Supporting Information

for

α,β -Aziridinylphosphonates by lithium amide-induced phosphonyl

migration from nitrogen to carbon in terminal aziridines

David M. Hodgson* and Zhaoqing Xu

Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford, OX1 3TA, UK; Fax +44(1865) 285002

Email: David M. Hodgson* - david.hodgson@chem.ox.ac.uk

* Corresponding author

Experimental and analytical data

Table of contents

Page	
S 3	General remarks
S4	General procedure A: synthesis of <i>N</i> -phosphonate aziridines 1
S4	Diethyl 2-butylaziridin-1-ylphosphonate 1a
S5	Diethyl 2-cyclohexylaziridin-1-ylphosphonate 1b
S5	Diethyl 2-(but-3-enyl)aziridin-1-ylphosphonate 1c
S 6	Diethyl 2-phenethylaziridin-1-ylphosphonate 1d
S 6	Diethyl 2-[4-(tert-butyldimethylsilyloxy)butyl]aziridin-1-ylphosphonate 1e
S 7	Diethyl 2-(4-chlorobutyl)aziridin-1-ylphosphonate 1f
S 7	Diethyl 2,2-dimethylaziridin-1-ylphosphonate 1g
S 8	Diethyl 2-[(tert-butyldimethylsilyloxy)methyl]aziridin-1-ylphosphonate 1h
S 9	Diethyl aziridin-1-ylphosphonate 1i
S 9	Diethyl 7-azabicyclo[4.1.0]heptan-7-ylphosphonate 1j
S 10	General procedure B: Synthesis of N-H aziridinylphosphonates 3
S 10	Diethyl ($2R^*, 3R^*$)-3-butylaziridin-2-ylphosphonate 3a
S 11	<i>tert</i> -Butyl $(2R^*, 3R^*)$ -2-butyl-3-(diethoxyphosphoryl) aziridine-1-carboxylate 14
S 11	Diethyl ($2R^*, 3R^*$)-3-(cyclohexyl)aziridin-2-ylphosphonate 3b
S 12	Diethyl ($2R^*, 3R^*$)-but-3-enylaziridin-2-ylphosphonate 3 c
S 12	Diethyl ($2R^*, 3R^*$)-3-(phenethyl)aziridin-2-ylphosphonate 3d
S 13	Diethyl ($2R^*, 3R^*$)-3-[4-(<i>tert</i> -butyldimethylsilyloxy)butyl]-aziridin-2-ylphosphonate 3e
S 14	Diethyl ($2R^*, 3R^*$)-3-(4-chlorobutyl)aziridin-2-ylphosphonate 3f
S 14	Diethyl 3,3-dimethylaziridin-2-ylphosphonate 3g
S15	(R)-1-Aminobutan-2-ol 16
S15	Diethyl (S)-2-ethylaziridin-1-ylphosphonate 1k
S 16	Diethyl (2S,3S)-3-ethylaziridin-2-ylphosphonate (–)-3k
S17	Diethyl (2S,3S)-1-benzoyl-3-ethylaziridin-2-ylphosphonate (+)-17
S18	Diethyl (S)-(2-aminobutyl)phosphonate (+)-18
S19	Diethyl (S)-2-benzamidobutylphosphonate (-)-19

S20 References

General remarks

All reactions requiring anhydrous conditions were performed in oven-dried or flame-dried glassware under an inert atmosphere (argon or nitrogen). CH₂Cl₂, Et₂O, and THF were degassed and dried over alumina, according to the procedure of Grubbs and co-workers [1]. 2,2,6,6-Tetramethylpiperidine was distilled from CaH₂ under reduced pressure. All other reagents were used as received unless otherwise stated. Reactions were monitored by TLC, using Merck aluminium-backed plates pre-coated with silica (0.25 mm, 60, F₂₅₄). The plates were visualised under UV light and developed using a solution of basic KMnO₄. Removal of solvent under reduced pressure was performed using Büchi rotary evaporators, achieving a minimum pressure of ca. 15 mbar, followed by drying at 0.1 mbar using an oil pump. Column chromatography was performed on silica [Kieselgel 60 (40–63 µm)]. Petroleum ether refers to the fraction boiling in the range 30– 40 °C. Optical rotations were measured using a Perkin-Elmer 241 polarimeter with a cell of path length 10.0 cm; concentrations are quoted in g/100 mL; specific rotations are given in 10^{-1} deg cm² g⁻¹. Infrared spectra were recorded on a Perkin-Elmer 1750 FTIR or a Bruker Tenso 27 FTIR spectrometer; absorptions are quoted in wave numbers (cm^{-1}) and are classified as s (strong), m (medium), w (weak) and/or br (broad); only selected absorptions are recorded. ¹H, ¹³C and ³¹P NMR spectra were recorded on Bruker DPX 200, DPX 250, DPX 400, DQX 400 or AMX 500 spectrometers; chemical shifts (δ) are quoted in parts per million, referenced to the residual solvent peak as an internal standard [2]; coupling constants (J) are quoted in Hz. High-resolution mass spectra were obtained by chemical ionisation (NH₃ and Na⁺) or by GC analysis with a BPX5 column-HP 6890 (dimethyl silicone capillary column, l = 30 m, $\phi = 0.25$ mm) equipped with a reflectron TOF mass spectrometer (60 eV, He flow rate = 1 mL min⁻¹). Chiral GC analyses were carried out using a CE Instruments Trace GC (Thermoquest) chromatograph, fitted with an SGE Cydex-B column. Chiral HPLC analyses were carried out using Daicel Chiracel OD, AD or OJ columns (l = 250 mm, diameter = 4.6 mm) on a Gilson System with 712 controller software and 188 UV/vis detector, operating at 255 or 224 nm.

