Supporting Information File 1:

Full experimental details and characterization data for all new compounds

Enantioselective synthesis of tricyclic amino acid derivatives based on a rigid 4-azatricyclo[5.2.1.0 ${ }^{2,6}$ decane skeleton

Matthias Breuning*, ${ }^{*}$, Tobias Häuser ${ }^{1}$, Christian Mehler ${ }^{1}$, Christian Däschlein ${ }^{2}$, Carsten Strohmann ${ }^{2}$, Andreas Oechsner ${ }^{3}$ and Holger Braunschweig ${ }^{3}$

Address: ${ }^{1}$ Institut für Organische Chemie, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany, ${ }^{2}$ Anorganische Chemie, Universität Dortmund, Otto-Hahn-Str. 6, 44227 Dortmund, Germany and ${ }^{3}$ Institut für Anorganische Chemie, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany

Email: Matthias Breuning* - breuning@chemie.uni-wuerzburg.de

* Corresponding author

Table of Contents

1. General Information S3
2. Synthesis of the racemic ketone rac-9 S4
3. Synthesis of the enantiomerically enriched ketone $\mathbf{9}$. S5
4. Synthesis of the racemic aldehyde rac-15 S7
5. Synthesis of the amino acid $\mathbf{7 a} \cdot \mathrm{HCl}$ and of the N-tosyl amide $\mathbf{7 b} \cdot \mathbf{H C l}$ S10
6. Synthesis of the amino acid $\mathbf{8 a} \cdot \mathrm{HCl}$ and of the N-tosyl amide $\mathbf{8} \mathbf{b} \cdot \mathrm{HCl}$ S13

1. General Information

All reactions were carried out in flame dried flasks under an argon atmosphere with anhydrous solvents. Anhydrous tetrahydrofuran (THF), dichloromethane $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$, diethyl ether $\left(\mathrm{Et}_{2} \mathrm{O}\right)$, methanol (MeOH), dimethyl sulfoxide (DMSO), toluene, and acetone were prepared using standard procedures [1].

All reactions were monitored by thin layer chromatography (TLC) on precoated silica gel (Merck F254); spots were visualized by UV light (254 nm) or by staining with aqueous KMnO_{4}. For column chromatography, silica gel (Merck, particle size 63-200 $\mu \mathrm{m}$) was used.

Carbic anhydride (10), (R)-MOP [(R)-2-diphenylphosphino-2'-methoxy-1,1'-binaphthyl], $\left[\mathrm{Pd}\left(\mathrm{C}_{3} \mathrm{H}_{5}\right) \mathrm{Cl}\right]_{2}$, trichlorosilane $\left(\mathrm{HSiCl}_{3}\right)$, methyltriphenylphosphonium bromide, pyridiniumchlorochromate (PCC), meta-chloroperbenzoic acid (MCPBA), boron trifluoride diethyl etherate $\left(\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}\right)$, (methoxymethyl)triphenylphosphonium chloride, para-toluene sulfonamide $\left(\mathrm{TsNH}_{2}\right)$, n-butyllithium ($n \mathrm{BuLi}, 1.6 \mathrm{M}$ in hexanes) and ethyl 2-(trimethylsilyl)acetate are commercially available and were used as received.

Melting point ranges (mp) and decomposition points (dp) were measured on a Reichert KoflerHeiztisch microscope and are uncorrected. Optical rotations ($[\alpha]_{D}^{T}$) were recorded on a Jasco P-1020 polarimeter (10 cm cell). NMR spectra were taken on Bruker Avance 400 and Bruker DMX 600 instruments and calibrated using the residual undeuterated solvent as an internal reference. The peak assignments in the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data were made on basis of 2D NMR methods (COSY, HSQC, HMBC, NOESY). The following symbols were used for the description of the multiplicities: $\mathrm{s}=$ singulett, $\mathrm{d}=$ dublett, $\mathrm{t}=$ triplett, $\mathrm{m}=$ multiplett, quin $=$ quintett, $\mathrm{br}=$ broad. Infrared (IR) spectra were recorded on a Jasco FT-IR-3410 spectrometer, high resolution mass spectra (HRMS) on a Bruker Daltonics micrOTOF focus mass spectrometer using ESI (electronspray ionization).

[^0]
2. Synthesis of the racemic ketone rac-9

2.1 3,5-Dioxo-endo-4-azatricyclo[5.2.1.0 ${ }^{2,6}$]dec-8-ene (I)

A solution of endo-carbic anhydride (10, $25.2 \mathrm{~g}, 154 \mathrm{mmol}$) and $\mathrm{NH}_{4} \mathrm{OAc}(35.5 \mathrm{~g}, 461$ $\mathrm{mmol})$ in acetic acid (500 mL) was stirred at $140{ }^{\circ} \mathrm{C}$ for 4 d . The solvent was evaporated, water $(200 \mathrm{~mL})$ was added, and the mixture was extracted with EtOAc ($4 \times$

1 reduced pressure. The imide $\mathbf{I}(25.1 \mathrm{~g}, 154 \mathrm{mmol}, 100 \%)$ was obtained as a white solid and used in the next step without further purification.

The analytical data of \mathbf{I} were in accordance with those given in ref. [2].

2.2 endo-4-Azatricyclo[5.2.1.0 ${ }^{2,6}$]dec-8-ene (II)

$\mathrm{LiAlH}_{4}(23.3 \mathrm{~g}, 614 \mathrm{mmol})$ was suspended in anhydrous THF (200 mL) and the imide \mathbf{I} ($25.1 \mathrm{~g}, 154 \mathrm{mmol}$), dissolved in THF (300 mL), was added dropwise at $0^{\circ} \mathrm{C}$. After 1 d heating at $90^{\circ} \mathrm{C}$, water $(60 \mathrm{~mL})$ was added at $0{ }^{\circ} \mathrm{C}$, and the mixture was filtered through a pad of Celite ${ }^{\circledR}$ and washed with EtOAc (500 mL). The solvent was removed in vacuo

II to deliver the crude amine II ($18.1 \mathrm{~g}, 134 \mathrm{mmol}$, white solid, 87%), which was used in the following step without further purification.

The analytical data of II were in accordance with those given in ref. [2].

2.3 4-tert-Butoxycarbonyl-endo-4-azatricyclo $\left[5.2 .1 .0^{2,6}\right]$ dec-8-ene (11)

A solution of the amine II ($14.2 \mathrm{~g}, 105 \mathrm{mmol}$), $\mathrm{Boc}_{2} \mathrm{O}(25.1 \mathrm{~g}, 115 \mathrm{mmol})$, and DMAP ($1.28 \mathrm{mg}, 10.5 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(500 \mathrm{~mL})$ was stirred for 16 h at rt . Water $(200 \mathrm{~mL})$ was added and the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 120 \mathrm{~mL})$. The combined
 organic layers were washed with brine (200 mL) and dried over MgSO_{4}. After 11 evaporation of the solvent under reduced pressure, the crude product was purified by column chromatography (silica gel, n-pentane/ $\mathrm{Et}_{2} \mathrm{O} 1: 0 \rightarrow 4: 1$) to give 11 as a white solid ($21.3 \mathrm{~g}, 90.5$ $\mathrm{mmol}, 85 \%) . \mathrm{Mp}=35-37{ }^{\circ} \mathrm{C} ; R_{\mathrm{f}}=0.75\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$, partial signal doubling due to the rotationally hindered N-Boc-group): $\delta=1.39(\mathrm{~d}, 1 \mathrm{H}, J=8.4 \mathrm{~Hz}, 10-\mathrm{H}), 1.40[\mathrm{~s}$, $\left.9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 1.51(\mathrm{dt}, 1 \mathrm{H}, J=8.4,1.5 \mathrm{~Hz}, 10-\mathrm{H}$), 2.83 (m, $2 \mathrm{H}, 2-\mathrm{H}, 6-\mathrm{H}), 2.86$ (br s, $1 \mathrm{H}, 1 / 7-$ H), 2.88 (br s, $1 \mathrm{H}, 1 / 7-\mathrm{H}$), 2.97 (dd, $1 \mathrm{H}, J=11.7,2.1 \mathrm{~Hz}, 3 / 5-\mathrm{H}$), $3.06(\mathrm{dd}, 1 \mathrm{H}, J=11.8,2.6 \mathrm{~Hz}$, $3 / 5-\mathrm{H}), 3.20\left(\mathrm{~m}, 2 \mathrm{H}, 3 / 5-\mathrm{H}^{\prime}\right), 6.14(\mathrm{~m}, 1 \mathrm{H}, 8 / 9-\mathrm{H}), 6.19(\mathrm{~m}, 1 \mathrm{H}, 8 / 9-\mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (150 MHz , CDCl_{3}, partial signal doubling due to the rotationally hindered N-Boc-group): $\delta=28.5\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right]$, 44.5 (C-2/6), 45.6 (C-2/6), 46.5 (C-1/7), 46.5 (C-1/7), 48.0 (C-3/5), 48.4 (C-3/5), 51.8 (C-10), 78.7 $\left[C\left(\mathrm{CH}_{3}\right)_{3}\right], 134.9(\mathrm{C}-8 / 9), 135.5(\mathrm{C}-8 / 9), 153.9\left(\mathrm{CO}_{2} \mathrm{~N}\right) ; \mathrm{IR}(\mathrm{KBr}): \widetilde{v}=2967,2871,1741,1697$, $1406,1254,1176,1136,1114,878,715,567 \mathrm{~cm}^{-1}$; HRMS (ESI, pos.): m / z calcd for $\mathrm{C}_{14} \mathrm{H}_{21} \mathrm{NNaO}_{2}$

[^1]$[\mathrm{M}+\mathrm{Na}]^{+}: 258.1465$; found: 258.1465 ; Elemental analysis (\%) calcd for $\mathrm{C}_{14} \mathrm{H}_{21} \mathrm{NO}_{2}$ (253.32): C 71.46, H 8.99, N 5.95; found: C 71.18, H 8.98, N, 5.88.

2.4 4-tert-Butoxycarbonyl-2-endo,6-endo,8-exo-4-azatricyclo[5.2.1.0 ${ }^{2,6}$]decan-8-ol (rac-12)

To a solution of the alkene $11(4.44 \mathrm{~g}, 18.9 \mathrm{mmol})$ in anhydrous THF (80 mL), $\mathrm{NaBH}_{4}(927 \mathrm{mg}, 24.5 \mathrm{mmol})$ was added in one portion at $0{ }^{\circ} \mathrm{C} . \mathrm{Me}_{2} \mathrm{SO}_{4}(4.05 \mathrm{~g}$, $3.04 \mathrm{~mL}, 32.1 \mathrm{mmol}$) was introduced dropwise within 15 min and the reaction mixture was stirred for 6 h at rt . Aqueous $\mathrm{H}_{2} \mathrm{O}_{2}(35 \%, 44 \mathrm{~mL}), 1 \mathrm{~N} \mathrm{NaOH}(22 \mathrm{~mL})$,
 and water (33 mL) were added at $0^{\circ} \mathrm{C}$ and the mixture was heated to reflux for 90 min . THF was evaporated and the remaining aqueous phase was extracted at $0{ }^{\circ} \mathrm{C}$ with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \times 50 \mathrm{~mL})$. The combined organic layers were washed with brine (50 mL), dried over MgSO_{4}, and concentrated under reduced pressure. Purification of the crude material by column chromatography (silica gel, n pentane $/ \mathrm{Et}_{2} \mathrm{O} 4: 3 \rightarrow 2: 3$) gave the racemic alcohol rac-12 ($3.59 \mathrm{~g}, 14.2 \mathrm{mmol}, 75 \%$) as a colorless oil.

The spectroscopic data of rac-12 were identical to those of $\mathbf{1 2}$ given in section 3.1.

2.5 4-tert-Butoxycarbonyl-endo-4-azatricyclo[5.2.1.0 ${ }^{2,6}$]decan-8-one (rac-9)

PCC ($6.08 \mathrm{~g}, 28.2 \mathrm{mmol}$) and Celite ${ }^{\circledR}(26.0 \mathrm{~g})$ were suspended in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(130 \mathrm{~mL})$. A solution of rac-12 $(3.57 \mathrm{~g}, 14.1 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(130 \mathrm{~mL})$ was added dropwise. The mixture was stirred overnight and then filtered through a pad of Celite ${ }^{\circledR}$. The filter cake was washed with EtOAc (300 mL) and the combined organic layers were

rac-9 dried over MgSO_{4} and evaporated. The residue was purified by column chromatography (silica gel, n-pentane $/ \mathrm{Et}_{2} \mathrm{O} 1: 0 \rightarrow 0: 1$) to give the ketone $\mathrm{rac}-9(2.78 \mathrm{~g}, 11.1 \mathrm{mmol}, 79 \%)$ as a white solid.

