Supporting Information for

Ring strain and total syntheses of modified macrocycles of the isoplagiochin type

Andreas Speicher*, Timo Backes, Kerstin Hesidens and Jürgen Kolz

Address: Department 8.1 Chemistry - Organic Chemistry, Saarland University, 66041
Saarbrücken, Germany

Email: Andreas Speicher - anspeich@mx.uni-saarland.de

* Corresponding author

Full experimental details and characterization data

General

The ${ }^{1} \mathrm{H}(500 \mathrm{MHz})$ and ${ }^{13} \mathrm{C}$ NMR (125 MHz) spectra were recorded on a Bruker DRX 500 spectrometer referencing to solvent or TMS with the chemical shift recorded as δ values in ppm. Coupling constants (J) are given in Hertz, and multiplicity is defined as follows: $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{dd}=$ doublet of doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{m}=$ multiplet, $\mathrm{br}=$ broad. The infrared (IR) spectra were recorded in terms of cm^{-1} on a Bruker Tensor 27 FT-IR spectrometer. Mass spectra were obtained on a Finnigan MAT 95. The melting points (mp) were determined on a Büchi melting point apparatus (Dr. Tottoli). Column chromatography was performed on a silica gel 60 (63-260 $\mu \mathrm{m}$).

Temperature dependent ${ }^{1} \mathrm{H}$ NMR experiments for the

tetramethylether 3 of isoplagiochin C and assignment of NMR data

The ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3}$ was measured at different temperatures between $-30{ }^{\circ} \mathrm{C}$ and $+60{ }^{\circ} \mathrm{C}$ in CDCl_{3}. Coalescence of the signals for the four methoxy groups was observed at $+15{ }^{\circ} \mathrm{C}$ (two sets), $+40{ }^{\circ} \mathrm{C}$ and $+55{ }^{\circ} \mathrm{C}$ (see Figure 3 in the main document).

The rotation barrier was approximated according to the formula

$$
\begin{gathered}
\Delta \mathrm{G}^{\#}=19.1 \cdot 10^{-3} \cdot \mathrm{~T}_{\mathrm{C}} \cdot\left(9.97+\log \mathrm{T}_{\mathrm{C}}-\log \left|v_{\mathrm{A}}-v_{\mathrm{B}}\right|\right) \\
\left(\mathrm{T}_{\mathrm{C}}: \text { coalescence temperature in } \mathrm{K},\right. \\
v_{\mathrm{A}}, v_{\mathrm{B}}: \text { resonance frequencies in Hz of the separated signals) }
\end{gathered}
$$

resulting in values of 66.0 to $66.4 \mathrm{~kJ} / \mathrm{mol}$.
For the exact assignment of NMR data especially for the four methoxy groups 2D
NMR spectra (COSY, HSQC, HMBC) were measured at $+100^{\circ} \mathrm{C}$ in $\left[\mathrm{D}_{6}\right]$-DMSO.

H-H-COSY

HMBC

Figure 4: Typical NMR correlations for 3.

Table 2: Assignment of 2D NMR data for compound $\mathbf{3}$ ([D6]-DMSO, $100^{\circ} \mathrm{C}$).

Position	$\delta \mathrm{C}$ (ppm)	$\delta \mathrm{H}$ (ppm)	Position	$\delta \mathrm{C}$ (ppm)	$\delta \mathrm{H}$ (ppm)
1	154.8	-	$1 '$	155.8	-
2	110.9	6.80 (d)	$2 '$	128.2	
3	126.3	7.04 (d)	3 '	132.3	6.89 ($\mathrm{s}_{\text {br }}$)
4	134.5	-	$4 ’$	128.0	-
5	132.2	6.40 (d)	5	128.6	7.25 (dd)
6	127.6	-	6 '	111.0	6.97 (d)
7	36.0	2.00-2.70 (m)	$7{ }^{\prime}$	129.3	6.65 (d)
8	37.0	2.00-2.70 (m)	8 '	128.1	6.70 (d)
9	142.3	-	$9 '$	138.9	-
10	113.5	6.92 (d)	10'	111.4	6.89 ($\mathrm{s}_{\text {br }}$)
11	158.3	-	11^{\prime}	156.7	-
12	110.7	6.80 (d)	12'	not separated	-
13	130.2	7.04 (d)	13'	130.9	7.08 (d)
14	129.6	-	14'	120.0	6.84 (d)
$1-\mathrm{OCH}_{3}$	55.2	3.69 (s)	$1{ }^{\prime}-\mathrm{OCH}_{3}$	54.9	3.75 (s)
$11-\mathrm{OCH}_{3}$	54.6	3.82 (s)	11'- OCH_{3}	55.0	3.55 (s)

2-(3-Bromo-4-methoxyphenyl)-1,3-dioxane (11)

A mixture of 3-bromo-4-methoxybenzaldehyde (10, $25.0 \mathrm{~g}, 116 \mathrm{mmol}$), triethyl orthoformate ($19.0 \mathrm{~g}, 128 \mathrm{mmol}$), 1,3-propanediol ($35.4 \mathrm{~g}, 464 \mathrm{mmol}, 33.8 \mathrm{~mL}$) and tetrabutylammonium tribromide ($560 \mathrm{mg}, 1.16 \mathrm{mmol}$) was stirred for 1 h at room
temperature. The reaction mixture was taken up in EtOAc (200 mL), washed with saturated $\mathrm{NaHCO}_{3}(2 \times 100 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(3 \times 100 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated yielding a colorless oil which solidifies on standing, 31.1 g (98\%), mp 67 ${ }^{\circ} \mathrm{C}$.

IR: $v\left(\mathrm{~cm}^{-1}\right)=2955,2840,1620,1510,1460,1370,1295,1235,1205,1180,1130$, $1150,1050,1020,980,950,880,850,810,780,670$.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=7.69(\mathrm{~d}, \mathrm{~J}=1.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.38\left(\mathrm{dd}, \mathrm{J}_{1}=8.5 \mathrm{~Hz}, \mathrm{~J}_{2}=\right.$ $1.9 \mathrm{~Hz}, 1 \mathrm{H}$, Ar-H), 6.87 (d, J = $8.5 \mathrm{~Hz}, 1 \mathrm{H}$, Ar-H), 5.43 (s, $1 \mathrm{H},-\mathrm{OCHO}-$), 4.26-4.21 (combined signals, $2 \mathrm{H},-\mathrm{OCH}_{2}-$), 4.00-3.92 (combined signals, $2 \mathrm{H},-\mathrm{OCH}_{2}-$), 3.88 (s, $3 \mathrm{H},-\mathrm{OCH}_{3}$), 2.25-2.13 (m,1 H, HCH), $1.41(\mathrm{~d}, \mathrm{~J}=13.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{HCH})$.
${ }^{13} \mathbf{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=156.16,132.69,131.25,126.29,111.46,100.53$ (-OCHO-), 67.36, 56.31, 25.70.

5-Formyl-2-methoxyphenylboronic acid (12)

To the bromoarene $11(10.5 \mathrm{~g}, 38.4 \mathrm{mmol})$ in anhydrous THF (200 mL) was added dropwise n-BuLi in n-hexane ($2.5 \mathrm{M}, 16.8 \mathrm{~mL}, 42.0 \mathrm{mmol}$) at $\mathrm{T}<-70^{\circ} \mathrm{C}$. Stirring was continued for 4 h at $T<-70^{\circ} \mathrm{C}$. Trimethyl borate ($4.98 \mathrm{~g}, 47.9 \mathrm{mmol}$) was added, the mixture was allowed to warm up to room temperature overnight and hydrolyzed with $2 \mathrm{M} \mathrm{HCl}(100 \mathrm{~mL})$. The aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \times 100 \mathrm{~mL})$ and the combined organic layers were extracted with $2 \mathrm{M} \mathrm{NaOH}(2 \times 100 \mathrm{~mL})$. The alkaline solution was acidified to pH 1 (conc. HCl). The boronic acid as precipitate was filtered off and dried in vacuo $\left(\mathrm{CaCl}_{2}\right)$; pale yellow solid, $5.39 \mathrm{~g} \mathrm{(78} \mathrm{\%)} ,\mathrm{mp} 160{ }^{\circ} \mathrm{C}$.

IR: $v\left(\mathrm{~cm}^{-1}\right)=3235(\mathrm{OH}), 1690(\mathrm{C}=\mathrm{O}), 1660,1600,1575,1495,1465,1425,1400$, 1380, 1250, 1210, 1180, 1140, 1045, 1015, 895, 840, 770, 755, 720, 665.
${ }^{1} \mathrm{H}$ NMR ([D $\left.\left.\mathrm{D}_{6}\right]-\mathrm{DMSO}\right): ~ \delta(\mathrm{ppm})=9.87(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CHO}), 8.04(\mathrm{~d}, \mathrm{~J}=2.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H})$, $7.92\left(\mathrm{dd}, \mathrm{J}_{1}=8.5 \mathrm{~Hz}, \mathrm{~J}_{2}=2.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}\right), 7.92\left(\mathrm{~s}, 2 \mathrm{H},-\mathrm{B}(\mathrm{OH})_{2}\right), 7.15(\mathrm{~d}, \mathrm{~J}=8.5$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 3.88\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{OCH}_{3}\right)$.
${ }^{13} \mathrm{C}$ NMR ([D $\left.\mathrm{D}_{6}\right]$-DMSO): $\delta(\mathrm{ppm})=191.57(-\mathrm{CHO}), 167.85,136.86,133.65,129.10$, 110.76, 55.82.

5'-(1,3-Dioxan-2-yl)-6,2'-dimethoxybiphenyl-3-carbaldehyde (13)

The bromoarene 11 ($6.64 \mathrm{~g}, 24.3 \mathrm{mmol}$) and the boronic acid $12(4.83 \mathrm{~g}, 26.8 \mathrm{mmol})$ were dissolved in a mixture of toluene (45 mL), $2 \mathrm{M} \mathrm{Na}_{2} \mathrm{CO}_{3}(22 \mathrm{~mL})$ and $\mathrm{EtOH}(30$ mL) and degassed with argon. Tetrakis(triphenylphosphane)-palladium(0) (867 mg, 0.75 mmol) was added and the mixture was heated to reflux for 24 h , cooled to room temperature and filtered through an alumina pad eluting with $\mathrm{Et}_{2} \mathrm{O} . \mathrm{H}_{2} \mathrm{O}(200 \mathrm{~mL})$ was added and the mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(4 \times 200 \mathrm{~mL})$. The combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated. The crude product was purified filtrating through an alumina pad (basic, activity III) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$; pale yellow oil which solidifies; $7.10 \mathrm{~g}(89 \%), \mathrm{mp} 105^{\circ} \mathrm{C}$.