General procedure A: synthesis of N-phosphonate aziridines 1 [3]

Alkene (3 mmol) was added to a stirred solution of $Br_2NPO(OEt)_2$ [4] (3 mmol) in CH_2Cl_2 (15 mL) under argon at room temperature. Following stirring for 4 h under UV irradiation (256 nm) at room temperature, the reaction mixture was cooled to 0 °C and NaH (6 mmol) was added slowly. Following stirring at 0 °C for 30 min, the suspension was warmed to room temperature and stirred for a further 1 h. CH_2Cl_2 (10 mL) and H_2O (10 mL) were added and the organic phase was washed with H_2O (2 × 10 mL). The organic phase was dried (MgSO₄) and evaporated under reduced pressure. Purification of the residue by column chromatography (EtOAc/CHCl₃) gave the *N*-phosphonate aziridines **1**.

Diethyl 2-butylaziridin-1-ylphosphonate 1a

Following **General procedure A** using 1-hexene (0.64 g, 7.6 mmol) gave, following purification of the resulting residue by column chromatography (EtOAc/CHCl₃ 1:2), aziridine **1a** [5] as a pale yellow oil (1.02 g, 57%). $R_{\rm f}$ 0.54 (EtOAc/CHCl₃ 1:2); $v_{\rm max}/{\rm cm}^{-1}$ 2933s, 2873m, 1651w, 1467w, 1394w, 1264s (P=O), 1034s and 967s; ¹H NMR (400 MHz, CDCl₃) δ 4.17–4.10 (4H, m, 2 × OCH₂), 2.35–2.33 (1H, m, NCH), 2.31 (1H, dd, *J* 18, 6, CH(*H*)N), 1.88 (1H, dd, *J* 10, 4, *CH*(H)N), 1.51–1.36 (6H, m, 3 × CH₂), 1.33 (6H, t, *J* 7, CH₃) and 0.90 (3H, t, *J* 7, CH₃); ¹³C NMR (100 MHz, CDCl₃) δ 63.2 (2 × POCH₂, t, *J*_{*C-P*} 8), 36.8 (CHN, d, *J*_{*C-P*} 7), 32.2 (*C*H₂CH), 30.8 (NCH₂, d, *J*_{*C-P*} 7), 29.0 (CH₂), 22.3 (*C*H₂CH₃), 16.3 (2 × OCH₂CH₃, t, *J*_{*C-P*</sup> 6) and 13.9 (CH₃); ³¹P NMR (162 MHz, CDCl₃) δ 16.3; MS CI *m*/*z* 236 (M + H⁺, 100), 220 (20), 193 (90), 166 (45), 150 (80), 136 (20) and 98 (35); HRMS calcd for C₁₀H₂₃NO₃³¹P, 236.1416, found 236.1419.}

Diethyl 2-cyclohexylaziridin-1-ylphosphonate 1b

Following **General procedure A** using vinylcyclohexane (330 mg, 3.0 mmol) gave, following purification of the resulting residue by column chromatography (EtOAc/CHCl₃ 1:2), aziridine **1b** as a pale yellow oil (256 mg, 33%). $R_{\rm f}$ 0.6 (EtOAc/CHCl₃ 1:2); $v_{\rm max}/{\rm cm}^{-1}$ 2927s, 1645w, 1450m, 1260s (P=O), 1165m (P–O–C), 1034s and 979s; ¹H NMR (400 MHz, CDCl₃) δ 4.18–4.10 (4H, m, 2 × OCH₂), 2.28 (2H, m, CHN, CH(*H*)N), 1.92 (1H, dt, *J* 14, 5, 3, C*H*(H)N), 1.84 (1H, d, *J* 11, CH), 1.77–1.65 (4H, m, 2 × CH₂), 1.33 (6H, t, *J* 7, 2 × OCH₃) and 1.23–1.08 (6H, m, 3 × CH₂); ¹³C NMR (100 MHz, CDCl₃) δ 63.2 (2 × OCH₂, t, *J_{C-P}* 7), 41.8 (CHN, d, *J_{C-P}* 6), 40.5 (CH, d, *J_{C-P}* 5), 30.6 (2 × CH₂), 29.7 (CH₂N, t, *J_{C-P}* 7), 26.2 (2 × CH₂), 25.7(CH₂) and 16.3 (2 × CH₃, d, *J_{C-P}* 6); ³¹P NMR(162 MHz, CDCl₃) δ 15.40; MS CI *m*/*z* 262 (M+H⁺, 100); HRMS calcd for C₁₂H₂₅NO₃³¹P, 262.1572, found 262.1581.