The spectroscopic data of $\mathrm{rac}-\mathbf{9}$ were identical to those of $\mathbf{9}$ given in section 3.3.

3. Synthesis of the enantiomerically enriched ketone 9

3.1 (1R,2S,6S,7R,8S)-4-tert-Butoxycarbonyl-4-azatricyclo[5.2.1.0 ${ }^{2,6}$]decan-8-ol (12)

The alkene 11 ($2.39 \mathrm{~g}, 10.2 \mathrm{mmol}$) was dissolved in anhydrous toluene (4.8 mL) under an argon atmosphere and cooled to $0{ }^{\circ} \mathrm{C} .(R)$-MOP ($12.0 \mathrm{mg}, 25.6 \mu \mathrm{~mol}$), $\left[\mathrm{Pd}\left(\mathrm{C}_{3} \mathrm{H}_{5}\right) \mathrm{Cl}\right]_{2}(2.30 \mathrm{mg}, 6.29 \mu \mathrm{~mol})$, and trichlorosilane ($4.43 \mathrm{~g}, 3.31 \mathrm{~mL}, 32.7$

12 mmol) were added consecutively. The reaction was warmed to rt and stirred for 3 d . After evaporation of the solvent, the residue was re-dissolved in THF (22 mL) and $\mathrm{MeOH}(22 \mathrm{~mL}$) and poured at $0{ }^{\circ} \mathrm{C}$ into a suspension of $\mathrm{KF}(4.74 \mathrm{~g}, 81.6 \mathrm{mmol})$ and $\mathrm{KHCO}_{3}(10.2 \mathrm{~g}, 102 \mathrm{mmol})$ in THF (22 mL) and $\mathrm{MeOH}(22 \mathrm{~mL})$. Aqueous $\mathrm{H}_{2} \mathrm{O}_{2}(30 \%, 12.3 \mathrm{~mL})$ was added and the reaction mixture was stirred for 1 d at rt . The suspension was filtered and the filter cake was washed with $\mathrm{MeOH}(2 \times 50 \mathrm{~mL})$. The filtrate was concentrated under reduced pressure and water (50 mL) and $\mathrm{Et}_{2} \mathrm{O}(50 \mathrm{~mL})$ were added. The aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 50 \mathrm{~mL})$, and the combined organic layers were dried over MgSO_{4} and evaporated under reduced pressure. The crude
product was purified by column chromatography (silica gel, n-pentane $/ \mathrm{Et}_{2} \mathrm{O} 4: 3 \rightarrow 3: 4$) to give $\mathbf{1 2}$ $(2.08 \mathrm{~g}, 8.21 \mathrm{mmol}, 81 \%)$ as a colorless oil. $[\alpha]_{\mathrm{D}}^{22}=12.8\left(c=0.46, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ; R_{\mathrm{f}}=0.25$ $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 95: 5\right)$; ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}, 1: 1$ mixture of rotamers): $\delta=1.18(\mathrm{t}, 1 \mathrm{H}, J=$ $10.0 \mathrm{~Hz}, 9-\mathrm{H}), 1.37(\mathrm{~m}, 1 \mathrm{H}, 10-\mathrm{H}), 1.45\left[\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 1.79(\mathrm{t}, 1 \mathrm{H}, J=8.7 \mathrm{~Hz}, 10-\mathrm{H}$), 1.94 (dd, $\left.0.5 \mathrm{H}, J=12.4,6.5 \mathrm{~Hz}, 9-\mathrm{H}^{\prime}\right), 2.03$ (dd, $\left.0.5 \mathrm{H}, J=13.2,6.0 \mathrm{~Hz}, 9-\mathrm{H}^{\prime}\right), 2.25(\mathrm{~m}, 2 \mathrm{H}, 1-\mathrm{H}, 7-\mathrm{H})$, 2.42 (m, $1 \mathrm{H}, 2-\mathrm{H}), 2.54(\mathrm{~s}, 1 \mathrm{H}, 6-\mathrm{H}), 2.99(\mathrm{~m}, 2 \mathrm{H}, 3-\mathrm{H}, 5-\mathrm{H}), 3.44\left(\mathrm{~d}, 0.5 \mathrm{H}, J=12.1 \mathrm{~Hz}, 3-\mathrm{H}^{\prime}\right)$, 3.52 (d, $\left.0.5 \mathrm{H}, J=11.9 \mathrm{~Hz}, 3-\mathrm{H}^{\prime}\right), 3.59\left(\mathrm{~d}, 0.5 \mathrm{H}, J=12.1 \mathrm{~Hz}, 5-\mathrm{H}^{\prime}\right), 3.69(\mathrm{~d}, 0.5 \mathrm{H}, J=12.0 \mathrm{~Hz}, 5-$ $\left.\mathrm{H}^{\prime}\right), 3.90$ (br s, $0.5 \mathrm{H}, 8-\mathrm{H}$), 3.92 (br s, $0.5 \mathrm{H}, 8-\mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}, 1: 1$ mixture of
 6), 42.2 (C-2), 42.6 (C-6), 45.2 (C-5), 45.7 (C-5), 46.1 (C-3), 46.5 (C-3), 49.4 (C-7), 69.1 (C-8), 69.4 (C-8), $79.3\left[C\left(\mathrm{CH}_{3}\right)\right], 154.0\left(\mathrm{CO}_{2} \mathrm{~N}\right)$; IR (film): $\widetilde{v}=3426,2957,2872,1674,1420,1240,1172$, 1116, $874,454 \mathrm{~cm}^{-1}$; HRMS (ESI, pos.): m / z calcd for $\mathrm{C}_{14} \mathrm{H}_{23} \mathrm{NNaO}_{3}[\mathrm{M}+\mathrm{Na}]^{+}: 276.1570$; found: 276.1572 .

3.2 General procedure GP1 (synthesis of the Mosher esters of 12)

$(R)-(-)-$ or $(S)-(+)-\alpha-$ Methoxy- α-trifluoromethyl phenylacetic acid chloride (2.00 equiv) were added at rt to a solution of $\mathbf{1 2}, \mathrm{NEt}_{3}$ (2.70 equiv), and a catalytic amount of DMAP in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(37 \mathrm{~mL} / \mathrm{mmol} 12)$. After 18 h , water ($187 \mathrm{~mL} / \mathrm{mmol} 12$) was added and the solution was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 375 \mathrm{~mL} / \mathrm{mmol} 12)$. The combined organic layers were dried over MgSO_{4} and evaporated under reduced pressure. Purification of the crude product by column chromatography (silica gel, n-pentane/ $\mathrm{Et}_{2} \mathrm{O} 1: 0 \rightarrow 4: 1$) delivered the Mosher esters (S)-III or (R)-III as colorless liquids.

3.2.1 (S)-Mosher ester of 12

The (S)-Mosher ester (S)-III ($20.0 \mathrm{mg}, 42.5 \mu \mathrm{~mol}, 63 \%$, colorless liquid) was obtained in 85% de (according to line shape analysis) from 12 ($17.0 \mathrm{mg}, 67.1$ $\mu \mathrm{mol})$ and the (R)-Mosher acid chloride ($34.0 \mathrm{mg}, 25.1 \mu \mathrm{~L}, 134 \mu \mathrm{~mol}$) according to GP1. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.35(\mathrm{~m}, 1 \mathrm{H}), 1.43(\mathrm{~m}, 1$

(S)-III H), $1.49\left[\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 1.57$ (br s, 1 H), 1.68 (br d, $1 \mathrm{H}, J=10.2 \mathrm{~Hz}$), 2.08
(br s, 1H), 2.47 (m, 2 H), 2.61 (m, 1 H), 3.03 (m, 2 H), 3.42-2.62 (m, 4 H), 3.78 (d, $1 \mathrm{H}, J=12.2$ $\mathrm{Hz}), 7.39(\mathrm{~m}, 3 \mathrm{H}, \mathrm{Ph}), 7.51(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ph})$.

3.2.2 (R)-Mosher ester of 12

The (S)-Mosher acid chloride ($34.0 \mathrm{mg}, 25.1 \mu \mathrm{~L}, 134 \mu \mathrm{~mol}$) was treated with $12(17.0 \mathrm{mg}, 67.1 \mu \mathrm{~mol})$ following GP1 to give (R)-III ($20.3 \mathrm{mg}, 43.1 \mu \mathrm{~mol}$, 64%) as a colorless liquid in 85% de (according to line shape analysis). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.42(\mathrm{~m}, 2 \mathrm{H}), 1.48\left[\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 1.59(\mathrm{~m}$,

(R)-III $2 \mathrm{H}), 2.10(\mathrm{~m}, 1 \mathrm{H}), 2.30(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.45(\mathrm{~m}, 2 \mathrm{H}), 2.60(\mathrm{~m}, 1 \mathrm{H}), 3.04(\mathrm{~m}, 2 \mathrm{H}), 3.33-3.65(\mathrm{~m}, 4$ H), $3.78(\mathrm{~d}, 1 \mathrm{H}, J=12.2 \mathrm{~Hz}), 7.39(\mathrm{~m}, 3 \mathrm{H}, \mathrm{Ph}), 7.51(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ph})$.

3.3 (1R,2S,6S,7R)-4-tert-Butoxycarbonyl-4-azatricyclo[5.2.1.0 ${ }^{2,6}$]decan-8-one (9)

The ketone 9 ($849 \mathrm{mg}, 3.38 \mathrm{mmol}, 86 \%$) was synthesized from $12(1.00 \mathrm{~g}, 3.95$ mmol), according to the procedure described for $\mathrm{rac}-\mathbf{9}$ in section 2.5 . $\mathrm{Mp}=111-113$ ${ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{22}=99.9\left(c=1.08, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ; R_{\mathrm{f}}=0.45\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 95: 5\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}(600$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.43\left[\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 1.74(\mathrm{dd}, 1 \mathrm{H}, J=10.3,3.7 \mathrm{~Hz}, 10-\mathrm{H})$,

9 $1.82\left(\mathrm{~d}, 1 \mathrm{H}, J=10.4 \mathrm{~Hz}, 10-\mathrm{H}^{\prime}\right), 1.96(\mathrm{~m}, 1 \mathrm{H}, 9-\mathrm{H}), 2.08\left(\mathrm{~m}, 1 \mathrm{H}, 9-\mathrm{H}^{\prime}\right), 2.58(\mathrm{~m}, 1 \mathrm{H}, 7-\mathrm{H}), 2.68$ (br s, $1 \mathrm{H}, 1-\mathrm{H}), 2.76(\mathrm{~m}, 1 \mathrm{H}, 2-\mathrm{H}), 2.85(\mathrm{~m}, 1 \mathrm{H}, 6-\mathrm{H}), 3.09(\mathrm{~m}, 2 \mathrm{H}, 3-\mathrm{H}, 5-\mathrm{H}), 3.44(\mathrm{~m}, 1 \mathrm{H}, 5-$ $\left.\mathrm{H}^{\prime}\right), 3.61\left(\mathrm{~d}, 1 \mathrm{H}, J=12.0 \mathrm{~Hz}, 3-\mathrm{H}^{\prime}\right) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$, mixture of rotamers): $\delta=28.4$ [$\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 39.0(\mathrm{C}-1), 39.5(\mathrm{C}-9), 39.7(\mathrm{C}-10), 41.2(\mathrm{C}-2), 42.1(\mathrm{C}-2), 43.8(\mathrm{C}-6), 44.9(\mathrm{C}-6), 46.0$ (C-3), 46.2 (C-3), $46.5(\mathrm{C}-5), 46.6(\mathrm{C}-5), 55.5(\mathrm{C}-7), 55.7(\mathrm{C}-7), 79.5\left[C\left(\mathrm{CH}_{3}\right)_{3}\right], 79.8\left[C\left(\mathrm{CH}_{3}\right)_{3}\right]$, $153.6\left(\mathrm{CO}_{2} \mathrm{~N}\right), 154.0\left(\mathrm{CO}_{2} \mathrm{~N}\right), 214.2(\mathrm{C}-8), 214.8(\mathrm{C}-8) ; \mathrm{IR}(\mathrm{KBr}): \widetilde{v}=3464,2967,2932,2888$, 1741, 1686, 1422, 1166, 1123, $457 \mathrm{~cm}^{-1}$; HRMS (ESI, pos.): m / z calcd for $\mathrm{C}_{14} \mathrm{H}_{21} \mathrm{NNaO}_{3}[\mathrm{M}+$ $\mathrm{Na}]^{+}$: 274.1414; found: 274.1414; Elemental analysis (\%) calcd for $\mathrm{C}_{14} \mathrm{H}_{21} \mathrm{NO}_{3}$ (251.32): C 66.91, H 8.42, N 5.57; found: C 67.03, H 8.18, N 5.47.