IR: $v\left(\mathrm{~cm}^{-1}\right)=2965,2840,2725,1690(\mathrm{C}=\mathrm{O}), 1605,1505,1465,1445,1380,1275$, 1210, 1175, 1150, 1130, 1105, 1050, 1000, 940, 900, 870, 855, 820, 790, 735, 705.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=9.90(\mathrm{~s}, 1 \mathrm{H},-\mathrm{CHO}), 7.88\left(\mathrm{dd}, \mathrm{J}_{1}=8.5 \mathrm{~Hz}, \mathrm{~J}_{2}=2.2 \mathrm{~Hz}, 1\right.$ $\mathrm{H}, \mathrm{Ar}-\mathrm{H}$), 7.77 (d, J = $2.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$), $7.47\left(\mathrm{dd}, \mathrm{J}_{1}=8.5 \mathrm{~Hz}, \mathrm{~J}_{2}=2.2 \mathrm{~Hz}, 1 \mathrm{H}\right.$, Ar$\mathrm{H}), 7.34(\mathrm{~d}, \mathrm{~J}=2.2 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{Ar}-\mathrm{H}), 7.04(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{Ar}-\mathrm{H}), 6.95(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 5.49(\mathrm{~s}, 1 \mathrm{H},-\mathrm{OCHO}-), 4.27-4.24$ (combined signals, $2 \mathrm{H},-\mathrm{OCH}_{2}-$), 4.00-3.95 (combined signals, $2 \mathrm{H},-\mathrm{OCH}_{2}-$), $3.83\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{OCH}_{3}\right), 3.76(\mathrm{~s}, 3 \mathrm{H}$, $\left.-\mathrm{OCH}_{3}\right), 2.26-2.16(\mathrm{~m}, 1 \mathrm{H}, \mathrm{HCH}), 1.43(\mathrm{~d}, \mathrm{~J}=13.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{HCH})$.
${ }^{13} \mathbf{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=190.99(-\mathrm{CHO}), 162.27,157.45,133.54,131.16$, 131.12, 129.55, 129.08, 128.67, 126.98, 126.36, 110.77, 110.72, 101.45 (-OCHO-), 67.38, 55.90, 55.85, 25.78.

2-(5'-Ethynyl-6,2'-dimethoxybiphenyl-3-yl)-1,3-dioxane (14)

Bromomethyltriphenylphosphonium bromide ($11.6 \mathrm{~g}, 26.8 \mathrm{mmol}$) was dissolved in anhydrous THF (200 mL) under argon atmosphere and cooled to $-78{ }^{\circ} \mathrm{C} . t$-BuOK ($31.6 \mathrm{~g}, 56.3 \mathrm{mmol}, 20 \% \mathrm{w} / \mathrm{w}$ in anhydrous THF) was added slowly and the mixture was stirred for 1 h at $-78^{\circ} \mathrm{C}$. To the orange solution the aldehyde $13(7.32 \mathrm{~g}, 22.3$ mmol) in anhydrous THF (200 mL) was added dropwise at $\mathrm{T}<-70^{\circ} \mathrm{C}$. The mixture was allowed to warm to room temperature within 6 h and taken up in $\mathrm{Et}_{2} \mathrm{O}(300 \mathrm{~mL})$. The organic layer was washed with $\mathrm{H}_{2} \mathrm{O}(3 \times 200 \mathrm{~mL})$, brine $(200 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated. The crude product was purified by CC (basic alumina, activity III, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$), pale yellow solid, $6.73 \mathrm{~g}(93 \%)$, mp $105^{\circ} \mathrm{C}$.

IR: $v\left(\mathrm{~cm}^{-1}\right)=3272(\mathrm{C} \equiv \mathrm{C}-\mathrm{H}), 2965,2838,2210,1760,1600,1583,1492,1463$, 1440, 1367, 1331, 1271, 1234, 1179, 1147, 1131, 1116, 1100, 1045, 1014, 967, 952, 894, 876, 864, 809, 624, 614.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=7.45\left(\mathrm{dd}, \mathrm{J}_{1}=8.5 \mathrm{~Hz}, \mathrm{~J}_{2}=2.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}\right), 7.44\left(\mathrm{dd}, \mathrm{J}_{1}\right.$ $\left.=8.5 \mathrm{~Hz}, J_{2}=2.2 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{Ar}-\mathrm{H}\right), 7.37(\mathrm{~d}, \mathrm{~J}=2.2 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{Ar}-\mathrm{H}), 7.31(\mathrm{~d}, \mathrm{~J}=2.2 \mathrm{~Hz}$, $1 \mathrm{H}, \operatorname{Ar}-\mathrm{H}), 6.93(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{Ar}-\mathrm{H}), 6.86(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{Ar}-\mathrm{H}), 5.48(\mathrm{~s}, 1$ $\mathrm{H},-\mathrm{OCHO}-$), 4.27-4.22 (combined signals, $2 \mathrm{H},-\mathrm{OCH}_{2}-$), 3.99-3.94 (combined signals, $2 \mathrm{H},-\mathrm{OCH}_{2}-$), $3.75\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{OCH}_{3}\right), 3.74\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{OCH}_{3}\right), 2.97(\mathrm{~s}, 1 \mathrm{H}$, -C $=C H$), 2.25-2.15 (m, $1 \mathrm{H}, \mathrm{HCH}), 1.42$ (m, $1 \mathrm{H}, \mathrm{HCH})$.
${ }^{13} \mathbf{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=157.69,157.48,135.24,132.75,131.04,129.18$, 128.18, 126.77, 126.65, 113.84, 110.77, 110.75, 101.52 (-OCHO -), 83.83 (- $\underline{\mathrm{C}} \equiv \mathrm{C}-$), 75.61 (-Cㅡㅡ-), $67.36,55.88,55.69,25.79$.

MS (CI, 120 eV$): m / z(\%)=324$ (100, M ${ }^{+}$), 323 (40), 293 (10), 266 (20), 248 (5), 208 (5), 193 (10), 165 (3), 87 (18).

5'-[(2-Bromo-5-methoxyphenyl)ethynyl]-6,2'-dimethoxybiphenyl-3-

carbaldehyde (16)

To 4-Bromo-3-iodoanisole (15, $4.46 \mathrm{~g}, 14.3 \mathrm{mmol})$, Cul ($273 \mathrm{mg}, 1.43 \mathrm{mmol}$), N, N dimethylglycine hydrochloride ($596 \mathrm{mg}, 4.28 \mathrm{mmol}$) and $\mathrm{K}_{2} \mathrm{CO}_{3}(5.91 \mathrm{~g}, 42.8 \mathrm{mmol})$ in a pre-conditioned oxygen free argon atmosphere was added the alkyne 14 (5.56 g (17.1 mmol) in DMF (40 mL) and $\mathrm{H}_{2} \mathrm{O}(1 \mathrm{~mL}$, both degassed). The mixture was heated to $100{ }^{\circ} \mathrm{C}$ for 12 h (argon atmosphere), cooled and taken up in EtOAc (200 mL) and $\mathrm{H}_{2} \mathrm{O}(100 \mathrm{~mL})$. The layers were separated and the aqueous layer was extracted with EtOAc $(2 \times 50 \mathrm{~mL})$. The combined organic layers were washed with $\mathrm{H}_{2} \mathrm{O}(2 \times 50 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated. The residue was taken up in 1,4dioxane (50 mL) and hydrolyzed with $2 \mathrm{M} \mathrm{HCl}(20 \mathrm{~mL})$ for 1 h at room temperature. The mixture was extracted with EtOAc $(3 \times 50 \mathrm{~mL})$, washed $(3 \times 100 \mathrm{~mL} \mathrm{H} \mathrm{H} 2 \mathrm{O})$, dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated. The crude product was purified by CC (silica gel, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); colorless solid, $4.58 \mathrm{~g}(71 \%)$, mp $100-103^{\circ} \mathrm{C}$.

IR: $v\left(\mathrm{~cm}^{-1}\right)=2935,2837,2205(\mathrm{C}=\mathrm{C}), 1684(\mathrm{C}=\mathrm{O}), 1584,1491,1460,1439,1391$, 1249, 1172, 1144, 1113, 1040, 1016, 959, 905, 852, 813.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=9.92(\mathrm{~s}, 1 \mathrm{H},-\mathrm{CHO}), 7.90\left(\mathrm{dd}, \mathrm{J}_{1}=8.5 \mathrm{~Hz}, \mathrm{~J}_{2}=2.2 \mathrm{~Hz}, 1\right.$ $\mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.79(\mathrm{~d}, \mathrm{~J}=2.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.59\left(\mathrm{dd}, \mathrm{J}_{1}=8.5 \mathrm{~Hz}, \mathrm{~J}_{2}=2.2 \mathrm{~Hz}, 1 \mathrm{H}\right.$, ArH), 7.46 (combined signals, $2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$), 7.08 (d, J = $8.5 \mathrm{~Hz}, 1 \mathrm{H}$, Ar-H), 7.05 (d, J =
$2.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 6.96(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 6.74\left(\mathrm{dd}, \mathrm{J}_{1}=8.8 \mathrm{~Hz}, \mathrm{~J}_{2}=2.8 \mathrm{~Hz}\right.$, $1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 3.87\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{OCH}_{3}\right), 3.80\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{OCH}_{3}\right), 3.79\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{OCH}_{3}\right)$.
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=190.84(-\mathrm{CHO}), 162.15,158.51,157.54,134.69$, 133.31, 133.02, 132.95, 131.56, 129.65, 127.71, 126.82, 126.24, 117.62, 116.25, 116.21, 114.92, 111.07, 110.93, 93.69 (- $\underline{C} \equiv \mathrm{C}-$), 87.15 ($-\mathrm{C} \equiv \underline{\mathrm{C}}-$), $56.01,55.82,55.57$. MS (CI, 120 eV$): m / z(\%)=452\left(40, \mathrm{M}^{+}\right), 450(35), 373$ (20), 372 (100), 344 (20), 328 (5), 279 (2).
by-product: dialkyne $17, \mathrm{mp} 145-150^{\circ} \mathrm{C}$
${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=9.90(\mathrm{~s}, 1 \mathrm{H},-\mathrm{CHO}), 7.89\left(\mathrm{dd}, \mathrm{J}_{1}=8.5 \mathrm{~Hz}, \mathrm{~J}_{2}=2.2 \mathrm{~Hz}, 1\right.$ $\mathrm{H}, \mathrm{Ar}-\mathrm{H}, 7.75(\mathrm{~d}, \mathrm{~J}=2.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.53\left(\mathrm{dd}, \mathrm{J}_{1}=8.8 \mathrm{~Hz}, \mathrm{~J}_{2}=2.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}\right)$, $7.40(\mathrm{~d}, \mathrm{~J}=2.2 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{Ar-H}), 7.07(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{Ar}-\mathrm{H}), 6.92(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}, 1$ $\mathrm{H}, \mathrm{Ar}-\mathrm{H}), 3.86\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{OCH}_{3}\right), 3.78\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{OCH}_{3}\right)$.
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=190.78(-\mathrm{CHO}), 162.04,157.78,135.46$, 133.79, 133.31, 131.57, 129.62, 127.34, 126.80, 113.87, 111.13, 110.97, 81.13 (Ar- $\underline{C} \equiv \mathrm{C}-$ $\mathrm{C} \equiv \mathrm{C}), 73.24$ ($\mathrm{Ar}-\mathrm{C} \equiv \underline{\mathrm{C}}-\mathrm{C} \equiv \mathrm{C}$), 56.00, 55.79.