Diethyl 2-(but-3-enyl)aziridin-1-ylphosphonate 1c

Following **General procedure A** using 1,5-hexadiene (984 mg, 12.0 mmol, 2 equiv) gave, following purification of the resulting residue by column chromatography (EtOAc/CHCl₃ 1:2), aziridine **1c** as a pale yellow oil (505 mg, 36%). R_f 0.50 (EtOAc/CHCl₃ 1:2); v_{max} /cm⁻¹ 2933m, 1641s (C=C), 1369m, 1265s (P=O), 1032m and 800m; ¹H NMR (400 MHz, CDCl₃) δ 5.87–5.77 (1H, m, =CH), 5.01 (2H, dd, *J* 17, 10, CH₂=), 4.17–4.10 (4H, m, 2 × OCH₂), 2.54–2.44 (1H, m, NCH), 2.32 (1H, dd, *J* 12, 6, CH(*H*)N), 2.23–2.16 (2H, m, =CHC*H*₂), 1.90 (1H, dd, *J* 11, 4, C*H*(H)N), 1.60–1.54 (2H, m, CH₂) and 1.33 (6H, t, *J* 7, 2 × CH₃); ¹³C NMR (100 MHz, CDCl₃) δ 137.5 (=CH), 115.2 (CH₂=), 63.3 (POCH₂, d, *J*_{C-P} 2), 63.2 (POCH₂, d, *J*_{C-P} 2), 36.3 (CHN, d, *J*_{C-P} 7); ³¹P

NMR (162 MHz, CDCl₃) δ 15.2; MS CI *m*/*z* 234 (M+H⁺, 95), 154 (30), 126 (15), 98 (100) and 94 (30); HRMS calcd for C₁₀H₂₁NO₃³¹P, 234.1259, found 234.1251.

Diethyl 2-phenethylaziridin-1-ylphosphonate 1d

Following **General procedure A** using 4-phenyl–1-butene (933 mg, 3.0 mmol) gave, following purification of the resulting residue by column chromatography (EtOAc/CHCl₃ 1:2), aziridine **1d** as a pale yellow oil (600 mg, 71%). R_f 0.54 (EtOAc/CHCl₃ 1:2); v_{max}/cm^{-1} 2985m, 1455m, 1394m, 1264s (P=O), 1163m (P–O–C), 1031s, 968s and 700m; ¹H NMR (400 MHz, CDCl₃) δ 7.31–7.20 (5H, m, 5 × C_{Ar}H) , 4.20–4.12 (4H, m, 2 × OCH₂), 2.85–2.70 (2H, m, PhCH₂), 2.57–2.48 (1H, m, NCH), 2.33 (1H, dd, *J* 18, 6, CH(*H*)N), 1.89 (1H, dd, *J* 14, 3, C*H*(H)N), 1.83–1.79 (2H, m, C*H*₂CH) and 1.35 (6H, t, *J* 7, 2 × CH₃); ¹³C NMR (100 MHz, CDCl₃) δ 141.2 (C_{Ar quat}), 128.4 (2 × C_{Ar}), 128.3 (2 × C_{Ar}), 126.0 (C_{Ar}), 63.3 (2 × OCH₂, d, *J*_{C-P} 8), 36.4 (CHN, d, *J*_{C-P} 7), 34.4 (CH₂CHN), 33.2 (C_{Ar}CH₂), 30.9 (NCH₂, d, *J*_{C-P} 7) and 16.3 (2 × CH₃, d, *J*_{C-P} 6); ³¹P NMR (162 MHz, CDCl₃) δ 14.69; MS CI *m*/z 284 (M + H⁺, 100), 166 (5), 154 (20) and 148 (40); HRMS calcd for C₁₄H₂₃NO₃³¹P, 284.1416, found 284.1408.

Diethyl 2-[4-(tert-butyldimethylsilyloxy)butyl]aziridin-1-ylphosphonate 1e

Following **General procedure A** using *tert*-butyl(hex-5-enyloxy)dimethylsilane [6] (642 mg, 3.0 mmol) gave, following purification of the resulting residue by column chromatography (EtOAc/CHCl₃ 1:2), aziridine **1e** as a pale yellow oil (193 mg, 18%). R_f 0.63 (EtOAc/CHCl₃ 1:2); v_{max}/cm^{-1} 2931m, 2859s, 1472m, 1255s (P=O), 1103m (P–O–C) and 910s; ¹H NMR (400 MHz, CDCl₃) δ 4.18–4.11 (4H, m, 2 × OCH₂), 3.61 (2H, t, *J* 6, OCH₂), 2.51–2.44 (1H, m, NCH), 2.32

(1H, dd, *J* 12, 6, CH(*H*)N), 1.89 (1H, dd, *J* 10, 4, C*H*(H)N), 1.59–1.46 (6H, m, $3 \times CH_2$), 1.33 (6H, t, *J* 7, CH₃), 0.89 (9H, s, C(CH₃)₃) and 0.05 (6H, s, Si(CH₃)₃); ¹³C NMR (100 MHz, CDCl₃) δ 63.2 (2 × POCH₂, t, *J_{C-P}* 5), 62.9 (OCH₂), 36.8 (CHN, d, *J_{C-P}* 6), 32.4 (2 × CH₂, t, *J_{C-P}* 5), 30.9 (NCH₂, d, *J_{C-P}* 7), 25.9 (C(CH₃)₃), 23.3 (CH₂), 18.3 (SiC), 16.3 (CH₂CH₃, d, *J_{C-P}* 6) and -5.3 (Si(CH₃)₂); ³¹P NMR (162 MHz, CDCl₃) δ 15.2; MS CI *m*/*z* 366 (M + H⁺, 100), 351 (95), 234 (90), 228 (100) and 139 (40); HRMS calcd for C₁₆H₃₇NO₄Si³¹P, 366.2230, found 366.2226.