4. Synthesis of the racemic aldehyde rac-15

4.1 4-tert-Butoxycarbonyl-8-methylidene-endo-4-azatricyclo[5.2.1.0 ${ }^{2,6}$]decane (rac-13)

4.1.1 Methylenation of rac-9 by Wittig reaction

A suspension of $\mathrm{KOt} \mathrm{Bu}(148 \mathrm{mg}, 1.29 \mathrm{mmol})$ and methyltriphenylphosphonium bromide ($462 \mathrm{mg}, 1.29 \mathrm{mmol}$) in anhydrous toluene (2 mL) was heated to reflux for 2 h . The racemic ketone rac-9 ($250 \mathrm{mg}, 995 \mu \mathrm{~mol}$) was added and heating was continued for 5 h . Water (5 mL) was added and the mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}$

rac-13 $(3 \times 10 \mathrm{~mL})$. The combined organic layers were washed with brine $(10 \mathrm{~mL})$, dried over MgSO_{4}, and evaporated under reduced pressure. The crude material was purified by column chromatography (silica gel, n-pentane $/ \mathrm{Et}_{2} \mathrm{O} 1: 0 \rightarrow 4: 1$) to deliver the alkene $\mathrm{rac}-13(190 \mathrm{mg}, 762 \mu \mathrm{~mol}, 77 \%)$ as a colorless oil. $R_{\mathrm{f}}=0.24$ (n-pentane $/ \mathrm{Et}_{2} \mathrm{O} 4: 1$); ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}, 1: 1$ mixture of rotamers): $\delta=1.43\left[\mathrm{~m}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 1.54(\mathrm{br} \mathrm{d}, 1 \mathrm{H}, J=9.5 \mathrm{~Hz}, 10-\mathrm{H}), 1.60\left(\mathrm{br} \mathrm{d}, 1 \mathrm{H}, J=9.3 \mathrm{~Hz}, 10-\mathrm{H}^{\prime}\right)$, 1.99 (m, $1 \mathrm{H}, 9-\mathrm{H}), 2.10\left(\mathrm{~m}, 1 \mathrm{H}, 9-\mathrm{H}^{\prime}\right), 2.33$ (br s, $\left.1 \mathrm{H}, 1-\mathrm{H}\right), 2.51-2.63$ (m, $3 \mathrm{H}, 2-\mathrm{H}, 6-\mathrm{H}, 7-\mathrm{H}$), 3.02 (m, $2 \mathrm{H}, 3-\mathrm{H}, 5-\mathrm{H}$), 3.47 (m, $\left.1.5 \mathrm{H}, 3-\mathrm{H}^{\prime}, 5-\mathrm{H}^{\prime}\right), 3.58$ (br d, $\left.0.5 \mathrm{H}, J=12.0 \mathrm{~Hz}, 3-\mathrm{H}^{\prime}, 5-\mathrm{H}^{\prime}\right), 4.69$ (s, $1 \mathrm{H}, \mathrm{C}=\mathrm{CHH}$), 4.82 (br s, $1 \mathrm{H}, \mathrm{C}=\mathrm{CHH}$); ${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}, 1: 1$ mixture of rotamers): $\delta=28.5\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 31.5(\mathrm{C}-9), 40.8(\mathrm{C}-1), 41.9(\mathrm{C}-10), 42.2(\mathrm{C}-2$ or $\mathrm{C}-6), 43.1(\mathrm{C}-2$ or $\mathrm{C}-6), 44.1$ (C-2 or C-6), 45.0 (C-2 or C-6), 45.8 (C-3 or C-5), 46.2 (C-3 or C-5), 46.3 (C-3 or C-5), 46.6 (C-3 or C-5), $50.7(\mathrm{C}-7), 50.8(\mathrm{C}-7), 78.8\left[\mathrm{C}_{\left.\left(\mathrm{CH}_{3}\right)_{3}\right], 105.0\left(\mathrm{C}=\mathrm{CH}_{2}\right), 105.6\left(\mathrm{C}=\mathrm{CH}_{2}\right), 148.6(\mathrm{C}-8), 149.6}\right.$ $(\mathrm{C}-8), 153.6\left(\mathrm{CO}_{2} \mathrm{~N}\right), 153.9\left(\mathrm{CO}_{2} \mathrm{~N}\right)$; IR $(\mathrm{KBr}): \widetilde{v}=3069,2955,2870,1697,1416,1391,1364$, 1240, 1173, 1111, $877 \mathrm{~cm}^{-1}$; HRMS (ESI, pos.): m / z calcd for $\mathrm{C}_{15} \mathrm{H}_{23} \mathrm{NNaO}_{2}[\mathrm{M}+\mathrm{Na}]^{+}: 272.1621$; found: 272.1623 .

4.1.2 Methylenation of rac-9 with $\mathrm{CH}_{2} \mathbf{C l}_{2}$ promoted by $\mathbf{M g} / \mathrm{TiCl}_{4}$

A solution of the ketone rac-9 ($400 \mathrm{mg}, 1.59 \mathrm{mmol}$) in anhydrous THF (3.1 mL) was added dropwise at $0{ }^{\circ} \mathrm{C}$ to a suspension of $\mathrm{Mg}(309 \mathrm{mg}, 12.7 \mathrm{mmol})$ and $\mathrm{TiCl}_{4}(604 \mathrm{mg}, 339 \mu \mathrm{~L}, 3.18$ $\mathrm{mmol})$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(6.3 \mathrm{~mL})$. The reaction mixture was stirred for 1 h at $0{ }^{\circ} \mathrm{C}$ and for 1 h at rt. The suspension was cooled to $0{ }^{\circ} \mathrm{C}$, treated with saturated aqueous $\mathrm{K}_{2} \mathrm{CO}_{3}(20 \mathrm{~mL})$, filtered through a pad of Celite ${ }^{\circledR}$, and washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$. Saturated aqueous $\mathrm{K}_{2} \mathrm{CO}_{3}(20 \mathrm{~mL})$ was added and the organic layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 100 \mathrm{~mL})$. The organic layers were combined, washed with brine (100 mL), dried over MgSO_{4}, and concentrated under reduced pressure. The product rac-13 ($220 \mathrm{mg}, 882 \mu \mathrm{~mol}, 55 \%$) was obtained by column chromatography (silica gel, n-pentane/Et $\mathrm{E}_{2} \mathrm{O}: 0 \rightarrow 5: 1$).

For the spectroscopic data of $\mathrm{rac}-\mathbf{1 3}$, see the preceding procedure.

4.2 4-tert-Butoxycarbonyl-endo-8-(hydroxymethyl)-endo-4-azatricyclo[5.2.1.0 ${ }^{2,6}$]decane (rac-14)

$\mathrm{NaBH}_{4}(37.2 \mathrm{mg}, 984 \mu \mathrm{~mol})$ and $\mathrm{Me}_{2} \mathrm{SO}_{4}(163 \mathrm{mg}, 123 \mu \mathrm{~L}, 1.29 \mathrm{mmol})$ were added to a solution of $\mathrm{rac}-13(189 \mathrm{mg}, 758 \mu \mathrm{~mol})$ in anhydrous THF $(6 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. After 18 h at rt , the reaction mixture was cooled to $0^{\circ} \mathrm{C}$ and water $(1.35 \mathrm{~mL}), \mathrm{NaOH}(1 \mathrm{~N}$, $900 \mu \mathrm{~L})$, and aqueous $\mathrm{H}_{2} \mathrm{O}_{2}(30 \%, 1.74 \mathrm{~mL})$ were added. The reaction mixture was

rac-14 stirred for 3 h at rt . Water $(20 \mathrm{~mL})$ was added and the mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 60 \mathrm{~mL})$. The combined organic layers were washed with brine (20 mL), dried over MgSO_{4}, and evaporated. Purification by column chromatography (silica gel, n-pentane/ $\mathrm{Et}_{2} \mathrm{O} 1: 0 \rightarrow 0: 1$) gave the racemic alcohol rac-14 ($68.4 \mathrm{mg}, 256 \mu \mathrm{~mol}, 34 \%$) as a colorless oil. $R_{\mathrm{f}}=0.10\left(n\right.$-pentane $\left./ \mathrm{Et}_{2} \mathrm{O} \quad 1: 1\right) ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.10(\mathrm{~m}, 1 \mathrm{H}, 9-\mathrm{H}), 1.46\left[\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 1.50(\mathrm{~m}, 1 \mathrm{H}, 10-\mathrm{H}), 1.54$ (d, $\left.1 \mathrm{H}, J=9.5 \mathrm{~Hz}, 10-\mathrm{H}^{\prime}\right), 1.67\left(\mathrm{~m}, 1 \mathrm{H}, 9-\mathrm{H}^{\prime}\right), 1.75(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{OH}), 2.16$ (br s, $\left.1 \mathrm{H}, 8-\mathrm{H}\right), 2.28$ (br $\mathrm{s}, 1 \mathrm{H}, 1-\mathrm{H}), 2.40(\mathrm{brd}, 1 \mathrm{H}, J=9.3 \mathrm{~Hz}, 7-\mathrm{H}), 2.59(\mathrm{~m}, 2 \mathrm{H}, 2-\mathrm{H}, 6-\mathrm{H}), 3.05(\mathrm{dd}, 1 \mathrm{H}, J=12.4,8.6$ $\mathrm{Hz}, 3-\mathrm{H}$ or $5-\mathrm{H}), 3.12(\mathrm{~m}, 1 \mathrm{H}, 3-\mathrm{H}$ or $5-\mathrm{H}), 3.46-3.61\left(\mathrm{~m}, 2 \mathrm{H}, 3-\mathrm{H}^{\prime}, 5-\mathrm{H}^{\prime}\right), 3.68\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OH}\right)$; ${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$, mixture of rotamers): $\delta=25.1(\mathrm{C}-9), 25.3(\mathrm{C}-9), 28.5\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 41.3$ (C-1), 43.0 (C-2 or C-6), 43.06 (C-2 or C-6), 43.15 (C-7), 44.0 (C-10), 44.1 (C-2 or C-6), 44.2 (C8), 44.8 (C-8), 45.7 (C-3 or C-5), 46.0 (C-3 or C-5), 46.5 (C-3 or C-5), 47.0 (C-3 or C-5), 64.2 $\left(\mathrm{CH}_{2} \mathrm{OH}\right), 64.4\left(\mathrm{CH}_{2} \mathrm{OH}\right), 79.3\left[C\left(\mathrm{CH}_{3}\right)_{3}\right], 154.39\left(\mathrm{CO}_{2} \mathrm{~N}\right), 154.45\left(\mathrm{CO}_{2} \mathrm{~N}\right) ; \mathrm{IR}(\mathrm{KBr}): \widetilde{v}=3417$, 2945, 2875, 1691, 1674, 1394, 1365, 1169, 1138, 1105, 1012, 874, $777 \mathrm{~cm}^{-1}$; HRMS (ESI, pos.): m / z calcd for $\mathrm{C}_{15} \mathrm{H}_{25} \mathrm{NNaO}_{3}[\mathrm{M}+\mathrm{Na}]^{+}: 290.1727$; found: 290.1727.