4-lodo-3-methoxybenzoic acid (19)

step (1): 4-lodo-3-hydroxybenzoic acid
3-Hydroxybenzoic acid (18, $20.8 \mathrm{~g}, 150 \mathrm{mmol}$) was dissolved in $2 \mathrm{M} \mathrm{NaOH}(200 \mathrm{~mL})$ and a solution of iodine ($35.1 \mathrm{~g}, 138 \mathrm{mmol}$) and $\mathrm{KI}(27.5 \mathrm{~g}, 165 \mathrm{mmol})$ in $\mathrm{H}_{2} \mathrm{O}(150$ mL) was added dropwise. Stirring was continued for 20 min , concentrated HCl (180 mL) was added and the precipitate was filtered off, re-crystallized from $\mathrm{EtOH}-\mathrm{H}_{2} \mathrm{O}$ (1:5) and dried in vacuo ($\mathrm{P}_{4} \mathrm{O}_{10}$); colorless solid, $25.3 \mathrm{~g}(64 \%)$, mp $219-221^{\circ} \mathrm{C}$.
step (2): 4-lodo-3-methoxybenzoic acid methyl ester
4-lodo-3-hydroxybenzoic acid ($10.0 \mathrm{~g}, 37.9 \mathrm{mmol}$), dimethyl sulfate ($21.8 \mathrm{~g}, 189$ $\mathrm{mmol}, 18.0 \mathrm{~mL})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(15.7 \mathrm{~g}, 114 \mathrm{mmol})$ in acetone $(100 \mathrm{~mL})$ were heated to reflux for $12 \mathrm{~h} . \mathrm{H}_{2} \mathrm{O}(200 \mathrm{~mL})$ was added, the mixture was stirred for 12 h at room temperature and extracted with EtOAc $(2 \times 100 \mathrm{~mL})$. The combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated. The residue was filtered through a silica gel pad $\left(\mathrm{CHCl}_{3}\right)$; colorless oil which solidifies; $10.7 \mathrm{~g}(97 \%), \mathrm{mp} 48-49^{\circ} \mathrm{C}$.
step(3): 4-lodo-3-methoxybenzoic acid (19)
4-lodo-3-methoxybenzoic acid methyl ester ($4.60 \mathrm{~g}, 15.8 \mathrm{mmol}$) was dissolved in 2 M $\mathrm{NaOH}(100 \mathrm{~mL})$ and stirred for 24 h at room temperature. The alkaline solution was acidified with concentrated HCl and the precipitate was filtered off, washed $\left(\mathrm{H}_{2} \mathrm{O}\right)$ and dried in vacuo over $\mathrm{P}_{4} \mathrm{O}_{10}$; colorless solid, $4.08 \mathrm{~g}(93 \%)$, mp $219-220^{\circ} \mathrm{C}$.

IR: $v\left(\mathrm{~cm}^{-1}\right)=2967(\mathrm{OH}), 2840,2654,2533,1689,1572,1463,1421,1296,1250$, $1188,1121,1041,1016,933,879,828,761,601$.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=7.91(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.44(\mathrm{~d}, \mathrm{~J}=1.8 \mathrm{~Hz}, 1 \mathrm{H}$, Ar-H), $7.32\left(\mathrm{dd}, \mathrm{J}_{1}=8.0 \mathrm{~Hz}, \mathrm{~J}_{2}=1.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}\right), 3.91\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{OCH}_{3}\right)$.
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=166.77(-\mathrm{COOH}), 157.83,139.24,132.57,123.14$, 111.25, 92.49 ($\left.\mathrm{C}_{\mathrm{Ar}}-\mathrm{I}\right), 56.45$.

MS (CI, 120 eV$): m / z(\%)=278\left(50, \mathrm{M}^{+}\right), 263(68), 261-257(45-100), 201$ (35), 179 (35), 152 (18), 121 (10), 87 (40).

(4-Iodo-3-methoxyphenyl)methanol (20)

To thionyl chloride ($50 \mathrm{~mL}, 0.69 \mathrm{~mol}$) was added the benzoic acid $19(14.5 \mathrm{~g}, 52.0$ mmol) and the solution was heated to reflux for 1 h . The excess of thionyl chloride was distilled off, the crude benzoyl chloride was dissolved in anhydrous 1,4-dioxane
(100 mL), $\mathrm{NaBH}_{4}(5.93 \mathrm{~g}, 156 \mathrm{mmol})$ was added and the mixture was heated to $100{ }^{\circ} \mathrm{C}$ for $1 \mathrm{~h} . \mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$ was added, most of the solvent was removed in vacuo and the residue was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 50 \mathrm{~mL})$. The combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right.$ and concentrated. Purification by CC (short pad of silica gel, CHCl_{3}) yielded a colorless oil; $10.6 \mathrm{~g}(77 \%)$.

IR: $v\left(\mathrm{~cm}^{-1}\right)=3219(\mathrm{OH}), 3000,2934,2831,1686,1588,1571,1501,1476,1459$, $1399,1256,1186,1163,1127,1034,1012,868,847,803,759$.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=7.72(\mathrm{~d}, \mathrm{~J}=7.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 6.86(\mathrm{~d}, \mathrm{~J}=1.6 \mathrm{~Hz}, 1 \mathrm{H}$, Ar-H), 6.69 (dd, $\left.J_{1}=7.9 \mathrm{~Hz}, \mathrm{~J}_{2}=1.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}\right), 4.65\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{CH}_{2}-\mathrm{O}\right), 3.89(\mathrm{~s}$, $\left.3 \mathrm{H},-\mathrm{OCH}_{3}\right)$.
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=158.29,142.94,139.39,120.74,109.44,84.59\left(\mathrm{C}_{\mathrm{Ar}}-\mathrm{l}\right)$, 64.76 ($\mathrm{Ar}-\mathrm{CH}_{2}-\mathrm{O}$), 56.32.

MS (CI, 120 eV): m/z (\%) = 264 (100, M^{+}), 247 (10), 137 (3), 109 (8).

2-(4-lodo-3-methoxybenzyloxy)tetrahydropyran (21)

The iodobenzyl alcohol 20 ($2.52 \mathrm{~g}, 9.39 \mathrm{mmol}$) was dissolved in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(25 \mathrm{~mL}), 3,4$-dihydro-2H-pyran ($1.98 \mathrm{~g}, 2.12 \mathrm{~mL}, 23.5 \mathrm{mmol}$) and p-toluenesulfonic acid monohydrate ($36.3 \mathrm{mg}, 0.19 \mathrm{mmol}$) were added and the mixture was stirred for 16 h at room temperature. The solvent was removed and the residue was purified by CC (silica gel, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); colorless oil, 2.50 g (76\%).

IR: $v\left(\mathrm{~cm}^{-1}\right)=2937,2865,1574,1461,1405,1347,1279,1256,1200,1169,1118$, 1075, 1032, 1013, 974, 903, 869, 811.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=7.72(\mathrm{~d}, \mathrm{~J}=7.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 6.85(\mathrm{~d}, \mathrm{~J}=1.9 \mathrm{~Hz}, 1 \mathrm{H}$, Ar-H), $6.72\left(\mathrm{dd}, J_{1}=7.9 \mathrm{~Hz}, J_{2}=1.9 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{Ar}-\mathrm{H}\right), 4.74,4.47(2 \mathrm{~d}, \mathrm{~J}=12.3 \mathrm{~Hz}, 2 \mathrm{H}$,
$\left.\mathrm{Ar}-\mathrm{CH}_{2}-\mathrm{O}\right), 4.69(\mathrm{t}, \mathrm{J}=3.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{O}-\mathrm{CH}-\mathrm{O}), 3.93-3.89\left(\mathrm{~m}, 1 \mathrm{H},-\mathrm{CH}_{2}-\mathrm{O}\right), 3.89(\mathrm{~s}$, $\left.3 \mathrm{H},-\mathrm{OCH}_{3}\right), 3.57-3.52\left(\mathrm{~m}, 1 \mathrm{H},-\mathrm{CH}_{2}-\mathrm{O}\right), 1.87-1.50\left(\mathrm{~m}, 6 \mathrm{H},-\mathrm{CH}_{2}-\right)$.
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=158.15,140.24,139.26,121.85,110.39,97.83(\mathrm{O}-\underline{\mathrm{C}} \mathrm{H}-$ O), 84.59 ($\left.\mathrm{C}_{\mathrm{Ar}}-\mathrm{l}\right)$, 68.29, 62.31, 56.30, 30.57, 25.44, 19.41.

MS (CI, 120 eV): m/z (\%) = 391 (100), 348 (30, M ${ }^{+}$), 329 (4), 267 (2), 253 (15), 251 (2), 183 (2), 169 (45), 168 (8), 167 (22), 166 (5), 85 (2).

\{2-Methoxy-4-[(tetrahydropyran-2-yloxy)methyl]phenyl\}boronic acid

(22)

A solution of the iodoarene $21(8.95 \mathrm{~g}, 25.7 \mathrm{mmol})$ in anhydrous THF (200 mL) was cooled to $-78{ }^{\circ} \mathrm{C}$, n-butyllithium in n-hexane ($2.5 \mathrm{M}, 12.5 \mathrm{~mL}, 31.1 \mathrm{mmol}$) was added dropwise at $T<-70^{\circ} \mathrm{C}$ and stirring was continued for 30 min . Trimethyl borate (8.06 $\mathrm{g}, 8.58 \mathrm{~mL}, 77.3 \mathrm{mmol}$) was added at $T<-70^{\circ} \mathrm{C}$ and the mixture was stirred for 1 h and then allowed to warm to room temperature. $\mathrm{H}_{2} \mathrm{O}(200 \mathrm{~mL})$ was added and the mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 150 \mathrm{~mL})$. From the organic layer the boronic acid was extracted with $2 \mathrm{M} \mathrm{NaOH}(3 \times 100 \mathrm{~mL})$ and the alkaline solution was slightly acidified with diluted HCl to $\mathrm{pH} 6-7$. The boronic acid was re-extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times$ $150 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated; colorless oil, $4.20 \mathrm{~g}(61 \%)$.

IR: $v\left(\mathrm{~cm}^{-1}\right)=3394(\mathrm{OH}), 2940,2869,1611,1566,1500,1454,1416,1322,1246$, 1162, 1118, 1032, 976, 948, 904, 867, 814, 744.
${ }^{1} \mathbf{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=7.81(\mathrm{~d}, \mathrm{~J}=7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.02$ (dd, not resolved, J_{1} $=7.6 \mathrm{~Hz}, 1 \mathrm{H}$, Ar-H), 6.95 (d, not resolved, 1 H, Ar-H), $5.91\left(\mathrm{~s}, 2 \mathrm{H},-\mathrm{B}(\mathrm{OH})_{2}\right), 4.81$, $4.54\left(2 \mathrm{~d}, \mathrm{~J}=12.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{CH}_{2}-\mathrm{O}\right), 4.71(\mathrm{t}, \mathrm{J}=3.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{O}-\mathrm{CH}-\mathrm{O}), 3.93(\mathrm{~s}, 3$ $\left.\mathrm{H},-\mathrm{OCH}_{3}\right), 3.75\left(\mathrm{~m}, 1 \mathrm{H},-\mathrm{CH}_{2}-\mathrm{O}\right), 3.56\left(\mathrm{~m}, 1 \mathrm{H},-\mathrm{CH}_{2}-\mathrm{O}\right), 1.87-1.53(\mathrm{~m}, 6 \mathrm{H},-$ $\mathrm{CH}_{2}-$).
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=164.76,143.72,136.87,120.36,109.14,97.92(\mathrm{O}-\underline{\mathrm{C}}-$ O), $68.62,62.30,55.51,30.59,25.46,19.42$.