Diethyl 2-(4-chlorobutyl)aziridin-1-ylphosphonate 1f

Following **General procedure A** using 6-chloro-1-hexene (356 mg, 3.0 mmol) gave, following purification of the resulting residue by column chromatography (EtOAc/CHCl₃ 1:2), aziridine **1f** as a pale yellow oil (555 mg, 69%). R_f 0.48 (EtOAc/CHCl₃ 1:2); v_{max}/cm^{-1} 2986s, 1445m, 1394m, 1262s (P=O), 1164m, 1032s and 973s; ¹H NMR (400 MHz, CDCl₃) δ 4.18–4.11 (4H, m, 2 × OCH₂), 3.55 (2H, t, *J* 7, CICH₂), 2.49–2.44 (1H, m, NCH), 2.33 (dd, *J* 10, 6, 1H CH(*H*)N), 1.90 (1H, dd, *J* 10, 4, C*H*(H)N), 1.86–1.80 (2H, m, CICH₂CH₂), 1.63–1.40 (4H, m, 2 × CH₂) and 1.34 (6H, t, *J* 7, 2 × CH₃); ¹³C NMR (100 MHz, CDCl₃) δ 63.3 (2 × OCH₂ d, *J_{C-P}* 8), 44.8 (CICH₂), 36.5 (CHN, d, *J_{C-P}* 7), 32.0 (CH₂CH), 31.7 (CICH₂CH₂, d, *J_{C-P}* 5), 30.8 (NCH₂, d, *J_{C-P}* 7), 24.3 (CH₂) and 16.3 (2 × CH₃ t, *J_{C-P}* 6); ³¹P NMR (162 MHz, CDCl₃) δ 16.1; MS CI *m*/z 272 (³⁷ClM + H⁺, 15), 270 (³⁵Cl M + H⁺, 100) and 234 (30); HRMS calcd for C₁₀H₂₂NO₃³¹P³⁵Cl 270.1026, found 270.1020.

Diethyl 2,2-dimethylaziridin-1-ylphosphonate 1g

A solution of $Br_2NPO(OEt)_2$ [4] (1.87 g, 6.0 mmol) in CH_2Cl_2 (5 mL) was added dropwise to a saturated solution of isobutylene in CH_2Cl_2 (10mL) at room temperature at such a rate as to

maintain a slightly yellow colouration of the reaction mixture (~30 min). A slow stream of isobutylene was passed continuously through the solution and the resultant adduct was treated with NaOMe (15% solution in MeOH, 4.30 mL 12.0 mmol) at room temperature. Following stirring for 1 h, H₂O (10 mL) was added, the organic phase was washed with H₂O (2 × 10 mL), dried (MgSO₄) and evaporated under reduced pressure. Purification of the residue by column chromatography (EtOAc/CHCl₃ 1:2) gave aziridine **1g** [3,8] as a colourless oil (807 mg, 65%). R_f 0.55 (EtOAc/CHCl₃ 1:2); v_{max} /cm⁻¹ 2934m, 2360m, 1254s (P=O), 1149m (P=O=C) and 970s; ¹H NMR (400 MHz, CDCl₃) δ 4.15–4.08 (4H, m, 2 × OCH₂), 2.18 (1H, s, C(*H*)HN), 2.15 (1H, s, C(H)HN), 1.39 (6H, s, 2 × CH₃) and 1.32 (6H, t, *J* 7, 2 × CH₃); ¹³C NMR (100 MHz, CDCl₃) δ 62.9 (2 × OCH₂, d, *J*_{*C*·*P*} 7), 40.8 (CN, d, *J*_{*C*·*P*} 7), 38.6 (CH₂N, d, *J*_{*C*·*P*} 7), 23.1 (2 × CH₃, d, *J*_{*C*·*P*} 5) and 16.3 (2 × OCH₂CH₃, m, *J*_{*C*·*P*} 7); ³¹P NMR (162 MHz, CDCl₃) δ 12.4; MS CI *m*/*z* 208 (M + H⁺, 100), 131 (10) and 72 (15); HRMS calcd for C₈H₁₉NO₃³¹P, 208.1103, found 208.1102.

Diethyl 2-[(tert-butyldimethylsilyloxy)methyl]aziridin-1-ylphosphonate 1h

Following **General procedure A** using allyloxy(*tert*-butyl)dimethylsilane (516 mg, 3.0 mmol, Aldrich) gave, following purification of the resulting residue by column chromatography (EtOAc/CHCl₃ 1:2), aziridine **1h** as a pale yellow oil (436 mg, 45%). R_f 0.60 (EtOAc/CHCl₃ 1:2); v_{max}/cm^{-1} 2935m, 1470m, 1250s (P=O), 1100m (P–O–C) and 937s; ¹H NMR (400 MHz, CDCl₃) δ 4.20–4.12 (4H, m, 2 × OCH₂), 3.66–3.64 (2H, m, OCH₂), 2.72–2.64 (1H, m, NCH), 2.34 (1H, dd, *J* 11, 6, CH(*H*)N), 1.99 (1H, dd, *J* 11, 3, C*H*(H)N), 1.59–1.46 (6H, m, 3 × CH₂), 1.33 (6H, t, *J* 7, CH₃), 0.89 (9H, s, C(CH₃)₃) and 0.06 (6H, s, Si(CH₃)₃); ¹³C NMR (100 MHz, CDCl₃) δ 64.5 (OCH₂d, *J*_{*C*·*P*} 5), 63.4 (2 × POCH₂, t, *J*_{*C*·*P*} 7), 37.3 (CHN, d, *J*_{*C*·*P*} 6), 28.4 (NCH₂, d, *J*_{*C*·*P*} 7), 25.9 (C(*C*H₃)₃), 18.4 (SiC), 16.3 (CH₂CH₃, d, *J*_{*C*·*P*} 6) and -5.3 (Si(CH₃)₂); ³¹P NMR (162 MHz, CDCl₃) δ