4.3 4-tert-Butoxycarbonyl-spiro[endo-4-azatricyclo[5.2.1.0 ${ }^{2,6}$]decane-8,1'-exo-2'-oxacyclopropane] (rac-16)

MCPBA $(70 \%, 212 \mathrm{mg}, 860 \mu \mathrm{~mol})$ and $\mathrm{NaHCO}_{3}(515 \mathrm{mg}, 6.14 \mathrm{mmol})$ were added at $0{ }^{\circ} \mathrm{C}$ to a solution of the alkene $\mathrm{rac}-13(153 \mathrm{mg}, 610 \mu \mathrm{~mol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(7 \mathrm{~mL})$. The reaction mixture was stirred for 3 h at rt . Excess MCPBA was decomposed by treatment with aqueous $\mathrm{Na}_{2} \mathrm{SO}_{3}(0.5 \mathrm{~m}, 10 \mathrm{~mL})$. After extraction of the crude reaction

rac-16 mixture with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$, the combined organic layers were washed with saturated aqueous $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$, dried with MgSO_{4}, and evaporated. The crude product was purified by column chromatography (silica gel, n-pentane $/ \mathrm{Et}_{2} \mathrm{O} 1: 0 \rightarrow 2: 1$) to afford rac-16 $(97.7 \mathrm{mg}, 368$ $\mu \mathrm{mol}, 60 \%$) as a white powder. $\mathrm{Mp}=60-62{ }^{\circ} \mathrm{C} ; R_{\mathrm{f}}=0.33$ (n-pentane $/ \mathrm{Et}_{2} \mathrm{O} 1: 1$); ${ }^{1} \mathrm{H}$ NMR (600 $\mathrm{MHz}, \mathrm{CDCl}_{3}, 1: 1$ mixture of rotamers): $\delta=1.45\left[\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 1.52$ (quin, $0.5 \mathrm{H}, J=1.4 \mathrm{~Hz}$, $10-\mathrm{H}$), 1.53 (quin, $0.5 \mathrm{H}, J=1.4 \mathrm{~Hz}, 10-\mathrm{H}), 1.55(\mathrm{~m}, 0.5 \mathrm{H}, 9-\mathrm{H}), 1.57(\mathrm{~m}, 0.5 \mathrm{H}, 9-\mathrm{H}), 1.76$ (br d, $\left.0.5 \mathrm{H}, J=14.3 \mathrm{~Hz}, 9-\mathrm{H}^{\prime}\right), 1.82\left(\mathrm{br} \mathrm{d}, 0.5 \mathrm{H}, J=14.0 \mathrm{~Hz}, 9-\mathrm{H}^{\prime}\right), 1.85(\mathrm{~m}, 1 \mathrm{H}, 7-\mathrm{H}), 1.89(\mathrm{t}, 0.5 \mathrm{H}, J$ $\left.=1.5 \mathrm{~Hz}, 10-\mathrm{H}^{\prime}\right), 1.90\left(\mathrm{t}, 0.5 \mathrm{H}, J=1.5 \mathrm{~Hz}, 10-\mathrm{H}^{\prime}\right), 2.42(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, 1-\mathrm{H}), 2.54(\mathrm{~m}, 1 \mathrm{H}, 2-\mathrm{H}), 2.62$ (m, 1 H, 6-H), 2.83 (d, $0.5 \mathrm{H}, J=3.4 \mathrm{~Hz}, \mathrm{C} H \mathrm{HO}$), 2.86 (d, $0.5 \mathrm{H}, J=3.9 \mathrm{~Hz}, \mathrm{CHHO}$), 2.95 (d, 0.5 $\mathrm{H}, J=3.9 \mathrm{~Hz}, \mathrm{CH} H \mathrm{O}$), 3.02 (m, 2.5 H, $3-\mathrm{H}, 5-\mathrm{H}, \mathrm{CH} H \mathrm{O}), 3.55\left(\mathrm{~d}, 0.5 \mathrm{H}, J=12.2 \mathrm{~Hz}, 3-\mathrm{H}^{\prime}\right), 3.61$ (d, $\left.0.5 \mathrm{H}, J=11.9 \mathrm{~Hz}, 3-\mathrm{H}^{\prime}\right), 3.65\left(\mathrm{~d}, 0.5 \mathrm{H}, J=12.0 \mathrm{~Hz}, 5-\mathrm{H}^{\prime}\right), 3.78\left(\mathrm{~d}, 0.5 \mathrm{H}, J=12.1 \mathrm{~Hz}, 5-\mathrm{H}^{\prime}\right)$; ${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}, 1: 1$ mixture of rotamers): $\delta=28.50\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 28.54\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right]$, 32.08 (C-9), 32.14 (C-9), 40.9 (C-10), 41.1 (C-1), 41.2 (C-1), 41.5 (C-2), 42.4 (C-6), 42.6 (C-2), 43.3 (C-6), 45.3 (C-5), $45.9(\mathrm{C}-5), 46.0(\mathrm{C}-3), 46.5(\mathrm{C}-3), 47.9(\mathrm{C}-7), 51.2\left(\mathrm{CH}_{2} \mathrm{O}\right), 51.5\left(\mathrm{CH}_{2} \mathrm{O}\right)$, $63.1(\mathrm{C}-8), 63.3(\mathrm{C}-8), 79.2\left[\mathrm{C}_{\left.\left(\mathrm{CH}_{3}\right)_{3}\right], 79.3\left[C\left(\mathrm{CH}_{3}\right)_{3}\right], 153.6\left(\mathrm{CO}_{2} \mathrm{~N}\right), 153.7\left(\mathrm{CO}_{2} \mathrm{~N}\right) \text {; IR (ATR): }}^{\text {(A) }}\right.$ $\widetilde{v}=2956,2868,1686,1481,1426,1364,1242,1164,1133,874,762 \mathrm{~cm}^{-1} ;$ HRMS (ESI, pos.): m / z calcd for $\mathrm{C}_{15} \mathrm{H}_{24} \mathrm{NO}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 266.1751$; found: 266.1751.

4.4 4-tert-Butoxycarbonyl-2-endo,6-endo,8-endo-4-azatricyclo[5.2.1.0 ${ }^{2,6}$]decane-8-carbaldehyde (rac-15)

4.4.1 Oxidation of the alcohol rac-14

A solution of rac- $\mathbf{1 4}(35.4 \mathrm{mg}, 132 \mu \mathrm{~mol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.50 \mathrm{~mL})$ was added dropwise at rt to a suspension of PCC $(57.0 \mathrm{mg}, 264 \mu \mathrm{~mol})$ and Celite ${ }^{\circledR}(251 \mathrm{mg})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(1.50 \mathrm{~mL})$. The mixture was stirred for 6 h at rt, filtered through a pad of Celite ${ }^{\circledR}$, and washed with EtOAc (150 mL). The organic layer was dried over MgSO_{4} and

rac-15 evaporated. The residue was purified by column chromatography (silica gel, n pentane/EtOAc $1: 0 \rightarrow 2: 1$) to give the aldehyde $\mathrm{rac}-15(18.0 \mathrm{mg}, 67.8 \mu \mathrm{~mol}, 51 \%)$ as a colorless oil.

The spectroscopic data of rac-15 were identical to those of $\mathbf{1 5}$ given in section 5.2.

4.4.2 4-tert-Butoxycarbonyl-2-endo,8-endo,12-endo-4-aza-6-oxatetracyclo[6,2,1,1 $\left.\mathbf{1}^{2,5}, 0^{9,12}\right]$ undecane (rac-17) and rac-15 via Lewis acid-catalyzed rearrangement of rac-16

The epoxide rac-16 ($31.2 \mathrm{mg}, 118 \mu \mathrm{~mol}$) was dissolved in anhydrous toluene (11 mL) and $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}(4.14 \mathrm{mg}, 3.70 \mu \mathrm{~L}, 29.3 \mu \mathrm{~mol})$ was added at $0^{\circ} \mathrm{C}$. After stirring at $0^{\circ} \mathrm{C}$ for 5 min , water $(10 \mathrm{~mL})$ was added and the mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 10$ mL). The combined organic layers were dried over $\mathrm{K}_{2} \mathrm{CO}_{3}$ and evaporated under

rac-17 reduced pressure. Column chromatographic separation (silica gel, n-pentane/ $\mathrm{Et}_{2} \mathrm{O}$ 1:0 $\rightarrow 2: 1)$ delivered rac-17 ($11.0 \mathrm{mg}, 41.5 \mu \mathrm{~mol}, 35 \%$) as a white solid and rac-15 ($8.00 \mathrm{mg}, 30.1$ $\mu \mathrm{mol}, 26 \%$) as a colorless oil. Rac-17: $\mathrm{Mp}=65-67{ }^{\circ} \mathrm{C} ; R_{\mathrm{f}}=0.40$ (n-pentane/Et $\mathrm{E}_{2} \mathrm{O} \quad 1: 1$); ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}, 1: 1$ mixture of rotamers): $\delta=1.45\left[\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 1.56(\mathrm{~m}, 1 \mathrm{H}, 11-\mathrm{H}), 1.62$ (s, $\left.2 \mathrm{H}, 10-\mathrm{H}, 10-\mathrm{H}^{\prime}\right), 1.71$ (br dd, $\left.1 \mathrm{H}, J=13.0,4.0 \mathrm{~Hz}, 11-\mathrm{H}^{\prime}\right), 1.92(\mathrm{~m}, 1 \mathrm{H}, 8-\mathrm{H}), 2.14$ (br s, 1 H , $1-\mathrm{H}$), 2.19 (br s, $1 \mathrm{H}, 9-\mathrm{H}$), 2.43 (br s, $1 \mathrm{H}, 12-\mathrm{H}), 2.62$ (br s, $1 \mathrm{H}, 2-\mathrm{H}), 3.30$ (dd, $1 \mathrm{H}, J=11.3,6.2$ $\mathrm{Hz}, 3-\mathrm{H}), 3.38-3.60\left(\mathrm{~m}, 2 \mathrm{H}, 3-\mathrm{H}^{\prime}, 7-\mathrm{H}\right), 3.66$ (br d, $\left.1 \mathrm{H}, J=11.2 \mathrm{~Hz}, 7-\mathrm{H}^{\prime}\right), 5.20(\mathrm{br} \mathrm{s}, 0.5 \mathrm{H}, 5-\mathrm{H})$, 5.33 (br s, $0.5 \mathrm{H}, 5-\mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}, 1: 1$ mixture of rotamers): $\delta=25.6$ (C-11), $28.4\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 33.6(\mathrm{C}-9), 37.9(\mathrm{C}-9), 40.1(\mathrm{C}-1), 41.9(\mathrm{C}-12), 43.0(\mathrm{C}-12), 43.5(\mathrm{C}-3), 44.1(\mathrm{C}-3)$, 44.6 (C-10), 45.1 (C-2), $63.4(\mathrm{C}-7), 79.7\left[C\left(\mathrm{CH}_{3}\right)_{3}\right], 80.7(\mathrm{C}-5), 80.9(\mathrm{C}-5), 154.1\left(\mathrm{CO}_{2} \mathrm{~N}\right), 154.5$ ($\mathrm{CO}_{2} \mathrm{~N}$); IR (ATR): $\widetilde{v}=2947,1697,1389,1364,1344,1330,1169,1151,1103,083,1008,893$ cm^{-1}; HRMS (ESI, pos.): m / z calcd for $\mathrm{C}_{15} \mathrm{H}_{23} \mathrm{NNaO}_{3}[\mathrm{M}+\mathrm{Na}]^{+}$: 288.1570; found: 288.1563.

The spectroscopic data of $\mathrm{rac}-\mathbf{1 5}$ were identical to those of $\mathbf{1 5}$ given in section 5.2.

5. Synthesis of the amino acid $7 \mathrm{a} \cdot \mathrm{HCl}$ and of the N -tosyl amide $\mathbf{7 b} \cdot \mathbf{H C l}$

5.1 (1R,2S,6R,7R)-4-tert-Butoxycarbonyl-8-methoxymethylidene-4-azatricyclo[5.2.1.0 ${ }^{2,6}$]decane (18)

A suspension of (methoxymethyl)triphenylphosphonium chloride (15.9 g, 46.4 mmol) and $\mathrm{KOtBu}(6.25 \mathrm{~g}, 55.7 \mathrm{mmol})$ in anhydrous toluene (375 mL) was stirred at rt for 5 h . A solution of the ketone $9(1.61 \mathrm{~g}, 6.41 \mathrm{mmol})$ in anhydrous THF (90 mL) was added slowly via a syringe and stirring was continued for 1 d