MS (Cl, 120 eV$): m / z(\%)=238(80), 221$ (100), 169 (60), 137 (25), 85 (27).

Vanillin triflate (24)

To a solution of vanillin (23) (3.40 g, 22.3 mmol$)$ and pyridine ($4.21 \mathrm{~g}, 53.4 \mathrm{mmol})$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(150 \mathrm{~mL})$ was added dropwise trifluoromethanesulfonic anhydride $(12.6 \mathrm{~g}, 44.6 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$. The mixture was allowed to warm to room temperature and stirred for additional 5 h . Saturated $\mathrm{NaHCO}_{3}(200 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(200 \mathrm{~mL})$ were added and the mixture was extracted with EtOAc $(3 \times 150 \mathrm{~mL})$. The organic layer was dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated. Purification by CC (silica gel pad, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) yielded a colorless oil, 5.70 g (90%).

IR: $v\left(\mathrm{~cm}^{-1}\right)=2984,2853,1725,1692(\mathrm{C}=\mathrm{O}), 1605,1499,1462,1422,1323,1290$, 1248, 1197, 1156, 1135, 1102, 1031, 923, 865, 837, 770, 754, 737, 713, 644, 613.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=9.99(\mathrm{~s}, 1 \mathrm{H},-\mathrm{CHO}), 7.57(\mathrm{~d}, \mathrm{~J}=1.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.52$ $\left(\mathrm{dd}, J_{1}=8.2 \mathrm{~Hz}, J_{2}=1.9 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{Ar-H}\right), 7.42(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 4.00(\mathrm{~s}, 3 \mathrm{H}$, $\left.-\mathrm{OCH}_{3}\right)$.
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=190.33(-\mathrm{CHO}), 152.29,142.78,136.85,124.11$, 123.24, $118.74\left(\mathrm{q}, J_{C-F}=312 \mathrm{~Hz}\right), 111.84,56.54$.

MS (CI, 120 eV$): m / z(\%)=84\left(\mathrm{M}^{+}, 55\right), 238$ (15), 179 (15), 151 (100), 137 (8), 95 (30), 79 (8).

Trifluoromethanesulfonic acid 4-(1,3-dioxan-2-yl)-2-methoxyphenyl ester (25)

A mixture of vanillin triflate (24) (5.68 g, 20.0 mmol), triethyl orthoformate (3.27 g , $22.0 \mathrm{mmol}, 3.65 \mathrm{~mL}$), 1,3-propanediol ($6.15 \mathrm{~g}, 80.0 \mathrm{mmol}, 5.88 \mathrm{~mL}$) and tetrabutylammonium tribromide ($96.7 \mathrm{mg}, 1.16 \mathrm{mmol}$) was stirred for 1 h at room temperature. The reaction mixture was taken up in EtOAc (100 mL), washed with saturated $\mathrm{NaHCO}_{3}(2 \times 50 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(3 \times 50 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated; colorless oil, 6.79 g (99\%).

IR: $v\left(\mathrm{~cm}^{-1}\right)=2858,1725,1610,1503,1466,1417,1378,1311,1286,1247,1202$, 1138, 1100, 1023, 999, 882, 865, 821, 782.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=7.22(\mathrm{~d}, \mathrm{~J}=1.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.20(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 1 \mathrm{H}$, Ar-H), 7.08 (dd, $\left.J_{1}=8.2 \mathrm{~Hz}, J_{2}=1.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}\right), 5.48(\mathrm{~s}, 1 \mathrm{H},-\mathrm{OCHO}-), 4.30-$ 4.25 (combined signals, $2 \mathrm{H},-\mathrm{OCH}_{2}-$), 4.03-3.95 (combined signals, $2 \mathrm{H},-\mathrm{OCH}_{2}-$), $3.93\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{OCH}_{3}\right), 2.28-2.16(\mathrm{~m}, 1 \mathrm{H}, \mathrm{HCH}), 1.49-1.44(\mathrm{~m}, 1 \mathrm{H}, \mathrm{HCH})$.
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=151.31,140.14,138.84,122.17,118.80\left(\mathrm{q}, \mathrm{J}_{\mathrm{C}-\mathrm{F}}=321\right.$ $\mathrm{Hz}), 118.72,111.02,100.39$ (-OCHO-), 67.43, 56.23, 25.67.

2-[3-Methoxy-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl]-

1,3-dioxane (26)

To a solution of $\mathrm{PdCl}_{2}(\mathrm{dppf})(487 \mathrm{mg}, 0.60 \mathrm{mmol})$ in anhydrous 1,4-dioxane (120 mL) was added the triflate $25(6.78 \mathrm{~g}, 19.8 \mathrm{mmol})$, triethylamine ($8.34 \mathrm{~mL}, 59.5 \mathrm{mmol}$) and pinacolborane $(2.53 \mathrm{~g}, 19.8 \mathrm{mmol})$ and the mixture was heated to $100{ }^{\circ} \mathrm{C}$ for 6 h . Additional pinacolborane ($2.53 \mathrm{~g}, 19.8 \mathrm{mmol}$) was added and heating was continued
for 6 h . After cooling, the black reaction mixture was taken up in benzene (200 mL), washed with $\mathrm{H}_{2} \mathrm{O}(3 \times 100 \mathrm{~mL})$ and brine $(100 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated. Purification by CC (basic alumina, EtOAc/n-hexane 1:1) yielded a colorless oil, 3.46 g (55\%).

IR: $v\left(\mathrm{~cm}^{-1}\right)=2974,2853,1724,1614,1568,1507,1458,1420,1372,1342,1316$, 1278, 1253, 1237, 1215, 1194, 1169, 1144, 1100, 1066, 1037, 996, 963, 951, 915, 894, 878, 856, 821, 786, 696.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=7.65(\mathrm{~d}, \mathrm{~J}=7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.02$ (combined signals, 2 $\mathrm{H}, \mathrm{Ar}-\mathrm{H}$), 5.48 (s, $1 \mathrm{H},-\mathrm{OCHO}-$), 4.30-4.25 (combined signals, $2 \mathrm{H},-\mathrm{OCH}_{2}-$), 4.023.93 (combined signals, $2 \mathrm{H},-\mathrm{OCH}_{2}-$), $3.85\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{OCH}_{3}\right), 2.24(\mathrm{~m}, 1 \mathrm{H},-\mathrm{HCH}-)$, $1.45(\mathrm{~d}, \mathrm{~J}=13.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{HCH}), 1.34\left(\mathrm{~s}, 12 \mathrm{H},-\mathrm{CH}_{3}\right)$.
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=164.37,143.03,136.74,117.95,108.01,101.46$ $(-\mathrm{OCHO}-), 83.43\left(-\mathrm{OC}\left(\mathrm{CH}_{3}\right)_{2}\right), 67.40,55.91,25.79,24.88,24.83\left(-\mathrm{OC}\left(\underline{\mathrm{C}} \mathrm{H}_{3}\right)_{2}\right)$. MS (CI, 120 eV): m/z (\%) = 320 ($\mathrm{M}^{+}, 100$), 319 (55), 291 (22), 277 (5), 219 (6), 211 (35), 193 (45), 163 (8), 137 (2), 101 (4), 87 (17).

5'-(4'-Hydroxymethyl-4,2'-dimethoxybiphenyl-2-ylethynyl)-6,2'-

dimethoxybiphenyl-3-carbaldehyde (27)

The bromoalkyne 16 ($1.10 \mathrm{~g}, 2.44 \mathrm{mmol})$ and the boronic acid $22(0.97 \mathrm{~g}, 3.65 \mathrm{mmol})$ were dissolved in a mixture of toluene (165 mL), $1 \mathrm{M} \mathrm{Na}_{2} \mathrm{CO}_{3}(35 \mathrm{~mL})$ and $\mathrm{EtOH}(65$ mL) and degassed with argon. Tetrakis(triphenylphosphane)-palladium(0) (138 mg, $118 \mu \mathrm{~mol})$ was added and the mixture was heated to reflux for 12 h , cooled to room temperature and filtered through a silica gel pad eluting with $\mathrm{Et}_{2} \mathrm{O} . \mathrm{H}_{2} \mathrm{O}(65 \mathrm{~mL})$ was added and the mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 80 \mathrm{~mL})$. The combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated. The crude product was purified
filtrating through an alumina pad (basic, activity III) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$; pale yellow oil which solidifies; 7.10 g (89%), $\mathrm{mp} 105^{\circ} \mathrm{C}$. The residue was taken up in 1,4-dioxane (60 mL) and hydrolyzed with $2 \mathrm{M} \mathrm{HCl}(35 \mathrm{~mL})$ for 1 h at room temperature. The mixture was extracted with EtOAc $(3 \times 50 \mathrm{~mL})$, washed $\left(3 \times 100 \mathrm{~mL} \mathrm{H} \mathrm{H}\right.$) , dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated. The crude product was purified by CC (silica gel, EtOAc/n-hexane 1:1); pale yellow solid, 700 mg (56\%), $\mathrm{mp} 67-70^{\circ} \mathrm{C}$

IR: $v\left(\mathrm{~cm}^{-1}\right)=3359(\mathrm{OH}), 3001,2933,2836,2207(\mathrm{C}=\mathrm{C}), 2039,1982,1899,1732$, 1686 (C=O), 1595, 1575, 1490, 1460, 1409, 1318, 1249, 1169, 1146, 1123, 1018, 901, 855, 811, 771.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=9.92(\mathrm{~s}, 1 \mathrm{H},-\mathrm{CHO}), 7.89\left(\mathrm{dd}, J_{1}=8.5 \mathrm{~Hz}, \mathrm{~J}_{2}=2.2 \mathrm{~Hz}, 1\right.$ $\mathrm{H}, \operatorname{Ar}-\mathrm{H}), 7.72(\mathrm{~d}, \mathrm{~J}=2.2 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{Ar-H}), 7.33(\mathrm{~d}, \mathrm{~J}=7.6 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{Ar-H}), 7.28(\mathrm{~d}, \mathrm{~J}=$ 8.5 Hz, 1 H, Ar-H), $7.25\left(\mathrm{dd}, \mathrm{J}_{1}=8.5 \mathrm{~Hz}, J_{2}=2.2 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{Ar-H}\right), 7.12(\mathrm{~d}, \mathrm{~J}=2.5 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$), 7.08 (combined signals, $2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$), 7.00 (d, not resolved, 1 H, Ar-H), 6.96 (dd, not resolved, $1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$), $6.92\left(\mathrm{dd}, \mathrm{J}_{1}=8.5 \mathrm{~Hz}, J_{2}=2.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}\right), 6.86(\mathrm{~d}, \mathrm{~J}$ $=8.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 4.66\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{CH}_{2}-\mathrm{OH}\right), 3.85\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{OCH}_{3}\right), 3.85(\mathrm{~s}, 3 \mathrm{H}$, $\left.-\mathrm{OCH}_{3}\right), 3.79\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{OCH}_{3}\right), 3.75\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{OCH}_{3}\right)$.
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=191.02(-\mathrm{CHO}), 171.16,162.14,158.36,157.33$, 156.94, 141.80, 134.48, 134.52, 133.43, 132.76, 132.39, 131.99, 131.83, 131.31, 129.60, 128.94, 127.91, 126.51, 124.21, 118.34, 116.14, 115.62, 114.53, 110.88, 109.40, 91.45 (-드=-), 88.41 (-C三드-), 65.31 ($\left.\mathrm{Ar}-\underline{\mathrm{C}}_{2}-\mathrm{OH}\right), 56.00,55.74,55.69$, 55.39.

