem. Phys. Lett.* **1975**, *33*, 330-335. [https://doi.org/10.1016/0009-2614\(75\)80169-2](https://doi.org/10.1016/0009-2614(75)80169-2).