$18(d r=1: 1)$ at rt . EtOAc $(400 \mathrm{~mL})$ was added and the mixture was washed with water $(3 \times$ $100 \mathrm{~mL})$ and brine ($2 \times 100 \mathrm{~mL}$). The organic layer was dried over $\mathrm{K}_{2} \mathrm{CO}_{3}$ and concentrated under reduced pressure. Purification by column chromatography (silica gel, n-pentane $/ \mathrm{Et}_{2} \mathrm{O}$ 10:1) gave 18 $\left(1.51 \mathrm{~g}, 5.41 \mathrm{mmol}, 84 \%, 1: 1\right.$ mixture of E / Z-isomers) as a colorless oil. $[\alpha]_{\mathrm{D}}^{20}=23.5(c=0.56$, $\left.\mathrm{CHCl}_{3}\right) ; R_{\mathrm{f}}=0.26$ (n-pentane/ $\mathrm{Et}_{2} \mathrm{O} 4: 1$); ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}, 1: 1: 1: 1$ mixture of rotamers and E / Z-isomers): $\delta=1.45\left[\mathrm{~m}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 1.53(\mathrm{~m}, 1.5 \mathrm{H}, 10-\mathrm{H}), 1.58(\mathrm{~m}, 0.5 \mathrm{H}, 10-\mathrm{H}), 1.99$ $(\mathrm{m}, 1.5 \mathrm{H}, 9-\mathrm{H}), 1.99(\mathrm{~m}, 0.5 \mathrm{H}, 9-\mathrm{H}), 2.30(\mathrm{~m}, 0.5 \mathrm{H}, 1-\mathrm{H}), 2.30(\mathrm{~m}, 0.5 \mathrm{H}, 1-\mathrm{H}), 2.47(\mathrm{~m}, 0.5 \mathrm{H}, 7-$ H), $2.50-2.67(\mathrm{~m}, 2 \mathrm{H}, 2-\mathrm{H}, 6-\mathrm{H}), 2.97-3.10(\mathrm{~m}, 2.5 \mathrm{H}, 3-\mathrm{H}, 5-\mathrm{H}, 7-\mathrm{H}), 3.35(\mathrm{~m}, 0.5,3-\mathrm{H}, 5-\mathrm{H})$, 3.47 (m, $1 \mathrm{H}, 3-\mathrm{H}, 5-\mathrm{H}), 3.54\left(\mathrm{~m}, 3.5 \mathrm{H}, 3-\mathrm{H}, 5-\mathrm{H}, \mathrm{OCH}_{3}\right.$), 5.78 (br s, $0.2 \mathrm{H}, \mathrm{C}=\mathrm{CH}$), 5.83 (br s, 0.8 $\mathrm{H}, \mathrm{C}=\mathrm{CH}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}, 1: 1: 1: 1$ mixture of rotamers and E / Z-conformers): $\delta=26.8$ (C-9), 27.2 (C-9), $27.5(\mathrm{C}-9), 27.7(\mathrm{C}-9), 28.47\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 28.51\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 28.55\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 28.6$
[$\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 40.47(\mathrm{C}-1), 40.48(\mathrm{C}-1), 40.57(\mathrm{C}-1), 40.63(\mathrm{C}-1), 41.65(\mathrm{C}-10), 41.66(\mathrm{C}-10), 42.4(\mathrm{C}-$ 10), 42.51 (C-10), 42.53 (C-2 or C-6), 42.55 (C-2 or C-6), 43.3 (C-2 or C-6), 43.5 (C-2 or C-6), 43.9 (C-7), 44.2 (C-7), 44.4 (C-2 or C-6), 44.5 (C-2 or C-6), 44.8 (C-2 or C-6), 45.1 (C-2 or C-6), 45.7 (C-7), 45.8 (C-3), 45.9 (C-3), 46.1 (C-7), 46.2 (C-3), 46.3 (C-5), 46.4 (C-3), 46.7 (C-5), 46.8 (C-5), $47.1(\mathrm{C}-5), 59.2\left(\mathrm{OCH}_{3}\right), 59.4\left(\mathrm{OCH}_{3}\right), 59.5\left(\mathrm{OCH}_{3}\right), 78.5\left[C\left(\mathrm{CH}_{3}\right)_{3}\right], 78.6\left[C\left(\mathrm{CH}_{3}\right)_{3}\right], 78.7$ $\left[C\left(\mathrm{CH}_{3}\right)_{3}\right], 117.0(\mathrm{C}-8), 117.4(\mathrm{C}-8), 118.0(\mathrm{C}-8), 118.1(\mathrm{C}-8), 138.5(\mathrm{C}=\mathrm{CH}), 138.8(\mathrm{C}=\mathrm{CH}), 139.7$ $(\mathrm{C}=\mathrm{CH}), 140.00(\mathrm{C}=\mathrm{CH}), 153.37\left(\mathrm{CO}_{2} \mathrm{~N}\right), 153.44\left(\mathrm{CO}_{2} \mathrm{~N}\right), 153.9\left(\mathrm{CO}_{2} \mathrm{~N}\right), 154.0\left(\mathrm{CO}_{2} \mathrm{~N}\right)$; IR (ATR): $\widetilde{v}=2944,2866,1689,1412,1363,1238,1217,1170,1120,877 \mathrm{~cm}^{-1}$; HRMS (ESI, pos.): m / z calcd for $\mathrm{C}_{16} \mathrm{H}_{25} \mathrm{NNaO}_{3}[\mathrm{M}+\mathrm{Na}]^{+}: 302.1727$; found: 302.1727.

5.2 (1R,2S,6R,7R,8R)-4-tert-Butoxycarbonyl-4-azatricyclo[5.2.1.0 ${ }^{2,6}$]decane-8-carbaldehyde (15)

Trichloroacetic acid ($8.48 \mathrm{~g}, 51.9 \mathrm{mmol}$) and water (one drop) were added to a solution of $\mathbf{1 8}(1.45 \mathrm{~g}, 5.19 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(610 \mathrm{~mL})$. After stirring for 1.5 h at rt , the reaction was treated with saturated aqueous $\mathrm{NaHCO}_{3}(570 \mathrm{~mL})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 380 \mathrm{~mL})$. The combined organic layers were dried over $\mathrm{K}_{2} \mathrm{CO}_{3}$ and

15 evaporated under reduced pressure. Column chromatographic purification (silica gel, n-pentane $/ \mathrm{Et}_{2} \mathrm{O} 2: 1 \rightarrow 1: 2$) delivered $15(1.05 \mathrm{~g}, 3.96 \mathrm{mmol}, 76 \%)$ as a colorless oil. $[\alpha]_{\mathrm{D}}^{20}=46.3(c$ $\left.=0.63, \mathrm{CHCl}_{3}\right) ; R_{\mathrm{f}}=0.12\left(n\right.$-pentane $\left./ \mathrm{Et}_{2} \mathrm{O} 1: 1\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.42[\mathrm{~s}, 9 \mathrm{H}$, $\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 1.55\left(\mathrm{~m}, 2 \mathrm{H}, 10-\mathrm{H}, 10-\mathrm{H}^{\prime}\right), 1.60(\mathrm{br} \mathrm{td}, 1 \mathrm{H}, J=12.9,4.6 \mathrm{~Hz}, 9-\mathrm{H}), 1.92(\mathrm{br} \mathrm{dd}, 1 \mathrm{H}, J=$ 13.3, $5.8 \mathrm{~Hz}, 9-\mathrm{H}^{\prime}$), 2.32 (m, 1 H, 1-H), 2.53 (m, $3 \mathrm{H}, 2-\mathrm{H}, 6-\mathrm{H}, 8-\mathrm{H}$), 2.78 (br s, $1 \mathrm{H}, 7-\mathrm{H}$), 2.93 (br dd, $1 \mathrm{H}, J=12.5,7.3 \mathrm{~Hz}, 5-\mathrm{H}), 3.00(\mathrm{dd}, 1 \mathrm{H}, J=11.9,8.0 \mathrm{~Hz}, 3-\mathrm{H}), 3.23(\mathrm{~d}, 1 \mathrm{H}, J=12.3 \mathrm{~Hz}, 5-$ $\left.\mathrm{H}^{\prime}\right), 3.53$ (br d, $\left.1 \mathrm{H}, J=11.6 \mathrm{~Hz}, 3-\mathrm{H}^{\prime}\right), 9.79(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CHO}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=22.4$ (C-9), $28.3\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 41.0(\mathrm{C}-1), 42.7(\mathrm{C}-2$ or $\mathrm{C}-6), 43.3(\mathrm{C}-10), 43.6(\mathrm{C}-2$ or $\mathrm{C}-6), 43.9(\mathrm{C}-7)$,
 2947, 2875, 1691, 1391, 1364, 1230, 1169, 1152, 1140, 1098, $875 \mathrm{~cm}^{-1}$; HRMS (ESI, pos.): m / z calcd for $\mathrm{C}_{15} \mathrm{H}_{23} \mathrm{NNaO}_{3}[\mathrm{M}+\mathrm{Na}]^{+}: 288.1570$; found: 288.1570.

5.3 (1R,2S,6R,7R,8R)-4-tert-Butoxycarbonyl-4-azatricyclo[5.2.1.0 ${ }^{2,6}$]decane-8-carboxylic acid (19)

The aldehyde 15 ($856 \mathrm{mg}, 3.23 \mathrm{mmol}$) was dissolved in $\mathrm{MeCN}(24 \mathrm{~mL}) . \mathrm{KH}_{2} \mathrm{PO}_{4}$ $(\mathrm{pH}=4,2.78 \mathrm{~mL})$ and a solution of $\mathrm{H}_{2} \mathrm{O}_{2}(30 \%, 1.15 \mathrm{~mL}, 11.3 \mathrm{mmol})$ and NaClO_{2} ($642 \mathrm{mg}, 7.10 \mathrm{mmol}$) in water (34 mL) were added. After stirring for 6 h at rt , $\mathrm{Na}_{2} \mathrm{SO}_{3}(350 \mathrm{mg})$ was added and stirring was continued for 30 min . The solution was

19 acidified to $\mathrm{pH}=3$ by careful addition of $\mathrm{HCl}(1 \mathrm{~N})$ and extracted with $\mathrm{Et}_{2} \mathrm{O}(4 \times 100$ mL). The combined organic layers were dried over MgSO_{4} and evaporated under reduced pressure to give the acid 19 ($679 \mathrm{mg}, 2.41 \mathrm{mmol}, 75 \%$) as a white solid after column chromatography (silica gel, $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 99: 1 \rightarrow 95: 1\right) . \mathrm{Mp}=64-66{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{20}=4.0\left(c=0.28, \mathrm{CHCl}_{3}\right) ; R_{\mathrm{f}}=0.17$ $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 95: 5\right) ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}, 1: 1$ mixture of rotamers): $\delta=1.47$ [s, 9 H , $\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 1.53\left(\mathrm{~m}, 3 \mathrm{H}, 9-\mathrm{H}, 10-\mathrm{H}, 10-\mathrm{H}^{\prime}\right), 1.85\left(\mathrm{~m}, 1 \mathrm{H}, 9-\mathrm{H}^{\prime}\right), 2.29(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, 1-\mathrm{H}), 2.61-2.71(\mathrm{~m}$,
$3 \mathrm{H}, 2-\mathrm{H}, 6-\mathrm{H}, 7-\mathrm{H}), 2.79(\mathrm{~m}, 1 \mathrm{H}, 8-\mathrm{H}), 2.97(\mathrm{~m}, 1 \mathrm{H}, 5-\mathrm{H}), 3.06(\mathrm{~m}, 1 \mathrm{H}, 3-\mathrm{H}), 3.50(\mathrm{br} \mathrm{t}, 1 \mathrm{H}, J=$ $\left.11.4 \mathrm{~Hz}, 3-\mathrm{H}^{\prime}\right), 3.72\left(\mathrm{~d}, 0.5 \mathrm{H}, J=12.2 \mathrm{~Hz}, 5-\mathrm{H}^{\prime}\right), 3.76\left(\mathrm{~d}, 0.5 \mathrm{H}, J=12.5 \mathrm{~Hz}, 5-\mathrm{H}^{\prime}\right) ;{ }^{13} \mathrm{C}$ NMR (150 $\mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}, 1: 1$ mixture of rotamers): $\delta=24.1(\mathrm{C}-9), 24.4(\mathrm{C}-9), 28.7\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 29.0$ $\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 42.69(\mathrm{C}-1), 42.73(\mathrm{C}-1), 44.4(\mathrm{C}-2$ or $\mathrm{C}-6), 44.6(\mathrm{C}-2$ or $\mathrm{C}-6), 44.67(\mathrm{C}-10), 44.74(\mathrm{C}-$ 7), 44.78 (C-10), 44.84 (C-7), 45.2 (C-2 or C-6), 45.4 (C-2 or C-6), 45.7 (C-8), 45.9 (C-8), 46.4 (C5), $46.8(\mathrm{C}-3), 46.9(\mathrm{C}-5), 47.2(\mathrm{C}-3), 80.7\left[C\left(\mathrm{CH}_{3}\right)_{3}\right], 80.9\left[C\left(\mathrm{CH}_{3}\right)_{3}\right], 155.9\left(\mathrm{CO}_{2} \mathrm{~N}\right), 156.4$ $\left(\mathrm{CO}_{2} \mathrm{~N}\right), 177.4\left(\mathrm{CO}_{2} \mathrm{H}\right), 177.2\left(\mathrm{CO}_{2} \mathrm{H}\right)$; IR (ATR): $\widetilde{v}=2969,2867,1726,1643,1420,1365,1286$, 1236, 1194, 1155, 1120, $1095 \mathrm{~cm}^{-1}$; HRMS (ESI, pos.): m / z calcd for $\mathrm{C}_{15} \mathrm{H}_{23} \mathrm{NNaO}_{4}[\mathrm{M}+\mathrm{Na}]^{+}$: 304.1519; found: 304.1519.