MS (CI, 120 eV): m/z (\%) = 508 (5, M ${ }^{+}$), 404 (5), 279 (35), 277 (25), 274 (60), 257 (25), 214 (10), 163 (100), 154 (90), 137 (75), 85 (40).

5'-(4,2'-Dimethoxy-4'-formylbiphenyl-2-ylethynyl)-6,2'-

dimethoxybiphenyl-3-carbaldehyde (28)

(a) by oxidation of $\mathbf{2 7}$:

To a suspension of PCC on alumina ($638 \mathrm{mg}, 638 \mu \mathrm{~mol}, 1 \mathrm{mmol} / \mathrm{g}$) in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$ was added the benzyl alcohol $27(216 \mathrm{mg}, 0.43 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20$ mL) with vigorous stirring for 24 h at room temperature. The slurry was filtered off rewashing with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ and concentrated. Purification by CC (silica gel, EtOAc/n-hexane (1:1) yielded a colorless solid, 183 mg (85%).
(b) by Suzuki reaction of $\mathbf{1 6}$ und 26:

The bromoalkyne 16 ($568 \mathrm{mg}, 1.26 \mathrm{mmol}$) and the boronic ester $26(1.00 \mathrm{~g}, 3.12$ mmol) were dissolved in toluene (15 mL) an EtOH (3 mL) and degassed with argon. $\mathrm{Na}_{2} \mathrm{CO}_{3}(1.20 \mathrm{~g}, 11.4 \mathrm{mmol})$ in degassed $\mathrm{H}_{2} \mathrm{O}(6 \mathrm{~mL})$ and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(72.2 \mathrm{mg}, 63.0$ $\mu \mathrm{mol})$ were added and the mixture was heated to reflux for 12 h . After cooling to room temperature $\mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mL})$ was added and the mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}$ $(3 \times 25 \mathrm{~mL})$. The combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated. The residue was taken up in 1,4-dioxane (20 mL) and hydrolyzed with $2 \mathrm{M} \mathrm{HCl}(10$ $\mathrm{mL})$ for 1 h at room temperature. The mixture was extracted with EtOAc $(3 \times 15 \mathrm{~mL})$, washed $\left(3 \times 30 \mathrm{~mL} \mathrm{H} \mathrm{O}\right.$) , dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated. The crude product was purified by CC (silica gel, EtOAc/n-hexane 1:1); colorless solid, 469 mg (73\%), mp $76-78{ }^{\circ} \mathrm{C}$; HPLC: Nucleosil 100-5, $4.0 \times 250 \mathrm{~mm}$, EtOAc/n-hexane 30:70. IR: $v\left(\mathrm{~cm}^{-1}\right)=2938,2836,2204(\mathrm{C}=\mathrm{C}), 1685(\mathrm{C}=\mathrm{O}), 1594,1574,1488,1459,1416$, 1385, 1249, 1170, 1148, 1123, 1099, 1020, 1000, 958, 813.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=9.96(\mathrm{~s}, 1 \mathrm{H},-\mathrm{CHO}), 9.91(\mathrm{~s}, 1 \mathrm{H},-\mathrm{CHO}), 7.88\left(\mathrm{dd}, \mathrm{J}_{1}=\right.$ 8.5 Hz, J2 $=2.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.71(\mathrm{~d}, \mathrm{~J}=2.2 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{Ar-H}), 7.56(\mathrm{~d}, \mathrm{~J}=7.6 \mathrm{~Hz}, 1$ $\mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.50\left(\mathrm{dd}, \mathrm{J}_{1}=7.6 \mathrm{~Hz}, \mathrm{~J}_{2}=1.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}\right), 7.48(\mathrm{~d}, \mathrm{~J}=1.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-$
H), 7.29 (d, J = $8.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.18\left(\mathrm{dd}, \mathrm{J}_{1}=8.5 \mathrm{~Hz}, \mathrm{~J}_{2}=2.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}\right), 7.13$ (d, J = 2.8 Hz, 1 H, Ar-H), 7.09 (d, J = 2.2 Hz, 1 H, Ar-H), 7.06 (d, J = $8.5 \mathrm{~Hz}, 1 \mathrm{H}$, ArH), $6.94\left(\mathrm{dd}, \mathrm{J}_{1}=8.5 \mathrm{~Hz}, \mathrm{~J}_{2}=2.8 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{Ar}-\mathrm{H}\right), 6.85(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 3.86$ (s, $\left.3 \mathrm{H},-\mathrm{OCH}_{3}\right), 3.85\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{OCH}_{3}\right), 3.84\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{OCH}_{3}\right), 3.75\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{OCH}_{3}\right)$. ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=191.93,190.84(2-\mathrm{CHO}), 162.03,158.95,157.87$, 157.12, 136.94, 136.58, 134.41, 133.01, 132.45, 132.37, 132.25, 131.73, 131.00, 129.64, 127.62, 126.64, 124.16, 123.73, 116.41, 115.21, 114.58, 111.04, 110.96, 109.33, 92.02 (-듣-), 87.80 (-C三ㄷ--$), 55.99,55.88,55.76,55.43$.

MS (CI, 120 eV): m/z (\%) = 507 (7, M ${ }^{+}$), 506 (9), 405 (6), 377 (75), 376 (100), 285 (8), 272 (60), 270 (80), 202 (8), 137 (5), 89 (8), 88 (18).

(Z)-5'-[2-(4'-Formyl-4,2'-dimethoxybiphenyl-2-yl)-vinyl]-6,2'-

dimethoxybiphenyl-3-carbaldehyde (29)

The alkyne 28 ($200 \mathrm{mg}, 0.40 \mathrm{mmol}$) was dissolved in EtOAc (50 mL) and Lindlar catalyst ($5 \% \mathrm{Pd}$ on CaCO_{3}, poisoned with $\mathrm{Pb}(\mathrm{OAc})_{2} ; 168 \mathrm{mg}, 78.7 \mu \mathrm{~mol}$) as well as two drops of quinoline were added. The Parr hydrogenation apparatus was flushed several times with hydrogen and hydrogenation was performed for 2 h at 1.5 bar (20 psi). The catalyst was filtered off and the solvent removed in vacuo. The crude product was purified by CC (silica gel, EtOAc/n-hexane $2: 1$) yielding a pale yellow oil which solidifies on standing; 191 mg (95%), mp $50^{\circ} \mathrm{C}$; HPLC: Nucleosil $100-5,4.0 \times$ 250 mm, EtOAc/n-hexane 30:70.

IR: $v\left(\mathrm{~cm}^{-1}\right)=3002,2936,2834,2726,1684(\mathrm{C}=\mathrm{O}), 1595,1573,1499,1460,1414$, 1384, 1264, 1246, 1229, 1194, 1178, 1165, 1150, 1120, 1021, 1000, 958, 809, 735.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=9.97(\mathrm{~s}, 1 \mathrm{H},-\mathrm{CHO}), 9.88(\mathrm{~s}, 1 \mathrm{H},-\mathrm{CHO}), 7.85\left(\mathrm{dd}, \mathrm{J}_{1}=\right.$ 8.5 Hz, J ${ }_{2}=2.2 \mathrm{~Hz}, 1 \mathrm{H}$, Ar-H), 7.59 , (d, J = $1.9 \mathrm{~Hz}, 1 \mathrm{H}$, Ar-H), 7.40 (combined
signals, $2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$), 7.25 (d, J = $7.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.20$ (d, J = $8.5 \mathrm{~Hz}, 1 \mathrm{H}$, Ar-H), $7.17\left(\mathrm{dd}, \mathrm{J}_{1}=8.5 \mathrm{~Hz}, \mathrm{~J}_{2}=2.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}\right), 7.03(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{Ar-H}), 7.03(\mathrm{~d}$, $J=2.2 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{Ar-H}), 6.94(\mathrm{~d}, \mathrm{~J}=2.5 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{Ar}-\mathrm{H}), 6.87\left(\mathrm{dd}, J_{1}=8.5 \mathrm{~Hz}, J_{2}=2.5\right.$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 6.80(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 6.36(\mathrm{~d}, \mathrm{~J}=12.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{CH}$, cis), 6.23 (d, J = $12.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{CH}$, cis), 3.83 (s, $3 \mathrm{H},-\mathrm{OCH}_{3}$), 3.74 (s, $3 \mathrm{H},-$ $\left.\mathrm{OCH}_{3}\right), 3.72\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{OCH}_{3}\right), 3.71\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{OCH}_{3}\right)$.
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=191.96,190.90(2-\mathrm{CHO}), 162.10,159.02,157.57$, 156.15, 138.39, 136.96, 136.71, 133.35, 132.05, 131.92, 131.28, 131.20, 129.72, 129.61, 129.51, 129.38, 129.28, 128.50, 128.19, 126.11, 124.01,114.38, 113.10, 110.81, 110.64, 109.01, 55.88, 55.72, 55.45, 55.23.

(E)-5'-[2-(4'-Formyl-4,2'-dimethoxybiphenyl-2-yl)-vinyl]-6,2'-

dimethoxybiphenyl-3-carbaldehyde (30)

The cis-stilbene 29 (200 mg .0 .39 mmol) was dissolved in anhydrous THF (10 mL), diphenyl disulfide ($17.2 \mathrm{mg}, 78.6 \mu \mathrm{~mol}$) was added and the mixture was heated to reflux for 24 h . Additional $\mathrm{Ph}-\mathrm{S}-\mathrm{S}-\mathrm{Ph}(11.0 \mathrm{mg}, 50.0 \mu \mathrm{~mol})$ was added and heating was continued for 2 h . The solvent was removed in vacuo and the residue was purified by CC (silica gel, EtOAc/n-hexane 1:1); pale yellow solid, 170 mg (85%), mp $72-76{ }^{\circ} \mathrm{C}$; HPLC: Nucleosil 100-5, $4.0 \times 250 \mathrm{~mm}$, EtOAc/n-hexane 30:70.