14.5; MS CI m/z 324 (M + H⁺, 100), 309 (70) and 97 (25); HRMS calcd for C₁₃H₃₁NO₄Si³¹P, 324.1760, found 324.1762.

Diethyl aziridin-1-ylphosphonate 1i

Following the lit. procedure [7], from diethyl chlorophosphate (1.73 g, 10 mmol), 2chloroethylamine hydrochloride (1.16 g, 10 mmol) and Et₃N (2.8 mL, 20 mmol) in CH₂Cl₂ (50 mL) was obtained a residue which was purified by column chromatography (EtOAc/CHCl₃ 1:2) to give aziridine **1i** [7] as a colourless oil (1.15 g, 64%). R_f 0.60 (EtOAc/CHCl₃ 1:2); v_{max} /cm⁻¹ 2930s, 1645w, 1460w, 1264s (P=O), 1037s and 967s; ¹H NMR (400 MHz, CDCl₃) δ 4.16–4.09 (4H, m, 2 × OCH₂), 2.12 (4H, d, *J* 16, 2 × NCH₂) and 1.31 (6H, t, *J* 7, CH₃); ¹³C NMR (100 MHz, CDCl₃) δ 63.4 (2 × POCH₂, d, *J*_{C-P} 6), 24.3 (CH₂, d, *J*_{C-P} 7) and 16.3 (2 × OCH₂CH₃, t, *J*_{C-P} 6); ³¹P NMR (162 MHz, CDCl₃) δ 15.4; MS CI *m*/*z* 180 (M + H⁺, 100); HRMS calcd for C₆H₁₅NO₃³¹P, 180.0790, found 180.0799.

Diethyl 7-azabicyclo[4.1.0]heptan-7-ylphosphonate 1j

Following **General procedure A** using cyclohexene (246 mg, 3.0 mmol) gave, following purification of the resulting residue by column chromatography (EtOAc/CHCl₃ 1:2), aziridine **1j** [5] as a pale yellow oil (133 mg, 19%). $R_{\rm f}$ 0.55 (EtOAc/CHCl₃ 1:2); $v_{\rm max}$ /cm⁻¹ 2936s, 1444m, 1385m, 1232s (P=O), 1020s, 963s and 789; ¹H NMR (400 MHz, CDCl₃) δ 4.19–4.11 (4H, m, 2 × OCH₂), 2.61 (1H, t, *J* 4, NCH), 2.49 (1H, t, *J* 4, NCH), 1.98–1.77 (4H, m, 2 × CH₂), 1.66–1.60 (2H, m, CH₂), 1.55–1.43 (2H, m, CH₂) and 1.32 (6H, t, *J* 7, 2 × CH₃); ¹³C NMR (100 MHz, CDCl₃) δ 63.3 (2 × OCH₂ d, *J*_{C-P} 6), 34.5 (CHN, d, *J*_{C-P} 7), 24.2 (2 × CH₂), 20.0 (2 × CH₂) and 16.3 (2 × CH₃ t, *J*_C. $_{P}$ 6); ³¹P NMR (162 MHz, CDCl₃) δ 15.3; MS CI m/z 234 (M + H⁺, 100); HRMS calcd for C₁₀H₂₁NO₃³¹P 234.1259, found 234.1258.

General procedure B: synthesis of N-H aziridinylphosphonates 3

n-BuLi (1.6 M in hexanes, 2.30 mL, 3.7 mmol) was added dropwise to a stirred solution of TMP (0.63 mL, 3.7 mmol) in THF (15 mL) at -78 °C under argon. Following warming to room temperature for 30 min, the resulting solution was re-cooled to -78 °C and a solution of aziridine **1** (0.74 mmol) in THF (1 mL) was added dropwise over 1 min. Following stirring for 1–4 h at -78 °C, saturated aqueous NH₄Cl (2 mL) was added and the flask was warmed to room temperature. The aqueous phase was washed with Et₂O (3 × 10 mL), the combined organic phase was dried (MgSO₄) and then evaporated under reduced pressure. Purification of the residue by column chromatography (EtOAc/CHCl₃/MeOH 1:1:0.05, SiO₂) gave the aziridinylphosphonate **3**.