5.4 (1R,2S,6R,7R,8R)-4-Azatricyclo[5.2.1.0 $0^{2,6}$]decane-8-carboxylic acid hydrochloride (7a•HCl)

A suspension of the acid 19 ($178 \mathrm{mg}, 633 \mu \mathrm{~mol})$ in aqueous $\mathrm{HCl}(4.8 \mathrm{~m}, 9.00 \mathrm{~mL})$ was refluxed for 1 d . The solvent was evaporated under reduced pressure, and the crude product was filtered through a pad of silica gel $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 1: 0 \rightarrow 9: 1\right)$ affording the amino acid $7 \mathrm{a} \cdot \mathrm{HCl}(114 \mathrm{mg}, 524 \mu \mathrm{~mol}, 79 \%)$ as a white solid. $\mathrm{Mp}=$

$7 \mathrm{a} \cdot \mathrm{HCl}$ $173-175{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{22}=-14.5(c=0.29, \mathrm{MeOH}) ; R_{\mathrm{f}}=0.06(\mathrm{MeOH}) ;{ }^{1} \mathrm{H}$ NMR $(600$ $\mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): $\delta=1.68\left(\mathrm{~s}, 2 \mathrm{H}, 10-\mathrm{H}, 10-\mathrm{H}^{\prime}\right), 1.74\left(\mathrm{~m}, 2 \mathrm{H}, 9-\mathrm{H}, 9-\mathrm{H}^{\prime}\right), 2.38(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, 1-\mathrm{H}), 2.64$ (br s, $1 \mathrm{H}, 7-\mathrm{H}$), 2.78 (m $1 \mathrm{H}, 8-\mathrm{H}$), 2.91 (m, $2 \mathrm{H}, 2-\mathrm{H}, 6-\mathrm{H}), 3.00(\mathrm{~m}, 1 \mathrm{H}, 5-\mathrm{H}), 3.10(\mathrm{~m}, 1 \mathrm{H}, 3-\mathrm{H})$, 3.29 (d, $\left.1 \mathrm{H}, J=12.6 \mathrm{~Hz}, 5-\mathrm{H}^{\prime}\right), 3.52\left(\mathrm{~d}, 1 \mathrm{H}, J=12.6 \mathrm{~Hz}, 3-\mathrm{H}^{\prime}\right) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): δ $=26.3(\mathrm{C}-9), 42.3(\mathrm{C}-1), 45.14(\mathrm{C}-2$ or $\mathrm{C}-6), 45.15(\mathrm{C}-2$ or $\mathrm{C}-6), 45.4(\mathrm{C}-7), 45.5(\mathrm{C}-10), 46.9(\mathrm{C}-$ 3), $47.0(\mathrm{C}-5), 48.2(\mathrm{C}-8), 183.8\left(\mathrm{CO}_{2} \mathrm{H}\right)$; IR (ATR): $\widetilde{v}=2950,2768,1697,1558,1393,1288,1206$, 1165, 1019, $886 \mathrm{~cm}^{-1}$; HRMS (ESI, pos.): m / z calcd for $\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 182.1176$; found: 182.1176.

$5.5 N$-[(4-Methylphenyl)sulfonyl] (1R,2S,6R,7R,8R)-4-tert-butoxycarbonyl-4-azatricyclo[5.2.1.0 ${ }^{2,6}$]decane-8-carboxamide (IV)

A mixture of acid 19 ($177 \mathrm{mg}, 629 \mu \mathrm{~mol})$, $\mathrm{DCC}(132 \mathrm{mg}, 629 \mu \mathrm{~mol})$ and DMAP ($7.00 \mathrm{mg}, 62.9 \mu \mathrm{~mol}$) in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3.0 \mathrm{~mL})$ was stirred at rt for 1 h . TsNH_{2} $(108 \mathrm{mg}, 629 \mu \mathrm{~mol})$ was added and stirring was continued for 1 d . The suspension was filtered through a frit and washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 10 \mathrm{~mL})$. The crude product

iv mixture was filtered through a pad of silica gel $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 1: 0 \rightarrow 50: 1\right)$ to give IV ($175 \mathrm{mg}, 403 \mu \mathrm{~mol}, 64 \%$) as white solid. $\mathrm{Mp}=116-118{ }^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}^{22}=-26.3(c=0.07, \mathrm{MeOH}) ; R_{\mathrm{f}}$ $=0.32$ (n-pentane/EtOAc 1:2); ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): $\delta=1.38(\mathrm{~m}, 1 \mathrm{H}, 9-\mathrm{H}), 1.52[\mathrm{~m}, 9 \mathrm{H}$, $\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 1.64\left(\mathrm{~m}, 2 \mathrm{H}, 10-\mathrm{H}, 10-\mathrm{H}^{\prime}\right), 1.90\left(\mathrm{dd}, 1 \mathrm{H}, J=13.5,6.6 \mathrm{~Hz}, 9-\mathrm{H}^{\prime}\right), 2.24(\mathrm{~m}, 1 \mathrm{H}, 7-\mathrm{H})$, $2.42\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{ArCH}_{3}\right), 2.56(\mathrm{~m}, 1 \mathrm{H}, 8-\mathrm{H}), 2.61-2.78(\mathrm{~m}, 3 \mathrm{H}, 1-\mathrm{H}, 2-\mathrm{H}, 6-\mathrm{H}), 3.02-3.13(\mathrm{~m}, 2 \mathrm{H}, 3-$ H, 5-H), 3.38-3.48 (m, 2 H, 3-H', 5-H'), 7.34 (br d, $2 \mathrm{H}, J=8.1 \mathrm{~Hz}, \mathrm{Ar}$), 7.86 (br d, $2 \mathrm{H}, J=8.2 \mathrm{~Hz}$, $\mathrm{Ar}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$, mixture of rotamers): $\delta=21.6\left(\mathrm{ArCH}_{3}\right), 22.3(\mathrm{C}-9), 28.7$ $\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 42.2(\mathrm{C}-7), 44.9(\mathrm{CH}), 45.1(\mathrm{CH}), 45.7(\mathrm{C}-10), 45.8(\mathrm{CH}), 46.7(\mathrm{C}-3$ or $\mathrm{C}-5), 46.9(\mathrm{C}-3$ or $\mathrm{C}-5), 48.4(\mathrm{C}-8), 81.1\left[\mathrm{C}_{\left.\left(\mathrm{CH}_{3}\right)_{3}\right], 129.2(\mathrm{Ar}), 130.4(\mathrm{Ar}), 138.5(\mathrm{Ar}), 145.7(\mathrm{Ar}), 156.6\left(\mathrm{CO}_{2} \mathrm{~N}\right) \text {, }}\right.$
173.3 (CONH); IR (ATR): $\widetilde{v}=2946,2879,1691,1652,1405,1363,1234,1170,1120,1089 \mathrm{~cm}^{-1}$; HRMS (ESI, pos.): m / z calcd for $\mathrm{C}_{22} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{NaO}_{5} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+}$: 457.1768; found: 457.1768.

5.6 N-[(4-Methylphenyl)sulfonyl] (1R,2S,6R,7R,8R)-4-azatricyclo[5.2.1.0 ${ }^{2,6}$]decane-8-carboxamide hydrochloride ($\mathbf{7 b} \cdot \mathbf{H C l}$)

A solution of the amide IV $(163 \mathrm{mg}, 375 \mu \mathrm{~mol})$ in ethereal $\mathrm{HCl}(1.0 \mathrm{~m}, 16.7 \mathrm{~mL}, 16.7$ $\mathrm{mmol})$ and anhydrous $\mathrm{MeOH}(1.00 \mathrm{~mL})$ was stirred for 3 h at rt . The precipitate formed was dried in vacuo to yield $\mathbf{7 b} \cdot \mathrm{HCl}(52.7 \mathrm{mg}, 142 \mu \mathrm{~mol}, 38 \%)$ as a colorless solid. $\mathrm{Dp}=>210^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{22}=-48.1(c=0.05, \mathrm{MeOH}) ; R_{\mathrm{f}}=0.47(\mathrm{MeOH}) ;{ }^{1} \mathrm{H}$ NMR
 ($600 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): $\delta=1.66(\mathrm{~m}, 1 \mathrm{H}, 9-\mathrm{H}), 1.76\left(\mathrm{~m}, 3 \mathrm{H}, 9-\mathrm{H}^{\prime}, 10-\mathrm{H}, 10-\mathrm{H}^{\prime}\right), 2.38$ (br s, $1 \mathrm{H}, 1-\mathrm{H}$), $2.45\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.59(\mathrm{~d}, 1 \mathrm{H}, J=12.1 \mathrm{~Hz}, 5-\mathrm{H}), 2.67(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, 7-\mathrm{H}), 2.83-2.94$ (m, 4 H, 2-H, 5-H', 6-H, 8-H), 3.12 (m, $1 \mathrm{H}, 3-\mathrm{H}$), 3.49 (d, $\left.1 \mathrm{H}, J=12.1 \mathrm{~Hz}, 3-\mathrm{H}^{\prime}\right), 7.42$ (dd, $2 \mathrm{H}, J$ $=8.6,0.7 \mathrm{~Hz}, \mathrm{Ar}), 7.92(\mathrm{dt}, 2 \mathrm{H}, J=8.5,1.9 \mathrm{~Hz}, \mathrm{Ar}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): $\delta=21.6$ $\left(\mathrm{CH}_{3}\right), 23.4$ (C-9), 41.5 (C-1), 44.9 (C-8), 45.5 (C-6), 45.8 (C-7), 46.1 (C-10), 46.3 (C-5), 47.0 (C3), 47.1 (C-2), 129.6 (Ar), 130.7 (Ar), 137.6 (Ar), 146.6 (Ar), 177.9 (CONH); IR (ATR): $\widetilde{v}=2974$, 2822, 2710, 2624, 2589, 1671, 1598, 1455, 1335, 1148, 1089, 877, $809 \mathrm{~cm}^{-1}$; HRMS (ESI, pos.): m / z calcd for $\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 335.1424$; found: 335.1423.

6. Synthesis of the amino acid $\mathbf{8 a} \cdot \mathbf{H C l}$ and the N-tosyl amide $\mathbf{8 b} \cdot \mathbf{H C l}$

6.1 (1R,2S,6R,7R)-4-tert-Butoxycarbonyl-8-(ethoxycarbonylmethylidene)-4-azatricyclo[5.2.1.0 ${ }^{2,6}$]decane (20)

LDA was prepared by adding $n \mathrm{BuLi}$ (1.6 m in hexanes, $14.4 \mathrm{~mL}, 23.1 \mathrm{mmol}$) to a solution of freshly destilled $i \operatorname{Pr}_{2} \mathrm{NH}(2.34 \mathrm{~g}, 3.24 \mathrm{~mL}, 23.1 \mathrm{mmol})$ in anhydrous THF (116 mL) at $-78{ }^{\circ} \mathrm{C}$. After 30 min , ethyl 2-(trimethylsilyl)acetate ($3.70 \mathrm{~g}, 4.22 \mathrm{~mL}, 23.1 \mathrm{mmol}$) was added dropwise at $-78{ }^{\circ} \mathrm{C}$ and