IR: $v\left(\mathrm{~cm}^{-1}\right)=3001,2936,2834,2727,2359,2342,1683(\mathrm{C}=0), 1595,1573,1499$, $1485,1460,1414,1384,1264,1247,1230,1195,1178,1165,1150,1120,1021$, 1000, 958, 809, 736.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=10.01(\mathrm{~s}, 1 \mathrm{H},-\mathrm{CHO}), 9.90(\mathrm{~s}, 1 \mathrm{H},-\mathrm{CHO}), 7.87\left(\mathrm{dd}, \mathrm{J}_{1}=\right.$ 8.5 Hz, J ${ }_{2}=2.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$), $7.75(\mathrm{~d}, \mathrm{~J}=2.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$), 7.50 (combined signals, $2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$), 7.36 (d, J = $7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$), 7.31 (dd, $\mathrm{J}_{1}=8.5 \mathrm{~Hz}, \mathrm{~J}_{2}=2.2 \mathrm{~Hz}$,
$1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$), 7.27 (d, J = $2.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$), 7.19 (combined signals, $2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$), 7.05 (d, J = 8.5 Hz, 1 H, Ar-H), 6.98 (d, J = $16.1 \mathrm{~Hz}, 1 \mathrm{H}$, trans- $\mathrm{CH}=\mathrm{CH}$), $6.90(\mathrm{~d}, \mathrm{~J}=8.8$ $\mathrm{Hz}, 1 \mathrm{H}, \operatorname{Ar-H}), 6.89\left(\mathrm{dd}, \mathrm{J}_{1}=8.5 \mathrm{~Hz}, J_{2}=2.5 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{Ar-H}\right), 6.71(\mathrm{~d}, \mathrm{~J}=16.1 \mathrm{~Hz}, 1$ H , trans $-\mathrm{CH}=\mathrm{CH}$), $3.90\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{OCH}_{3}\right), 3.83\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{OCH}_{3}\right), 3.81\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{OCH}_{3}\right)$, $3.75\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{OCH}_{3}\right)$.
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=191.98,190.91(2-\mathrm{CHO}), 162.08,159.50,157.69$, $156.73,137.45,136.92,136.66,133.10,132.66,131.54,129.99,129.82,129.58$, 129.16, 128.98, 128.22, 127.80, 127.13, 126.52, 125.48, 124.16, 113.10, 111.29, 110.91, 110.02, 109.27, 55.98, 55.85, 55.81, 55.34.

MS (CI, 120 eV$): m / z(\%)=508$ (100, M ${ }^{+}$), 374 (10), 324 (3), 286 (8), 272 (20), 270 (25), 255 (28), 239 (5), 225 (3), 155 (10).

Preparation of $\mathrm{TiCl}_{3}(\mathrm{DME})_{2}$

Titanium(III) chloride ($25.0 \mathrm{~g}, 16.2 \mathrm{mmol}$) was suspended in dimethoxyethane (350 mL) under argon atmosphere and heated to reflux for 2 d . After cooling, the precipitate was filtered off under argon and was washed with n-pentane (50 mL) and dried in vacuo. The product (blue crystals) was used for the following McMurry protocols.

Macrocycle 7 ((Z)-stilbene + tolane bridges)

To $\mathrm{TiCl}_{3}(\mathrm{DME})_{2}(513 \mathrm{mg}, 1.52 \mathrm{mmol})$ in anhydrous dimethoxyethane $(50 \mathrm{~mL})$ under argon atmosphere was added zinc dust ($367 \mathrm{mg}, 5.61 \mathrm{mmol}$) and the mixture was heated to reflux for 2 h . The tolane dialdehyde $28(86.0 \mathrm{mg}, 170 \mu \mathrm{~mol})$ in anhydrous dimethoxyethane (50 mL) was added dropwise within 3 h and the mixture was heated again to reflux for 16 h . The mixture was cooled, $6 \mathrm{M} \mathrm{HCl}(100 \mathrm{~mL})$ was added and
extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 100 \mathrm{~mL})$. The combined organic layers were washed with $\mathrm{H}_{2} \mathrm{O}$ to $\mathrm{pH} 7(\sim 100 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated. The crude product was purified by CC (silica gel, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) yielding a colorless solid; 40 mg (50%); mp $120^{\circ} \mathrm{C}$; HPLC: Nucleosil 100-5, $4.0 \times 250 \mathrm{~mm}$, EtOAc/n-hexane 20:80.

IR: $v\left(\mathrm{~cm}^{-1}\right)=2999,2927,2832,2196(-\mathrm{C} \equiv \mathrm{C}-), 1724,1595,1555,1502,1460$, 1408, 1311, 1266, 1246, 1179, 1125, 1104, 1024, 965, 906, 867, 809, 730, 709, 658, 609.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}\right): \delta(\mathrm{ppm})=7.35$ (not resolved, $1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$), 7.30 (not resolved, $0.50 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$), $7.25-7.08$ (combined signals, $2.70 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$; incl. dd, $\mathrm{J}_{1}=8.5 \mathrm{~Hz}, \mathrm{~J}_{2}=$ 2.2 Hz), 7.03 (d, J = 1.9 Hz, 1.50 H, Ar-H), 6.98-6.82 (combined signals, 5.00 H, ArH), 6.78 (d, J = $8.5 \mathrm{~Hz}, 1.20 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$), 6.62 (not resolved, 2 H, cis-Cㅐㅡ=ㅐㅐ), 3.84 (s, 3 $\left.\mathrm{H},-\mathrm{OCH}_{3}\right), 3.83\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{OCH}_{3}\right), 3.81\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{OCH}_{3}\right) 3.71+3.53(2 \mathrm{~s}, 1.42+1.58$ $\mathrm{H},-\mathrm{OCH}_{3}$, signals of two conformers).
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 25{ }^{\circ} \mathrm{C}\right): \delta(\mathrm{ppm})=158.45,158.41,157.02,156.38,141.31,139.44$, 135.78, 134.69, 132.15, 130.89, 129.57, 129.03, 128.80, 128.72, 128.13, 126.69, $125.52,115.83,114.60,114.56,114.54,114.52,114.50,114.48,114.42,114.32$, 114.30, 114.29, 114.27, 114.26, 114.23, 114.20, 114.19, 114.15, 114.13, 114.11, $114.09,114.08,111.10,111.05,111.04,111.98,91.85$ (- $\underline{C} \equiv \mathrm{C}-$), 91.83 (-С르-), 55.82, $55.75,55.33$ (2 signals).
${ }^{1} \mathrm{H}$ NMR $\left(\left[\mathrm{D}_{6}\right]\right.$-DMSO, $\left.25{ }^{\circ} \mathrm{C}\right): \delta(\mathrm{ppm})=7.31(\mathrm{~d}, \mathrm{~J}=7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.23$ (combined signals, 1.50 H, Ar-H; incl. dd, $J_{1}=8.5 \mathrm{~Hz}, J_{2}=2.2 \mathrm{~Hz}$), 7.17-7.08 (combined signals, $2.40 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$; incl. d, J = 2.2 Hz), 7.02 (combined signals, 2.40 H , Ar-H), 6.95 (combined signals, $2.40 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$; incl. d, J = 8.5 Hz), 6.90-6.73 (combined signals, 2.30 H, Ar-H), 6.68 (d, J = $12.0 \mathrm{~Hz}, 1 \mathrm{H}$, cis-CH=CH), 6.62 (d, J =
$12.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{cis}-\mathrm{CH}=\mathrm{CH}$), $3.80\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{OCH}_{3}\right), 3.77\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{OCH}_{3}\right), 3.76(\mathrm{~s}, 3 \mathrm{H}$, $\left.-\mathrm{OCH}_{3}\right), 3.67+3.41\left(2 \mathrm{sbr}, 1.80 \mathrm{H}+1.20 \mathrm{H},-\mathrm{OCH}_{3}\right.$, signals of two conformers).
${ }^{1} \mathrm{H}$ NMR ([D $\left.\mathrm{D}_{6}\right]$-DMSO, $\left.75^{\circ} \mathrm{C}\right): \delta(\mathrm{ppm})=7.30\left(\mathrm{dd}, \mathrm{J}_{1}=8.5 \mathrm{~Hz}, \mathrm{~J}_{2}=2.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}\right)$, $7.21\left(\mathrm{dd}, \mathrm{J}_{1}=8.5 \mathrm{~Hz}, \mathrm{~J}_{2}=2.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}\right), 7.18$ (combined signals, $2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$), $7.13(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.03$ (combined signals, $2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$), $6.95\left(\mathrm{dd}, \mathrm{J}_{1}=8.2\right.$ $\mathrm{Hz}, \mathrm{J}_{2}=2.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$), $6.94(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$), 6.90-6.86 (combined signals, $2 \mathrm{H}, \operatorname{Ar}-\mathrm{H}), 6.82(\mathrm{~d}, \mathrm{~J}=1.8 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{Ar-H}), 6.68(\mathrm{~d}, \mathrm{~J}=11.9 \mathrm{~Hz}, 1 \mathrm{H}$, cis$\mathrm{CH}=\mathrm{CH}), 6.64(\mathrm{~d}, \mathrm{~J}=11.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{cis}-\mathrm{CH}=\mathrm{CH}), 3.82\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{OCH}_{3}\right), 3.79(\mathrm{~s}, 3 \mathrm{H}$, $\left.-\mathrm{OCH}_{3}\right), 3.78 \quad\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{OCH}_{3}\right), 3.56\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{OCH}_{3}\right)$.

The rotation barrier was approximated to $\sim 70 \mathrm{~kJ} / \mathrm{mol}$ (see calculation method for compound 3).
${ }^{13} \mathrm{C}$ NMR $\left(\left[\mathrm{D}_{6}\right]-\mathrm{DMSO}, 75{ }^{\circ} \mathrm{C}\right): \delta(\mathrm{ppm})=157.94,157.02,156.79$ (broad), 155.97, $139.85,138.89,134.28,133.24,131.35,131.23,129.14,128.99,128.54,128.44$, 128.27 (br), 128.13, 127.41, 126.01, 124.39, 123.19, 119.93 (br), 114.42, 114.04, 113.89, 111.71, 111.59, 111.44 (broad), 92.25 ($-\underline{\mathrm{C}}=\mathrm{C}-$), 91.44 ($-\mathrm{C} \equiv \underline{\mathrm{C}}-$), 55.45, 55.31, 55.11 (broad), 54.97.

MS (CI, 120 eV$): m / z(\%)=474\left(53, \mathrm{M}^{+}\right), 473$ (100), 472 (49), 459 (21), 458 (26), 443 (4), 442 (36), 421 (5), 414 (9), 384 (18), 342 (3), 324 (3), 198 (7), 197 (12), 179 (4).

Macrocycle 5 (two (Z)-stilbene bridges)

To $\mathrm{TiCl}_{3}(\mathrm{DME})_{2}(513 \mathrm{mg}, 1.52 \mathrm{mmol})$ in anhydrous dimethoxyethane $(50 \mathrm{~mL})$ under argon atmosphere was added zinc dust ($367 \mathrm{mg}, 5.61 \mathrm{mmol}$) and the mixture was heated to reflux for 2 h . The (Z)-stilbene dialdehyde $29(90.0 \mathrm{mg}, 177 \mu \mathrm{~mol})$ in anhydrous dimethoxyethane (50 mL) was added dropwise within 3 h and the mixture was heated again to reflux for 16 h . The mixture was cooled, $6 \mathrm{M} \mathrm{HCl}(100 \mathrm{~mL})$ was
added and extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 100 \mathrm{~mL})$. The combined organic layers were washed with $\mathrm{H}_{2} \mathrm{O}$ to $\mathrm{pH} 7(\sim 100 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated. The crude product was purified by CC (silica gel, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) and furthermore by preparative HPLC (Lichrospher 100 diol, $10 \times 250 \mathrm{~mm}$, EtOAc/n-hexane 10:90) yielding a colorless solid; 30 mg (36\%); mp $105{ }^{\circ} \mathrm{C}$; HPLC: Nucleosil 100-5, $4.0 \times 250 \mathrm{~mm}$, EtOAc/nhexane 20:80.