Diethyl (2R*,3R*)-3-butylaziridin-2-ylphosphonate 3a

Following **General procedure B** using aziridine **1a** (175 mg, 0.74 mmol) for 4 h gave, following purification of the resulting residue by column chromatography (EtOAc/CHCl₃/MeOH 1:1:0.05), aziridinylphosphonate **3a** as a pale yellow oil (159 mg, 91%). R_f 0.40 (EtOAc/CHCl₃/MeOH 1:1:0.05); v_{max}/cm^{-1} 3250br.m (N–H), 2932s, 1653w, 1458m, 1393w, 1233s (P=O), 1127s (P–O–C) and 968s; ¹H NMR (400 MHz, CDCl₃) δ 4.16–4.07 (4H, m, 2 × OCH₂), 2.33–2.31 (1H, m, CHN), 1.59 (1H, dd, ² J_{H-P} 18, ³ J_{H-H} 3, CHP), 1.51–1.32 (13H, m, 3 × CH₂, NH, 2 × OCH₂CH₃) and 0.89 (3H, t, *J* 7, CH₃); ¹³C NMR (100 MHz, CDCl₃) δ 62.3 (2 × OCH₂, t, J_{C-P} 7), 34.9 (CHN), 32.8 (CH₂CH), 29.5 (PCHN, d, J_{C-P} 139), 29.3 (CH₂), 22.3 (CH₂), 16.4 (2 × CH₃, d, J_{C-P} 3) and 13.9 (CH₃); ³¹P NMR (162 MHz, CDCl₃) δ 27.33; MS CI m/z 236 (M + H⁺, 100), 206 (83), 98 (99) and 84 (24); HRMS calcd for C₁₀H₂₃NO₃³¹P, 236.1416, found 236.1408.

tert-Butyl (2R*,3R*)-2-butyl-3-(diethoxyphosphoryl) aziridine-1-carboxylate 14

Di-*tert*-butyl dicarbonate (186 mg, 0.85 mmol) was added to a stirred solution of aziridinylphosphonate **3a** (50 mg, 0.21 mmol) and DMAP (29 mg, 0.23 mmol) in CH₂Cl₂ (5 mL) at 0 °C under argon. Following stirring for 2 h, the solution was warmed to room temperature and stirred for 48 h. Saturated aqueous NH₄Cl (2 mL) was added and the organic phase was washed with H₂O (2 mL), dried (Na₂SO₄) and evaporated under reduced pressure. Purification by column chromatography (EtOAc/CHCl₃ 1:2) gave *N*-Boc aziridine **14** as a pale yellow oil (61 mg, 85%). *R*_f 0.64 (EtOAc/CHCl₃ 1:2); v_{max}/cm^{-1} 2980s, 1725s (C=O), 1394m, 1321s, 1257s, 1160s (P=O), 1027s and 970s; ¹H NMR (400 MHz, CDCl₃) δ 4.24–4.13 (4H, m, 2 × OCH₂), 2.77–2.71 (1H, m, NCH), 2.30 (1H, dd, ²*J*_{*H*-*P*} 18.5, ³*J*_{*H*-*H*} 3.5, CHP), 1.58–1.25 (21H, m, C(CH₃)₃, 3 × CH₂, 2 × OCH₂C*H*₃) and 0.92 (3H, t, *J* 7, CH₃); ¹³C NMR (100 MHz, CDCl₃) δ 159.4 (C=O), 81.9 (OC), 62.9 (POCH₂, d, *J*_{*C*-*P*} 6), 62.4 (POCH₂, d, *J*_{*C*-*P*</sup> 6), 41.5 (CN, d, *J*_{*C*-*P*} 3), 35.3 (CHP, d, *J*_{*C*-*P*</sup> 197), 30.7 (CH₂CH), 28.9 (CH₂), 27.9 (C(CH₃)₃), 22.2 (CH₃CH₂), 16.4 (2 × OCH₂CH₃, t, *J*_{*C*-*P*</sup> 5) and 13.9 (CH₃); ³¹P NMR (162 MHz, CDCl₃) δ 21.22; MS CI *m*/*z* 336 (M + H⁺, 100); HRMS calcd for C₁₅H₃₀NNaO₅³¹P 358.1754, found 358.1756.}}}

Diethyl (2R*,3R*)-3-(cyclohexyl)aziridin-2-ylphosphonate 3b

Following **General procedure B** using aziridine **1b** (100 mg, 0.38 mmol, all other reagents were scaled accordingly) for 2 h gave, following purification of the resulting residue by column chromatography (EtOAc/CHCl₃/MeOH 1:1:0.05), aziridinylphosphonate **3b** as a pale yellow oil (79 mg, 79%). R_f 0.46 (EtOAc/CHCl₃/MeOH 1:1:0.05); v_{max}/cm^{-1} 3250br.m (N–H), 2927s, 1449m, 1234s (P=O), 1028s and 968s; ¹H NMR (400 MHz, CDCl₃) δ 4.17–4.09 (4H, m, 2 × OCH₂), 2.16

(1H, m, CHN), 1.88 (1H, d, *J* 12, CHP), 1.75–1.65 (6H, m, $3 \times CH_2$), 1.35 (6H, t, *J* 7, $2 \times CH_3$), 1.28–1.07 (5H, m, $2 \times CH_2$, NH) and 0.98–0.93 (1H, m, CHCH₂); ¹³C NMR (100 MHz, CDCl₃) δ 62.5 (OCH₂, d, *J*_{*C-P*} 6), 62.3 (OCH₂, d, *J*_{*C-P*} 6), 41.2 (CHN), 39.9 (CH), 30.9 (CH₂), 30.2 (CH₂), 27.3 (CP, d, *J*_{*C-P*} 201), 26.2 (CH₂), 25.8 (CH₂), 25.6 (CH₂) and 16.5 ($2 \times CH_3$, t, *J*_{*C-P*} 8); ³¹P NMR (162 MHz, CDCl₃) δ 26.87; MS CI *m*/*z* (rel. int.) 262 (M + H⁺, 100), 247 (20) and 124 (20); HRMS calcd for C₁₂H₂₅NO₃³¹P, 262.1572, found 262.1561.

