Synthesis of rigidified flavin–guanidinium ion conjugates and investigation of their photocatalytic properties

Harald Schmaderer, Mouchumi Bhuyan and Burkhard König*

Address: Institute of Organic Chemistry, University of Regensburg, Universitätsstr. 31, D-93040 Regensburg, Germany

Email: Burkhard König - burkhard.koenig@chemie.uni-regensburg.de

* Corresponding author

Supporting Information

Detailed experimental setups for the photocatalytic experiments 2
Calculated gas phase conformations of compound 1 3
UV/Vis and fluorescence spectra of 1, 2 and 3 4
UV- and emission titration of compound 2 and phosphate esters 5
1H and 13C NMR spectra of 6 8
1H and 13C NMR spectra of 9 9
1H and 13C NMR spectra of 7 10
1H and 13C NMR spectra of 10 11
1H and 13C NMR spectra of 1 12
1H and 13C NMR spectra of 2 13
Detailed experimental setups for the photocatalytic experiments

Oxidative photocleavage of dibenzyl phosphate
The photocleavage of dibenzyl phosphate was tested in small glass vials with deuterated solvents (1 mL, MeCN-d_3 or D$_2$O), containing the phosphate starting material (10×10^{-3} M) and flavin catalyst (2×10^{-3} M, 20 mol%). The mixture was stirred and irradiated by a LED (440 nm, 5 W) at 40 °C for 2 h (D$_2$O) or 4 h (MeCN-d_3), respectively. The products were identified by 1H NMR and mass spectrometry and the conversion was determined by integration of the aromatic protons in the 1H NMR.

Photoreduction of 4-nitrophenyl phosphate
The photocleavage of dibenzyl phosphate was tested in small glass vials in MeCN or water (5 mL), containing the 4-nitrophenyl phosphate starting material (10×10^{-3} M), triethanol amine as sacrificial electron donor (100×10^{-3} M, 10 equivalents), and flavin catalyst (1×10^{-3} M, 10 mol%). The solution was degassed by three consecutive pump and freeze circles and afterwards, the solution was stirred and irradiated by a LED (440 nm, 5 W) and a UV-lamp (370 nm) at 40 °C for 4 h. Reaction mixtures in MeCN were evaporated and dried. The mixtures of the experiments in water were lyophilized. 4-aminophenyl phosphate and 4-amino phenol as by-product were identified by 1H NMR and mass spectrometry, respectively. The conversion was determined by integration of the aromatic protons in the 1H NMR.

Photo Diels–Alder-reaction of anthracene with N-methyl-maleinimide
Photoinduced Diels–Alder-reactions were carried out in small glass vials in dry toluene (1.2 mL), containing anthracene (33×10^{-3} M), methyl maleinimide (83×10^{-3} M, 2.5 equivalents), and flavin catalyst (0.67×10^{-3} M, 2 mol%). The mixture was stirred and irradiated by a LED (440 nm, 5 W) at 40 °C for 8 h. Afterwards, the solvent was evaporated and the mixture was dried. The products were identified by 1H NMR and mass spectrometry and the conversion was determined by integration of the aromatic protons in the 1H NMR.
Calculated gas phase conformations

Figure S.1: Calculated conformations of 1 in the gas phase (AM1, Spartan program package).

Figure S.1 shows the two lowest energy conformations of compound 1 in the gas phase (semi-empirical AM1, Spartan program package, difference: 13.5 kJ/mol). It is possible to transform the structures into each other by rotation of the C–C single bonds of the ethane linker that are expected to rotate freely in solution.
UV/Vis and fluorescence spectra of compounds 1, 2 and 3

Figure S.2: Absorption spectra of 1, 2 and 3 (MeCN + 1% DMSO, 1 × 10⁻⁵ M)

Figure S.3: Fluorescence spectra of 1, 2 and 3 [MeCN + 1% DMSO, 1 × 10⁻⁵ M, excitation at 445 nm (1+2) and 440 nm (3)]
UV- and emission titration of compound 2 and phosphate esters

UV-visible and emission titrations were recorded for compound 2 with sodium phenyl phosphate (dibasic dihydrate) and bis-(4-nitrophenyl) phosphate. UV–visible absorption spectroscopy was performed using a Cary 50 Bio spectrophotometer and fluorescence spectroscopy was performed using a Varian Cary Eclipse fluorescence spectrophotometer. The titration experiments with the phosphate anion species were carried out using a solution (2.5 mL) of compound 2 (50 µM in HEPES Buffer; pH 7.4 and 50 µM in CH₃CN) in a quartz cell at 25 °C. The absorption and emission spectral changes were monitored upon addition of a freshly prepared solution of the analytes (in HEPES Buffer and in CH₃CN) with a microsyringe.

Figure S.4: UV-Visible spectra of compound 2 (a) with bis (4-nitrophenyl) phosphate in CH₃CN, (b) with bis (4-nitrophenyl) phosphate in HEPES Buffer (c) UV-Visible of bis (4-nitrophenyl) phosphate in HEPES Buffer.
Figure S.5: UV-Visible spectra of compound 2 and sodium phenyl phosphate (dibasic dihydrate) in HEPES Buffer.

The fluorescence spectroscopic studies of compound 2 are shown below. In the presence of bis-(4-nitrophenyl) phosphate as analyte in acetonitrile the emission intensity decreases, while the change is not prominent in HEPES Buffer solution.

Figure S.6: Fluorescence intensity change of compound 2 with bis (4-nitrophenyl) phosphate in CH$_3$CN and in HEPES Buffer. $\lambda_{ex} = 445$ nm, PMT detector voltage is medium, slit width = 5.
With sodium phenyl phosphate (dibasic dihydrate) as the analyte, compound 2 did not show any significant change in its emission intensity.

Figure S.7: Fluorescence intensity change of compound 2 with sodium phenyl phosphate (dibasic dihydrate) in HEPES Buffer. $\lambda_{ex} = 445$ nm, PMT detector voltage is medium, slit width = 5.
\(^1\)H NMR spectrum (300 MHz, DMSO-\(d_6\)) (top) and \(^{13}\)C NMR (75 MHz, DMSO-\(d_6\)) of compound 6.
1H NMR spectrum (300 MHz, DMSO-d_6) (top) and 13C NMR (75 MHz, DMSO-d_6) of compound 9.
1H NMR spectrum (300 MHz, CDCl$_3$) (top) and 13C NMR (75 MHz, CDCl$_3$) of compound 7.
1H NMR spectrum (300 MHz, CDCl$_3$) (top) and 13C NMR (75 MHz, CDCl$_3$) of compound 10.
1H NMR spectrum (600 MHz, DMSO-d_6) (top) and 13C NMR (150 MHz, DMSO-d_6) of compound 1.
\(^1\)H NMR spectrum (600 MHz, DMSO-\(d_6\)) (top) and \(^{13}\)C NMR (150 MHz, DMSO-\(d_6\)) of compound 2.