IR: $v\left(\mathrm{~cm}^{-1}\right)=2998,2929,2832,1722,1598,1566,1548,1500,1460,1409,1386$, $1313,1264,1244,1172,1125,1105,1028,999,962,903,866,841,813,795,758$.
${ }^{1} \mathbf{H}$ NMR $\left(\mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}\right): \delta(\mathrm{ppm})=7.15-7.00$ (combined signals, $2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$; incl. 7.09 $\mathrm{dd}, \mathrm{J}_{1}=8.5 \mathrm{~Hz}, \mathrm{~J}_{2}=2.4 \mathrm{~Hz}$), 6.95-6.70 (combined signals, $7 \mathrm{H}, 5 \mathrm{Ar}-\mathrm{H}, 2$ cis$\mathrm{CH}=\mathrm{CH}$; incl. $6.81 \mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}$, Ar-H), $6.75 \mathrm{~d}, \mathrm{~J}=11.6 \mathrm{~Hz}, c i s-\mathrm{CH}=\mathrm{CH}, 6.73 \mathrm{~d}, \mathrm{~J}=$ 11.3 Hz, cis-CH=CH), 6.65-6.40 (combined signals, $7 \mathrm{H}, 5 \mathrm{Ar}-\mathrm{H}, 2$ cis $-\mathrm{CH}=\mathrm{CH}$; incl. $6.81 \mathrm{~d}, \mathrm{~J}=2.4 \mathrm{~Hz}$, Ar-H), $6.75 \mathrm{~d}, \mathrm{~J}=11.6 \mathrm{~Hz}, \mathrm{cis}-\mathrm{CH}=\mathrm{CH}), 3.87\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{OCH}_{3}\right), 3.84$ $\left(\mathrm{s}, 3 \mathrm{H},-\mathrm{OCH}_{3}\right), 3.67\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{OCH}_{3}\right), 3.89-3.80,3.50-3.39,3.15-3.00(3 \mathrm{~s}, 2.10 \mathrm{H}$ $+0.20 \mathrm{H}+0.70 \mathrm{H},-\mathrm{OCH}_{3}$, signals of two conformers).
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 25{ }^{\circ} \mathrm{C}\right): \delta(\mathrm{ppm})=158.27$ (br), 158.25 (br), 156.94 (br), 156.58, 155.36 (br), 139.83 (br), 138.72 (br), 138.99 (br), 138.93 (br), 138.92 (br), 138.89 (br), 138.86 (br), 138.62 (br), 138.60 (br), 132.81 (br), 132.01 (br), 131.72 (br), 131.68 (br), 131.24, 130.56, 129.65-128.56 (br), 128.25 (br), 127.78 (br), 126.60, 121.79 (br), 115.04 (br), 114.90, 112.63, 111.08, 110.36, 109.73 (br), 55.96, 55.85 (br), 55.27, 55.12 (br).
${ }^{1} \mathrm{H}$ NMR ([D $\left.\mathrm{D}_{6}\right]-\mathrm{DMSO}, 25^{\circ} \mathrm{C}$): $\delta(\mathrm{ppm})=7.60-6.30$ (combined signals, $16 \mathrm{H}, 12 \mathrm{Ar}-\mathrm{H}$ and 4 cis $-\mathrm{CH}=\mathrm{CH}$), $3.80\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{OCH}_{3}\right), 3.72\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{OCH}_{3}\right), 3.57\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{OCH}_{3}\right)$, $3.94-3.65,3.06-2.85\left(2 \mathrm{~s}, 2.30 \mathrm{H}+0.70 \mathrm{H},-\mathrm{OCH}_{3}\right.$, signals of two conformers).
${ }^{1} \mathrm{H}$ NMR $\left(\left[\mathrm{D}_{6}\right]\right.$-DMSO, $\left.75^{\circ} \mathrm{C}\right): \delta(\mathrm{ppm})=7.12\left(\mathrm{dd}, \mathrm{J}_{1}=8.2 \mathrm{~Hz}, \mathrm{~J}_{2}=2.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}\right)$, 7.09 (d, J = $8.5 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{Ar-H}), 6.87(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 6.86(\mathrm{~d}, \mathrm{~J}=2.4 \mathrm{~Hz}, 1$ H, Ar-H), $6.81\left(\mathrm{dd}, \mathrm{J}_{1}=8.5 \mathrm{~Hz}, \mathrm{~J}_{2}=2.7 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{Ar}-\mathrm{H}\right), 6.73(\mathrm{~d}, \mathrm{~J}=11.6 \mathrm{~Hz}, 1 \mathrm{H}$, cis$\mathrm{CH}=\mathrm{CH}$), 6.71 (d, J = $11.8 \mathrm{~Hz}, 1 \mathrm{H}$, cis- $\mathrm{CH}=\mathrm{CH}$), 6.74-6.59 (combined signals, 4 H , Ar-H), 6.53 (combined signals, $2 \mathrm{H}: \mathrm{d}, \mathrm{J}=11.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{cis}-\mathrm{CH}=\mathrm{CH}+1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$), $6.48(\mathrm{~d}, \mathrm{~J}=2.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 6.44(\mathrm{~d}, \mathrm{~J}=12.2 \mathrm{~Hz}, 1 \mathrm{H}$, cis-CH=CH), 6.31 (not resolved, $1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$), $3.82\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{OCH}_{3}\right), 3.74\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{OCH}_{3}\right), 3.60(\mathrm{~s}, 3 \mathrm{H},-$ $\left.\mathrm{OCH}_{3}\right), 3.54\left(\mathrm{~s}_{\mathrm{br}}, 3 \mathrm{H},-\mathrm{OCH}_{3}\right)$.

The rotation barrier was approximated to $\sim 70 \mathrm{~kJ} / \mathrm{mol}$ (see calculation method for compound 3).
${ }^{13} \mathrm{C}$ NMR $\left(\left[\mathrm{D}_{6}\right]-\mathrm{DMSO}, 75{ }^{\circ} \mathrm{C}\right): \delta(\mathrm{ppm})=157.63,156.50,156.21,155.08,139.01$, 137.39 (br), 132.31 (br), 132.29 (br), 131.02, 130.90, 130.26 (br), 129.78, 129.29, 128.96, 128.64, 128.50, 127.68, 126.99, 126.25, 120.20 (br), 114.53, 112.13, 111.38, 110.65, 55.41, 55.32, 54.82, 54.78.

MS (Cl, 120 eV$): m / z(\%)=476\left(20, \mathrm{M}^{+}\right), 475(17), 447$ (100), 299 (33), 261 (17), 158 (1), 135 (3), 112 (4).

Macrocycle 6 (E and (Z)-stilbene bridges)

To $\mathrm{TiCl}_{3}(\mathrm{DME})_{2}(513 \mathrm{mg}, 1.52 \mathrm{mmol})$ in anhydrous dimethoxyethane $(50 \mathrm{~mL})$ under argon atmosphere was added zinc dust ($367 \mathrm{mg}, 5.61 \mathrm{mmol}$) and the mixture was heated to reflux for 2 h . The (E)-stilbene dialdehyde $30(80.0 \mathrm{mg}, 157 \mu \mathrm{~mol})$ in anhydrous dimethoxyethane (50 mL) was added dropwise within 3 h and the mixture was heated again to reflux for 16 h . The mixture was cooled, $6 \mathrm{M} \mathrm{HCl}(100 \mathrm{~mL})$ was added and extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 100 \mathrm{~mL})$. The combined organic layers were washed with $\mathrm{H}_{2} \mathrm{O}$ to $\mathrm{pH} 7(\sim 100 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated. The crude
product was purified by CC (silica gel, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) yielding a colorless solid; 40 mg (53\%); mp $104^{\circ} \mathrm{C}$; HPLC: Nucleosil 100-5, $4.0 \times 250 \mathrm{~mm}$, EtOAc/n-hexane 20:80.