Diethyl (2R*,3R*)-but-3-enylaziridin-2-ylphosphonate 3c

H O N = /_P(OEt)2

Following **General procedure B** using aziridine **1c** (100 mg, 0.43 mmol, all other reagents were scaled accordingly) for 2 h gave, following purification of the resulting residue by column chromatography (EtOAc/CHCl₃/MeOH 1:1:0.05), aziridinylphosphonate **3c** as a pale yellow oil (79 mg, 79%). R_f 0.45 (EtOAc/CHCl₃/MeOH 1:1:0.05); v_{max}/cm^{-1} 3212br.m (N–H), 2931m, 1641s (C=C), 1444m, 1237s (P=O), 1031m and 969s; ¹H NMR (400 MHz, CDCl₃) δ 5.87–5.79 (1H, m, =CH), 5.01 (2H, dd, *J* 17, 10, CH₂=), 4.16–4.08 (4H, m, 2 × OCH₂), 2.35 (1H, m, NCH), 2.23–2.17 (2H, m, =CHC*H*₂), 1.65–1.48 (4H, m, NH, CHP, CH₂) and 1.33 (6H, t, *J* 7, 2 × CH₃); ¹³C NMR (100 MHz, CDCl₃) δ 137.4 (=CH), 115.3 (CH₂=), 62.4 (2 × OCH₂, t, *J_{C-P}* 6), 34.4 (CH₂CHN), 32.5 (CH₂CHN), 31.3 (=CHCH₂), 28.7 (CP, d, *J_{C-P}* 188), 16.5 (CH₂CH₃, d, *J_{C-P}* 5) and 16.4 (CH₂CH₃, d, *J_{C-P}* 6); ³¹P NMR (162 MHz, CDCl₃) δ 26.3; MS CI *m*/*z* 234 (M + H⁺, 100), 219 (35) and 96 (90); HRMS calcd for C₁₀H₂₁NO₃³¹P, 234.1259, found 234.1251.

Diethyl (2R*,3R*)-3-(phenethyl)aziridin-2-ylphosphonate 3d

Following **General procedure B** using aziridine **1d** (100 mg, 0.35 mmol, all other reagents were scaled accordingly) for 2 h gave, following purification of the resulting residue by column

chromatography (EtOAc/CHCl₃/MeOH 1:1:0.05), aziridinylphosphonate **3d** as a pale yellow oil (87 mg, 87%). $R_{\rm f}$ 0.42 (EtOAc/CHCl₃/MeOH 1:1:0.05); $v_{\rm max}/{\rm cm}^{-1}$ 3248br.m (N–H), 2985s, 1604w, 1455m, 1234s (P=O), 1026s, 969s and 700m; ¹H NMR (400 MHz, CDCl₃) δ 7.29 (3H, m, 3 × C_{Ar}H), 7.21 (2H, m, 2 × C_{Ar}H), 4.17–4.08 (4H, m, 2 × OCH₂), 2.85–2.72 (2H, m, PhCH₂), 2.39 (1H, m, NCH), 1.82–1.73 (3H, m, CHP, CH₂), 1.35 (6H, t, *J* 7, 2 × CH₃) and 1.08 (1H, br.s, NH); ¹³C NMR (100 MHz, CDCl₃) δ 141.1 (C_{Ar quat}), 128.5 (2 × C_{Ar}), 128.4 (2 × C_{Ar}), 126.0 (C_{Ar}), 62.4 (2 × OCH₂, d, *J*_{C-P} 6), 34.4 (CHN), 33.7 (*C*H₂CHN), 33.4 (C_{Ar}CH₂), 28.5 (CHP, d, *J*_{C-P} 136) and 16.5 (2 × CH₃, t, *J*_{C-P} 6); ³¹P NMR (162 MHz, CDCl₃) δ 27.26; MS CI *m*/*z* 284 (M + H⁺, 100), 139 (30) and 146 (10); HRMS calcd for C₁₄H₂₃NO₃³¹P, 284.1410, found 284.1413.

Diethyl (2R*,3R*)-3-[4-(tert-butyldimethylsilyloxy)butyl]-aziridin-2-ylphosphonate 3e

Following **General procedure B** using aziridine **1e** (100 mg, 0.27 mmol, all other reagents were scaled accordingly) for 2 h gave, following purification of the resulting residue by column chromatography (EtOAc/CHCl₃/MeOH 1:1:0.05) aziridinylphosphonate **3e** as a pale yellow oil (95 mg, 95%). $R_{\rm f}$ 0.55 (EtOAc/CHCl₃/MeOH 1:1:0.05); $v_{\rm max}/{\rm cm}^{-1}$ 3249br.m (N–H), 2932m, 1858s, 1648w, 1473m, 1254m (P=O), 1100s (P–O–C), 1029m and 969s; ¹H NMR (400 MHz, CDCl₃) δ 4.17–4.10 (4H, m, 2 × OCH₂), 3.61 (2H, t, *J* 6, OCH₂), 2.35 (1H, br.s, CHN), 1.56–1.47 (8H, m, 3 × CH₂, CHP, NH), 1.35 (6H, t, *J* 7, 2 × OCH₂CH₃), 0.89 (9H, s, C(CH₃)₃) and 0.04 (6H, s, Si(CH₃)₂); ¹³C NMR (100 MHz, CDCl₃) δ 62.9 (2 × POCH₂, t, *J*_{*C*·*P*} 7), 62.4 (OCH₂), 34.7 (CHN), 32.8 (NCH*C*H₂), 32.4 (OCH₂*C*H₂), 28.5 (NCHP, d, *J*_{*C*·*P*} 182), 25.9 (C(*C*H₃)₃), 23.6 (CH₂), 18.3 (SiC), 16.4 (CH₂CH₃, t, *J*_{*C*·*P*} 6) and –5.3 (Si(CH₃)₂); ³¹P NMR (162 MHz, CDCl₃) δ 26.5; MS CI *m*/*z* (rel. int.) 366 (M + H⁺, 95), 351 (75), 234 (80) and 228 (100); HRMS calcd for C₁₆H₃₇NO4³¹PSi, 366.2230, found 366.2240.