20 (dr = 77:23) stirring was continued for 30 min . The ketone $9(2.90 \mathrm{~g}, 11.5 \mathrm{mmol})$, dissolved in anhydrous THF $(24 \mathrm{~mL})$, was added slowly to the red reaction mixture at $-78^{\circ} \mathrm{C}$ and stirring was continued for 1 h . After 18 h at rt , saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(100 \mathrm{~mL})$ was added, and the mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 100 \mathrm{~mL})$. The combined organic layers were dried over MgSO_{4} and evaporated under reduced pressure. Column chromatographic purification (silica gel, n-pentane/ $\mathrm{Et}_{2} \mathrm{O} 4: 1 \rightarrow 3: 2$) gave $20(1.87 \mathrm{~g}, 5.81 \mathrm{mmol}, 50 \%)$ as a colorless oil. $[\alpha]_{\mathrm{D}}^{20}=232.5\left(c=0.36, \mathrm{CHCl}_{3}\right) ; R_{\mathrm{f}}=0.33$ (n-pentane $/ \mathrm{Et}_{2} \mathrm{O} 1: 2$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 77: 23$ mixture of E / Z-isomers): $\delta=1.27(\mathrm{t}, 3 \mathrm{H}$, $\left.J=7.1 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 1.38\left[\mathrm{~s}, 7 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 1.42\left[\mathrm{~s}, 2 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 1.53(\mathrm{br} \mathrm{d}, 1 \mathrm{H}, J=9.9 \mathrm{~Hz}$, $10-\mathrm{H}), 1.60\left(\mathrm{br} \mathrm{dt}, 1 \mathrm{H}, J=10.0,1.6 \mathrm{~Hz}, 10-\mathrm{H}^{\prime}\right), 2.11(\mathrm{~m}, 1 \mathrm{H}, 9-\mathrm{H}), 2.23\left(\mathrm{~m}, 1 \mathrm{H}, 9-\mathrm{H}^{\prime}\right), 2.35(\mathrm{~m}, 1$ $\mathrm{H}, 1-\mathrm{H}), 2.57(\mathrm{~m}, 1 \mathrm{H}, 2-\mathrm{H}), 2.76(\mathrm{~m}, 1 \mathrm{H}, 6-\mathrm{H}), 2.90(\mathrm{dd}, 1 \mathrm{H}, J=11.9,7.7 \mathrm{~Hz}, 5-\mathrm{H}), 2.97$ (dd, 1 $\mathrm{H}, J=12.2,8.1 \mathrm{~Hz}, 3-\mathrm{H}), 3.42\left(\mathrm{~d}, 1.2 \mathrm{H}, J=12.0 \mathrm{~Hz}, 5-\mathrm{H}^{\prime}\right), 3.59\left(\mathrm{~d}, 0.8 \mathrm{H}, J=12.3 \mathrm{~Hz}, 3-\mathrm{H}^{\prime}\right), 3.98$ (d, $1 \mathrm{H}, J=4.8 \mathrm{~Hz}, 7-\mathrm{H}), 4.07-4.22\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right.$), 5.62 (br s, $0.2 \mathrm{H}, \mathrm{C}=\mathrm{CH}$), 5.65 (br s, 0.8 $\mathrm{H}, \mathrm{C}=\mathrm{CH}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 77: 23$ mixture of E / Z-isomers): $\delta=14.25\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$, $14.32\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 28.3\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 28.5\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 33.9(\mathrm{C}-9), 34.4(\mathrm{C}-9), 39.3(\mathrm{C}-1), 41.5(\mathrm{C}-10)$,
41.6 (C-2), 41.7 (C-10), 42.7 (C-2), 44.7 (C-6), 45.7 (C-3), 46.0 (C-3), 46.1 (C-6), 46.4 (C-5), 46.5 (C-5), $47.6(\mathrm{C}-7), 47.8(\mathrm{C}-7), 59.4\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 59.5\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 78.8\left[\mathrm{C}_{\left.\left(\mathrm{CH}_{3}\right)_{3}\right], 79.0\left[C\left(\mathrm{CH}_{3}\right)_{3}\right] \text {, }}\right.$ $112.7(\mathrm{C}=\mathrm{CH}), 113.2(\mathrm{C}=\mathrm{CH}), 153.3\left(\mathrm{CO}_{2} \mathrm{~N}\right), 153.6\left(\mathrm{CO}_{2} \mathrm{~N}\right), 163.4(\mathrm{C}-8), 165.2(\mathrm{C}-8), 166.7$ $\left(\mathrm{CO}_{2} \mathrm{CH}_{2}\right), 166.9\left(\mathrm{CO}_{2} \mathrm{CH}_{2}\right)$; IR (KBr): $\widetilde{v}=2976,2901,2871,1695,1661,1478,1418,1366,1240$, 1205, 1176, 1132, 1111, 1038, $876 \mathrm{~cm}^{-1}$; HRMS (ESI, pos.): m / z calcd for $\mathrm{C}_{18} \mathrm{H}_{27} \mathrm{NNaO}_{4}[\mathrm{M}+$ $\mathrm{Na}]^{+}: 344.1832$; found: 344.1832 .

6.2 Methyl (1S,2S,6R,7S,8S)-4-tert-butoxycarbonyl-4-azatricyclo[5.2.1.0 ${ }^{2,6}$]decane-8-acetate (V)

Powdered Mg ($251 \mathrm{mg}, 10.3 \mathrm{mmol}$) was added at rt to a solution of the $\alpha, \beta-$ unsaturated ester 20 ($1.66 \mathrm{~g}, 5.16 \mathrm{mmol}$) in anhydrous $\mathrm{MeOH}(52 \mathrm{~mL})$. After the gas evolution had ceased, this procedure was repeated several times until all starting material was consumed. The reaction was treated with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(40 \mathrm{~mL})$ and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(6 \times 40 \mathrm{~mL})$.

v

The organic layers were combined, dried over MgSO_{4}, and evaporated under reduced pressure. The methyl ester $\mathbf{V}(1.21 \mathrm{~g}, 3.91 \mathrm{mmol}, 76 \%)$ was isolated as a colorless oil after column chromatography (silica gel, n-pentane $/ \mathrm{Et}_{2} \mathrm{O} 3: 1 \rightarrow 3: 2$). $[\alpha]_{\mathrm{D}}^{20}=14.9\left(c=0.50, \mathrm{CHCl}_{3}\right) ; R_{\mathrm{f}}=0.37(n-$ pentane $/ \mathrm{Et}_{2} \mathrm{O} 2: 1$); ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}, 3: 2$ mixture of rotamers): $\delta=1.06(\mathrm{~m}, 1 \mathrm{H}, 9-\mathrm{H})$, $1.46\left[\mathrm{~m}, 10 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}, 10-\mathrm{H}\right], 1.56\left(\mathrm{~d}, 1 \mathrm{H}, J=9.6 \mathrm{~Hz}, 10-\mathrm{H}^{\prime}\right), 1.74\left(\mathrm{~m}, 1 \mathrm{H}, 9-\mathrm{H}^{\prime}\right), 2.25(\mathrm{~m}, 2 \mathrm{H}$, $1-\mathrm{H}, 7-\mathrm{H}), 2.32(\mathrm{~m}, 1 \mathrm{H}, 8-\mathrm{H}), 2.38-2.48\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHHCO}_{2}\right), 2.56\left(\mathrm{~m}, 3 \mathrm{H}, 2-\mathrm{H}, 6-\mathrm{H}, \mathrm{CH} H \mathrm{CO}_{2}\right)$, $3.01(\mathrm{dd}, 1 \mathrm{H}, J=12.3,8.2 \mathrm{~Hz}, 3-\mathrm{H}), 3.08(\mathrm{~m}, 1 \mathrm{H}, 5-\mathrm{H}), 3.50\left(\mathrm{br} \mathrm{d}, 0.4 \mathrm{H}, J=11.4 \mathrm{~Hz}, 5-\mathrm{H}^{\prime}\right), 3.55$ (br d, $\left.0.6 \mathrm{H}, J=11.9 \mathrm{~Hz}, 5-\mathrm{H}^{\prime}\right), 3.64\left(\mathrm{~m}, 3.6 \mathrm{H}, 3-\mathrm{H}^{\prime}, \mathrm{CO}_{2} \mathrm{CH}_{3}\right.$), 3.72 (br d, $0.4 \mathrm{H}, J=11.7 \mathrm{~Hz}, 3-$ $\left.\mathrm{H}^{\prime}\right) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}, 3: 2$ mixture of rotamers): $\delta=27.4(\mathrm{C}-9), 28.4\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 28.5$ [$\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 35.9\left(\mathrm{CH}_{2} \mathrm{CO}_{2}\right), 36.0\left(\mathrm{CH}_{2} \mathrm{CO}_{2}\right), 37.2(\mathrm{C}-8), 37.7(\mathrm{C}-8), 41.4(\mathrm{C}-1$ or C-7), $43.0(\mathrm{C}-2$ or C-6), 44.0 (C-10), 44.2 (C-2 or C-6), 44.6 (C-1 or C-7), 45.6 (C-5), 45.9 (C-5), 46.1 (C-3), 46.6 (C3), $51.3\left(\mathrm{CO}_{2} \mathrm{CH}_{3}\right), 79.3\left[C\left(\mathrm{CH}_{3}\right)_{3}\right], 79.4\left[C\left(\mathrm{CH}_{3}\right)_{3}\right], 154.2\left(\mathrm{CO}_{2} \mathrm{~N}\right), 174.2\left(\mathrm{CO}_{2} \mathrm{CH}_{3}\right), 174.5$ $\left(\mathrm{CO}_{2} \mathrm{CH}_{3}\right)$; IR (ATR): $\tilde{v}=2947,2876,1735,1692,1392,1365,1236,1164,1125,1097,875 \mathrm{~cm}^{-1}$; HRMS (ESI, pos.): m / z calcd for $\mathrm{C}_{17} \mathrm{H}_{27} \mathrm{NNaO}_{4}[\mathrm{M}+\mathrm{Na}]^{+}: 332.1832$; found: 332.1832.

6.3 (1S,2S,6R,7S,8S)-4-tert-Butoxycarbonyl-4-azatricyclo[5.2.1.0 ${ }^{2,6}$]decane-8-acetic acid (21)

A solution of $\mathbf{V}(1.12 \mathrm{~g}, 3.62 \mathrm{mmol})$ and $\mathrm{KOH}(4.06 \mathrm{~g}, 72.4 \mathrm{mmol})$ in aqueous $\mathrm{EtOH}(50 \%, 24 \mathrm{~mL})$ was refluxed for 1 d . Water $(30 \mathrm{~mL})$ was added at rt and the mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \times 30 \mathrm{~mL})$. The pH of the aqueous layer was adjusted to 4 by addition of $\mathrm{HCl}(1 \mathrm{~N})$. The white suspension was extracted with
 EtOAc $(2 \times 100 \mathrm{~mL})$ and the combined organic layers were dried over MgSO_{4} and evaporated under reduced pressure to provide the acid $21(959 \mathrm{mg}, 3.25 \mathrm{mmol}, 90 \%)$ as a colorless solid. $\mathrm{Dp}=160{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{20}=14.2\left(c=0.41, \mathrm{CHCl}_{3}\right) ; R_{\mathrm{f}}=0.24\left(n\right.$-pentane $\left./ \mathrm{Et}_{2} \mathrm{O} 1: 1\right) ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.05(\mathrm{~m}, 1 \mathrm{H}, 9-\mathrm{H}), 1.49\left[\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 1.53(\mathrm{dd}, 1 \mathrm{H}, J=9.8,1.3$ $\mathrm{Hz}, 10-\mathrm{H}), 1.59\left(\mathrm{~d}, 1 \mathrm{H}, J=9.5 \mathrm{~Hz}, 10-\mathrm{H}^{\prime}\right), 1.78\left(\mathrm{~m}, 1 \mathrm{H}, 9-\mathrm{H}^{\prime}\right), 2.29(\mathrm{~m}, 3 \mathrm{H}, 1-\mathrm{H}, 7-\mathrm{H}, 8-\mathrm{H}), 2.40$ $\left(\mathrm{m}, 1 \mathrm{H}, \mathrm{C} H \mathrm{HCO}_{2}\right), 2.53\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH} H \mathrm{CO}_{2}\right), 2.57-2.69(\mathrm{~m}, 2 \mathrm{H}, 2-\mathrm{H}, 6-\mathrm{H}), 2.98-3.14(\mathrm{~m}, 2 \mathrm{H}, 3-$
$\mathrm{H}, 5-\mathrm{H}), 3.53$ (m, $\left.1 \mathrm{H}, 3-\mathrm{H}^{\prime}\right), 3.74\left(\mathrm{~m}, 1 \mathrm{H}, 5-\mathrm{H}^{\prime}\right) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$, mixture of rotamers): $\delta=28.6(\mathrm{C}-9), 28.7\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 28.8(\mathrm{C}-9), 28.9\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 37.1\left(\mathrm{CH}_{2} \mathrm{CO}_{2}\right), 37.2$ $\left(\mathrm{CH}_{2} \mathrm{CO}_{2}\right), 38.8(\mathrm{C}-8), 39.1(\mathrm{C}-8), 42.8(\mathrm{C}-1), 44.4(\mathrm{C}-2), 44.5(\mathrm{C}-2), 45.0(\mathrm{C}-10), 45.4(\mathrm{C}-6), 45.7$ (C-7), $46.1(\mathrm{C}-7), 46.7(\mathrm{C}-3), 47.2(\mathrm{C}-3), 47.2(\mathrm{C}-5), 47.7(\mathrm{C}-5), 81.0\left[\mathrm{C}_{\left.\left(\mathrm{CH}_{3}\right)_{3}\right], 81.3\left[C\left(\mathrm{CH}_{3}\right)_{3}\right] \text {, }}\right.$ $156.0\left(\mathrm{CO}_{2} \mathrm{~N}\right), 177.2\left(\mathrm{CO}_{2} \mathrm{H}\right), 177.4\left(\mathrm{CO}_{2} \mathrm{H}\right)$; IR (ATR): $\widetilde{v}=3219,2939,2880,1733,1658,1421$, 1241, 1168, 1160, 1143, $1132 \mathrm{~cm}^{-1}$; HRMS (ESI, pos.): m / z calcd for $\mathrm{C}_{16} \mathrm{H}_{25} \mathrm{NNaO}_{4}[\mathrm{M}+\mathrm{Na}]^{+}$: 318.1676; found: 318.1676.