IR: $v\left(\mathrm{~cm}^{-1}\right)=2935,2834,2727,2042,1684,1595,1573,1499,1460,1414,1384$, 1247, 1149, 1120, 1021, 1000, 958, 900, 867, 809, 781, 736.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 25{ }^{\circ} \mathrm{C}\right): \delta(\mathrm{ppm})=7.33(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 0.45 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.27$ (combined signals, $0.94 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$), $7.25-7.23$ (combined signals, $1.18 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$), 7.19 (d, J = 2.5 $\mathrm{Hz}, 0.69 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.16(\mathrm{~d}, \mathrm{~J}=2.2 \mathrm{~Hz}, 0.55 \mathrm{H}, \operatorname{Ar}-\mathrm{H}), 7.14(\mathrm{~d}, \mathrm{~J}=2.5 \mathrm{~Hz}, 0.55 \mathrm{H}$, ArH), $7.10(\mathrm{~d}, \mathrm{~J}=7.3 \mathrm{~Hz}, 0.65 \mathrm{H}$, Ar-H), $7.02(\mathrm{~d}, \mathrm{~J}=9.5 \mathrm{~Hz}, 1.65 \mathrm{H}$, Ar-H), 6.98 (not resolved, $0.58 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$), 6.96 (d, J = $2.2 \mathrm{~Hz}, 0.58 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$), 6.94 (combined signals, $0.94 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$), 6.92 (combined signals, $1.33 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$), 6.89-6.86 (combined signals, 1.59 H, Ar-H), 6.81 (d, J = 8.2 Hz, 1.20 H, Ar-H), 6.65 (d, J = $12.3 \mathrm{~Hz}, 0.55 \mathrm{H}$, cisCH=CH), 6.63 (d, J = 12.3 Hz, 0.45 H, cis-CH=CH), 6.59 (d, J = $12.3 \mathrm{~Hz}, 1 \mathrm{H}$, cis$\mathrm{CH}=\mathrm{CH}), 6.51(\mathrm{~d}, \mathrm{~J}=16.1 \mathrm{~Hz}, 0.66 \mathrm{H}$, trans $-\mathrm{CH}=\mathrm{CH}), 6.45(\mathrm{~d}, \mathrm{~J}=16.1 \mathrm{~Hz}, 0.46 \mathrm{H}$, trans $-\mathrm{CH}=\mathrm{CH}$), $3.88\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{OCH}_{3}\right), 3.84+3.83\left(2 \mathrm{~s}, 1.85 \mathrm{H}+1.15 \mathrm{H},-\mathrm{OCH}_{3}\right.$, signals of two conformers), $3.80\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{OCH}_{3}\right), 3.72+3.44(2 \mathrm{~s}, 1.39 \mathrm{H}+1.61 \mathrm{H}$, $-\mathrm{OCH}_{3}$, signals of two conformers).
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}\right): \delta(\mathrm{ppm})=159.18,159.07,157.64,156.89,156.41,156.37$, 139.20, 138.86, 136.98, 136.07, 133.99, 133.68, 133.63, 133.47, 133.12, 133.08, 132.80, 132.52, 132.28, 131.67, 131.40, 131.10, 130.97, 130.88, 130.66, 130.14, 129.82, 129.65, 129.47, 129.40, 129.30, 129.26, 128.80, 128.55, 128.45, 128.38, 127.97, 127.85, 127.80, 127.00, 126.85, 126.55, 126.59, 125.55, 121.13, 120.02, 113.23, 112.98, 111.60, 110.96, 110.89, 110.73, 110.56, 110.35, 108.44, 108.38, $55.91,55.85,55.69,55.67,55.60,55.43,55.27$ (2 signals).
${ }^{1} \mathrm{H}$ NMR $\left(\left[\mathrm{D}_{6}\right]\right.$-DMSO, $\left.25^{\circ} \mathrm{C}\right): \delta(\mathrm{ppm})=7.34-7.27$ (combined signals, $2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$), 7.24-7.17 (combined signals, $2.50 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$), 7.15-7.09 (combined signals, $1 \mathrm{H}, \mathrm{Ar}-$
H), 7.06-7.01 (combined signals, $1.50 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$), 6.98-6.94 (combined signals, 2 H , Ar-H), 6.91 (d, J = 8.5 Hz, 1 H, Ar-H), 6.89-6.78 (combined signals, 3 H, Ar-H), 6.66 (d, J = 12.5 Hz, 1 H, cis-Cㅐㅡ=CH), 6.63 (d, J = $12.2 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{cis}-\mathrm{CH}=\mathrm{CH}$), 6.34 (d, J = $16.1 \mathrm{~Hz}, 0.60 \mathrm{H}$, trans $-\mathrm{CH}=\mathrm{CH}$), $6.30(\mathrm{~d}, \mathrm{~J}=16.1 \mathrm{~Hz}, 0.40 \mathrm{H}$, trans $-\mathrm{CH}=\mathrm{CH}), 3.83(\mathrm{~s}$, $\left.3 \mathrm{H},-\mathrm{OCH}_{3}\right), 3.77+3.75\left(2 \mathrm{~s}, 1.70 \mathrm{H}+1.30 \mathrm{H},-\mathrm{OCH}_{3}\right.$, signals of two conformers), $3.72\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{OCH}_{3}\right), 3.66+3.34\left(2 \mathrm{~s}, 1.50 \mathrm{H}+1.50 \mathrm{H},-\mathrm{OCH}_{3}\right.$, signals of two conformers).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(\left[\mathrm{D}_{6}\right]-\mathrm{DMSO}, 75{ }^{\circ} \mathrm{C}\right): \delta(\mathrm{ppm})=7.30\left(\mathrm{dd}, \mathrm{J}_{1}=8.2 \mathrm{~Hz}, \mathrm{~J}_{2}=2.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}\right)$, 7.27 (d, J = $1.5 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{Ar-H}), 7.22(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{Ar-H}), 7.17\left(\mathrm{dd}, \mathrm{J}_{1}=8.2 \mathrm{~Hz}\right.$, $J_{2}=2.4 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{Ar}-\mathrm{H}$), $7.08(\mathrm{~d}, \mathrm{~J}=16.5 \mathrm{~Hz}, 1 \mathrm{H}$, trans $-\mathrm{CH}=\mathrm{CH}$), 7.06-7.00 (not resolved, $1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$), 7.04 (d, J = $8.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$), $7.02(\mathrm{~d}, \mathrm{~J}=2.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H})$, $6.91(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{Ar}-\mathrm{H}), 6.88\left(\mathrm{dd}, \mathrm{J}_{1}=8.2 \mathrm{~Hz}, \mathrm{~J}_{2}=2.7 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{Ar}-\mathrm{H}\right), 6.85(\mathrm{~d}$, $J=2.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.00-6.82$ (not resolved, $2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$), $6.68(\mathrm{~d}, \mathrm{~J}=12.2 \mathrm{~Hz}, 1 \mathrm{H}$, cis- $\underline{H} \underline{H}=\mathrm{CH}$), 6.63 (d, J = 12.2 Hz, 1 H , cis-CH=CH), $6.40(\mathrm{~d}, \mathrm{~J}=16.1 \mathrm{~Hz}, 1 \mathrm{H}$, trans$\mathrm{CH}=\mathrm{CH}), 3.85\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{OCH}_{3}\right), 3.78\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{OCH}_{3}\right), 3.74\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{OCH}_{3}\right), 3.65-$ $3.30\left(\mathrm{~s}_{\mathrm{br}}, 3 \mathrm{H},-\mathrm{OCH}_{3}\right)$

The rotation barrier was approximated to $\sim 70 \mathrm{~kJ} / \mathrm{mol}$ (see calculation method for compound 3).
${ }^{13} \mathrm{C}$ NMR $\left(\left[\mathrm{D}_{6}\right]-\mathrm{DMSO}, 75{ }^{\circ} \mathrm{C}\right): \delta(\mathrm{ppm})=158.62,157.10,156.52,156.02,136.01$, $132.45,132.38,131.27,130.88,129.87,129.32,128.35,128.05,127.82,127.55$, $127.48,126.49,125.26,120.86,112.95,111.42,111.12,108.06,55.40,55.23,55.01$ (br), 54.87.

MS (CI, 120 eV$): m / z(\%)=476$ (19, M ${ }^{+}$), 475 (100), 461 (49), 444 (2), 429 (12), 324 (2), 162 (4).

5'-[2-(4'-Formyl-4,2'-dimethoxybiphenyl-2-yl)ethyl]-6,2'-dimethoxy-

biphenyl-3-carbaldehyde (31)

The alkyne 28 ($410 \mathrm{mg}, 0.81 \mathrm{mmol}$) was dissolved in EtOAc (50 mL) and Lindlar catalyst (5 \% Pd on CaCO_{3}, poisoned with $\mathrm{Pb}(\mathrm{OAc})_{2} ; 344 \mathrm{mg}, 161 \mu \mathrm{~mol}$) as well as two drops of quinoline were added. The Parr hydrogenation apparatus was flushed several times with hydrogen and hydrogenation was performed for 5 h at $3.5 \operatorname{bar}(\sim 50$ $\mathrm{psi})$. The catalyst was filtered off and the solvent removed in vacuo. The crude product was purified by CC (silica gel, EtOAc/n-hexane 2:1) yielding a pale yellow oil which solidifies on standing; 391 mg (95\%), mp $74-76{ }^{\circ} \mathrm{C}$; HPLC: Nucleosil $100-5$, $4.0 \times 250 \mathrm{~mm}, \mathrm{EtOAc} / n-$ hexane 30:70.

IR: $v\left(\mathrm{~cm}^{-1}\right)=3001,2935,2834,2728,1684(\mathrm{C}=\mathrm{O}), 1595,1499,1460,1414,1384$, 1264, 1247, 1194, 1178, 1165, 1150, 1120, 1021, 1000, 958, 900, 868, 809, 736.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=9.96(\mathrm{~s}, 1 \mathrm{H},-\mathrm{CHO}), 9.90(\mathrm{~s}, 1 \mathrm{H},-\mathrm{CHO}), 7.84\left(\mathrm{dd}, \mathrm{J}_{1}=\right.$ 8.5 Hz, J $J_{2}=2.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$), 7.66 (d, J = $2.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$), 7.45-7.46 (combined signals, $2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$), 7.24 (d, J = $7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.07$ (d, J = $8.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H})$, $7.04(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 6.88\left(\mathrm{dd}, J_{1}=8.5 \mathrm{~Hz}, \mathrm{~J}_{2}=2.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}\right), 6.84-$ 6.85 (combined signals, $2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$), $6.79(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 6.73(\mathrm{~d}, \mathrm{~J}=2.2$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 3.83\left(\mathrm{~s}, 6 \mathrm{H},-\mathrm{OCH}_{3}\right), 3.82\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{OCH}_{3}\right), 3.71\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{OCH}_{3}\right)$, 2.67 (combined signals, $4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2}$).
${ }^{13} \mathbf{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=191.9,190.9(2-\mathrm{CHO}), 162.1,159.3,157.6,155.2$, $141.5,137.4,136.90,133.6,132.9,132.1,131.5,131.1,130.8,129.6,128.7,126.2$, $124.0,114.6,111.3,111.0,110.8,109.0,55.9,55.8,55.7,55.2,36.3,36.0\left(2 \mathrm{CH}_{2}\right)$.

Tetramethylether of Isoplagiochin C (3)

To $\mathrm{TiCl}_{3}(\mathrm{DME})_{2}(513 \mathrm{mg}, 1.52 \mathrm{mmol})$ in anhydrous dimethoxyethane (50 mL) under argon atmosphere was added zinc dust ($367 \mathrm{mg}, 5.61 \mathrm{mmol}$) and the mixture was heated to reflux for 2 h . The bibenzyl dialdehyde 31 ($94.0 \mathrm{mg}, 185 \mu \mathrm{~mol}$) in anhydrous dimethoxyethane (50 mL) was added dropwise within 3 h and the mixture was heated again to reflux for 16 h . The mixture was cooled, $6 \mathrm{M} \mathrm{HCl}(100 \mathrm{~mL})$ was added and extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 100 \mathrm{~mL})$. The combined organic layers were washed with $\mathrm{H}_{2} \mathrm{O}$ to $\mathrm{pH} 7(\sim 100 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated. The crude product was purified by CC (silica gel, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) yielding a colorless oil which solidifies; 50 mg (56\%); HPLC: Nucleosil 100-5, $4.0 \times 250 \mathrm{~mm}$, EtOAc/n-hexane 20:80.

IR: $v\left(\mathrm{~cm}^{-1}\right)=2905,1560,1535,1460,1425,1390,1335,1270,1210,1160,1110$, 1060, 1035, 1030, 1000, 960, 865, 815.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}\right): \delta(\mathrm{ppm})=7.21$ (not resolved, $1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$), 7.14 (not resolved, $1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$), 7.08 (not resolved, $1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$), 7.05 (not resolved, $1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$), 6.98 (not resolved, 1 H, Ar-H), 6.90-6.86 (combined signals, $3 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$), 6.84 , (d, J = $9.8 \mathrm{~Hz}, 1$ $\mathrm{H}, \mathrm{Ar}-\mathrm{H}), 6.81\left(\mathrm{dd}, \mathrm{J}_{1}=8.2 \mathrm{~Hz}, \mathrm{~J}_{2}=2.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}\right), 6.75(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-$ H), 6.68 (2 d, J = 12.0 Hz, 1 H, cis-Cㅐㅡ=CH), 6.61 (2 d, J = $12.0 \mathrm{~Hz}, 1 \mathrm{H}$, cis-CH=CH), 6.50 (not resolved, $1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$), $3.85\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{OCH}_{3}\right), 3.81+3.80\left(2 \mathrm{~s}, 3 \mathrm{H},-\mathrm{OCH}_{3}\right.$, signals of two conformers), $3.68+3.50\left(2 \mathrm{~s}, 3 \mathrm{H},-\mathrm{OCH}_{3}\right.$, signals of two conformers), 2.90-2.31 (m, 4 H, $-\mathrm{CH}_{2} \mathrm{CH}_{2}-$).
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 25{ }^{\circ} \mathrm{C}\right): \delta(\mathrm{ppm})=158.99,157.62,157.02,156.24,156.22,155.28$, 155.25, 143.66, 143.18, 140.07, 139.36, 135.78, 135.72, 135.54, 133.91, 133.86, 133.76, 133.74, 132.08, 131.41, 131.21, 131.02, 130.51, 130.28, 130.25, 130.08, 129.70, 129.65, 129.55, 129.17, 129.01, 128.97, 128.90, 128.88, 128.70, 128.67, 127.69, 127.55, 127.26, 126.99, 125.52, 120.79, 114.14, 113.90, 111.46, 111.00,
110.97, 110.78, 110.62, 110.59, 110.52, 110.39, 55.88, 55.76, 55.64, 55.59, 55.52, 55.39, 55.15, 53.41, 38.34, 37.89, 37.56, 36.84.