6.4 ($1 S, 2 S, 6 R, 7 S, 8 S$)-4-Azatricyclo $\left[5.2 .1 .0^{2,6}\right]$ decane-8-acetic acid hydrochloride (8a•HCl)

A suspension of the acid $21(154 \mathrm{mg}, 521 \mu \mathrm{~mol})$ in aqueous $\mathrm{HCl}(4.8 \mathrm{M}, 6.40 \mathrm{~mL})$ was refluxed for 1 d . The solution was concentrated under reduced pressure and the crude product was filtered through a pad of silica gel $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 1: 0 \rightarrow\right.$ 9:1). The amino acid $\mathbf{8 a} \cdot \mathrm{HCl}(86.0 \mathrm{mg}, 371 \mu \mathrm{~mol}, 71 \%)$ was obtained as a white solid. Crystallization from $\mathrm{MeOH} / \mathrm{Et}_{2} \mathrm{O}$ gave colorless cubic crystals. $\mathrm{Mp}=156-$
 $158{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{20}=7.5\left(c=1.0, \mathrm{CHCl}_{3}\right) ; R_{\mathrm{f}}=0.08(\mathrm{MeOH}) ;{ }^{1} \mathrm{H}$ NMR ($\left.600 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right): \delta=1.19$ (ddd, $1 \mathrm{H}, J=13.9,7.0,1.7 \mathrm{~Hz}, 9-\mathrm{H}), 1.76\left(\mathrm{~m}, 2 \mathrm{H}, 10-\mathrm{H}, 10-\mathrm{H}^{\prime}\right), 1.96\left(\mathrm{~m}, 1 \mathrm{H}, 9-\mathrm{H}^{\prime}\right), 2.36(\mathrm{~m}, 2 \mathrm{H}$, $1-\mathrm{H}, 7-\mathrm{H}), 2.51(\mathrm{~m}, 1 \mathrm{H}, 8-\mathrm{H}), 2.60\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CO}_{2}\right), 2.92(\mathrm{~m}, 2 \mathrm{H}, 2-\mathrm{H}, 6-\mathrm{H}), 3.25(\mathrm{~m}, 3 \mathrm{H}, 3-\mathrm{H}$, $\left.5-\mathrm{H}, 5-\mathrm{H}^{\prime}\right), 3.49\left(\mathrm{~m}, 1 \mathrm{H}, 3-\mathrm{H}^{\prime}\right) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): $\delta=28.4(\mathrm{C}-9), 37.9\left(\mathrm{CH}_{2} \mathrm{CO}_{2}\right)$, 39.0 (C-8), 41.3 (C-1), 44.7 (C-7), 45.7 (C-6), 46.1 (C-5), 46.8 (C-2), 47.0 (C-3), 47.1 (C-10), 174.9 $\left(\mathrm{CO}_{2} \mathrm{H}\right)$; IR (ATR): $\widetilde{v}=2883,2736,1733,1429,1320,1196,1175,1149,989,879 \mathrm{~cm}^{-1}$; HRMS (ESI, pos.): m / z calcd for $\mathrm{C}_{11} \mathrm{H}_{18} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}$: 196.1332; found: 196.1336.

6.5 N-[(4-Methylphenyl)sulfonyl] (1S,2S,6R,7S,8S)-4-tert-butoxycarbonyl-4-azatricyclo[5.2.1.0 ${ }^{2,6}$]decane-8-acetamide (VI)

A mixture of the acid 21 ($355 \mathrm{mg}, 1.20 \mathrm{mmol}$), DCC ($252 \mathrm{mg}, 1.20 \mathrm{mmol}$), and DMAP ($13.5 \mathrm{mg}, 120 \mu \mathrm{~mol})$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(6.0 \mathrm{~mL})$ was stirred at rt for 1 h. TsNH_{2} ($206 \mathrm{mg}, 1.20 \mathrm{mmol}$) was added and stirring was continued for 4 d . The suspension was filtered through a frit and washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 10 \mathrm{~mL})$.

VI The crude product mixture was filtered through a pad of silica gel $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 1: 0 \rightarrow 50: 1\right)$ to yield VI $(390 \mathrm{mg}, 870 \mu \mathrm{~mol}, 72 \%)$ as a white solid. $\mathrm{Mp}=84-86$ ${ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{21}=-15.7\left(c=0.1, \mathrm{CHCl}_{3}\right) ; R_{\mathrm{f}}=0.24\left(n\right.$-pentane $\left./ \mathrm{Et}_{2} \mathrm{O} 1: 1\right) ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $=0.88(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, 9-\mathrm{H}), 1.41(\mathrm{br} \mathrm{d}, 1 \mathrm{H}, J=9.5 \mathrm{~Hz}, 10-\mathrm{H}), 1.46\left[\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 1.50(\mathrm{br} \mathrm{d}, 1 \mathrm{H}, J$ $\left.=9.7 \mathrm{~Hz}, 10-\mathrm{H}^{\prime}\right), 1.75\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, 9-\mathrm{H}^{\prime}\right), 2.15(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, 7-\mathrm{H}), 2.22(\mathrm{t}, 1 \mathrm{H}, J=4.8 \mathrm{~Hz}, 1-\mathrm{H}), 2.28(\mathrm{~m}$, $1 \mathrm{H}, 8-\mathrm{H}), 2.36\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH} \mathrm{CONH}_{2}\right), 2.42\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{ArCH}_{3}\right), 2.46(\mathrm{~m}, 1 \mathrm{H}, 6-\mathrm{H}), 2.56(\mathrm{~m}, 1 \mathrm{H}, 2-\mathrm{H})$, $2.98(\mathrm{dd}, 1 \mathrm{H}, J=12.6,8.9 \mathrm{~Hz}, 5-\mathrm{H}), 3.07(\mathrm{t}, 1 \mathrm{H}, J=10.2 \mathrm{~Hz}, 3-\mathrm{H}), 3.48(\mathrm{~d}, 1 \mathrm{H}, J=12.1 \mathrm{~Hz}, 3-$ $\left.\mathrm{H}^{\prime}\right), 3.54\left(\mathrm{~d}, 1 \mathrm{H}, J=12.6 \mathrm{~Hz}, 5-\mathrm{H}^{\prime}\right), 7.30(\mathrm{~d}, 2 \mathrm{H}, J=8.1 \mathrm{~Hz}, \mathrm{Ar}), 7.93(\mathrm{~d}, 2 \mathrm{H}, J=8.3 \mathrm{~Hz}, \mathrm{Ar}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=21.7\left(\mathrm{ArCH}_{3}\right), 27.8(\mathrm{C}-9), 28.6\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 35.6(\mathrm{C}-8), 37.9$ $\left(\mathrm{CH}_{2} \mathrm{CONH}\right), 41.3$ (C-1), 42.8 (C-6), 43.8 (C-10), 44.0 (C-2), 44.1 (C-7), 45.9 (C-3), 46.2 (C-5), $80.1\left[C\left(\mathrm{CH}_{3}\right)_{3}\right], 128.4(\mathrm{Ar}), 129.4(\mathrm{Ar}), 136.0(\mathrm{Ar}), 144.6(\mathrm{Ar}), 154.8\left(\mathrm{CO}_{2} \mathrm{~N}\right), 170.7(\mathrm{CONH})$; IR
(ATR): $\widetilde{v}=2946,2875,1657,1412,1343,1240,1169,1130,1087,866 \mathrm{~cm}^{-1}$; HRMS (ESI, neg.): m / z calcd for $\mathrm{C}_{23} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{~S}[\mathrm{M}-\mathrm{H}]^{-}$: 447.1959; found: 447.1960.

6.6 N-[(4-Methylphenyl)sulfonyl] (1S,2S,6R,7S,8S)-4-azatricyclo[5.2.1.0 ${ }^{2,6}$]decane-8-acetamide hydrochloride $(\mathbf{8 b} \cdot \mathbf{H C l})$

The amide VI $(100 \mathrm{mg}, 223 \mu \mathrm{~mol})$ was dissolved in an ethereal solution of HCl $(1.0 \mathrm{M}, 8.50 \mathrm{~mL}, 8.50 \mathrm{mmol})$ and stirred for 20 h at rt . The precipitate formed was collected and dried to give $\mathbf{8 b} \cdot \mathrm{HCl}(36.3 \mathrm{mg}, 94.3 \mu \mathrm{~mol}, 42 \%)$ as a colorless solid. $\mathrm{Mp}=135-137^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{22}=-18.9(c=0.05, \mathrm{MeOH}) ; R_{\mathrm{f}}=0.56$ (MeOH); ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): $\delta=1.12$ (ddd, $1 \mathrm{H}, J=13.9,7.1,2.1$
 $\mathrm{Hz}, 9-\mathrm{H}$), 1.68 (dt, $1 \mathrm{H}, J=9.8,2.3 \mathrm{~Hz}, 10-\mathrm{H}), 1.71\left(\mathrm{dd}, 1 \mathrm{H}, J=9.9,1.7 \mathrm{~Hz}, 10-\mathrm{H}^{\prime}\right), 1.83(\mathrm{~m}, 1 \mathrm{H}$, 9-H'), 2.18 (br s, $1 \mathrm{H}, 7-\mathrm{H}$), 2.32 (br t, $1 \mathrm{H}, J=4.4 \mathrm{~Hz}, 1-\mathrm{H}$), 2.36 (m, $1 \mathrm{H}, 8-\mathrm{H}$), 2.44 (m, 4 H , CHHCONH, CH_{3}), 2.48 (dd, $1 \mathrm{H}, J=14.8,9.5 \mathrm{~Hz}, \mathrm{CHHCONH}$), $2.81-2.92(\mathrm{~m}, 2 \mathrm{H}, 2-\mathrm{H}, 6-\mathrm{H})$, 3.21 (m, 2 H, $3-\mathrm{H}, 5-\mathrm{H}), 3.26\left(\mathrm{dd}, 1 \mathrm{H}, J=12.5,8.6 \mathrm{~Hz}, 3-\mathrm{H}^{\prime}\right), 3.46(\mathrm{dd}, 1 \mathrm{H}, J=12.9,6.3 \mathrm{~Hz}, 5-$ H^{\prime}), 7.41 (dd, $\left.2 \mathrm{H}, J=8.6,0.7 \mathrm{~Hz}, \mathrm{Ar}\right), 7.89$ (dd, $\left.2 \mathrm{H}, J=8.5,1.9 \mathrm{~Hz}, \mathrm{Ar}\right)$; ${ }^{13} \mathrm{C}$ NMR (150 MHz , $\left.\mathrm{CD}_{3} \mathrm{OD}\right): \delta=21.6\left(\mathrm{CH}_{3}\right), 28.2(\mathrm{C}-9), 38.9(\mathrm{C}-8), 39.9\left(\mathrm{CH}_{2} \mathrm{CONH}\right), 41.2(\mathrm{C}-1), 44.6(\mathrm{C}-7), 45.5$ (C-6), 46.0 (C-3), 46.7 (C-2), 46.95 (C-5), 46.97 (C-10), 129.3 (Ar), 130.6 (Ar), 137.9 (Ar), 146.3 (Ar), 172.7 (CONH); IR (ATR): $\widetilde{v}=2950,1714,1595,1439,1338,1167,1085,855,815,660 \mathrm{~cm}^{-1}$; HRMS (ESI, pos.): m / z calcd for $\mathrm{C}_{18} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 349.15804$; found: 349.15804.

[^0]: 1. Armarego, W. L. F.; Perrin, D. D. Purification of Laboratory Chemicals, 4th ed., Butterworth-Heinemann, Oxford, 2000.
[^1]: 2. Michaelis, S.; Blechert, S. Chem.-Eur. J. 2007, 13, 2358-2368.