Diethyl (2R*,3R*)-3-(4-chlorobutyl)aziridin-2-ylphosphonate 3f

Following **General procedure B** using aziridine **1f** (100 mg, 0.37 mmol, all other reagents were scaled accordingly) for 1 h gave, following purification of the resulting residue by column chromatography (EtOAc/CHCl₃/MeOH 1:1:0.05), aziridinylphosphonate **3f** as a pale yellow oil (87 mg, 87%). $R_{\rm f}$ 0.36 (EtOAc/CHCl₃/MeOH 1:1:0.05); $\nu_{\rm max}/{\rm cm}^{-1}$ 3246br.m (N–H), 2985s, 1445m, 1236s (P=O), 1164m (P–O–C), 1028s and 968s; ¹H NMR (400 MHz, CDCl₃) δ 4.18–4.10 (4H, m, 2 \times OCH₂), 3.55 (2H, t, *J* 7, ClCH₂), 2.38–2.31 (1H, m, CHN), 1.85–1.80 (2H, m, ClCH₂CH₂), 1.67–1.46 (6H, m, 2 \times CH₂, NH, CHP) and 1.36 (6H, t, *J* 7, CH₃); ¹³C NMR (100 MHz, CDCl₃) δ 63.5 (2 \times OCH₂ t, *J_{C-P}* 5), 44.8 (ClCH₂), 34.6 (CHN, d, *J_{C-P}* 7), 32.3 (*C*H₂CH), 32.1 (ClCH₂CH₂), 28.6 (CHP, d, *J_{C-P}* 189), 24.6 (CH₂) and 16.4 (2 \times CH₃, t, *J_{C-P}* 5); ³¹P NMR (162 MHz, CDCl₃) δ 25.88; MS CI *m*/*z* 272 (³⁵ClM + H⁺, 20) and 270 (³⁵ClM + H⁺, 100); HRMS calcd for C₁₀H₂₂NO₃³⁵Cl³¹P, 270.1026, found 270.1013.

Diethyl 3,3-dimethylaziridin-2-ylphosphonate 3g

Following **General procedure B** using aziridine **1g** (100 mg, 0.48 mmol, all other reagents were scaled accordingly) for 2 h gave, following purification of the resulting residue by column chromatography (EtOAc/CHCl₃/MeOH 1:1:0.05), aziridinylphosphonate **3g** as a pale yellow oil (58 mg, 58%). $R_{\rm f}$ 0.55 (EtOAc/CHCl₃/MeOH 1:1:0.05); $v_{\rm max}$ /cm⁻¹ 3271br.m (N–H), 2985m, 1650w, 1479m, 1234s (P=O), 1129m (P–O–C), 1025m and 798m; ¹H NMR (400 MHz, CDCl₃) δ 4.15–4.10 (4H, m, 2 × OCH₂), 1.70 (1H, d, *J* 15, CHP), 1.49 (3H, s, CH₃), 1.32 (6H, t, *J* 7, 2 × CH₃) and 1.26 (3H, s, CH₃); ¹³C NMR (100 MHz, CDCl₃) δ 62.2 (POCH₂, d, *J*_{C-P} 6), 62.0 (POCH₂, d, *J*_{C-P} 6), 37.6 (CN), 35.8 (CP, d, *J*_{C-P} 191), 26.8 (CH₃), 20.6 (CH₃) and 16.3 (2 × OCH₂CH₃); ³¹P NMR (162

MHz, CDCl₃) δ 25.4; MS CI *m*/*z* 208 (M + H⁺, 90), 100 (45), 70 (100) ; HRMS calcd for C₈H₁₉NO₃³¹P, 208.1103, found 208.1099.

(R)-1-Aminobutan-2-ol 16

Aq NH₄OH (6.0 mL, 25% w/v) was added to a stirred solution of (*R*)-1,2-epoxybutane (**15**) (0.86 mL, 10 mmol, Aldrich) in MeCN (2 mL) at room temperature. The colourless solution was heated in a sealed tube at 100 °C for 1 h [9]. Following cooling and evaporation, bulb-to-bulb distillation (9 mbar, 125 °C) gave the β-amino alcohol **16** as a colourless oil (622 mg, 70%). $[\alpha]^{20}_{D}$ = +7.3 (*c* 1.0, CHCl₃), lit. [10] $[\alpha]^{25}_{D}$ = +23.82 (*c* 7.63, MeOH); ν_{max}/cm^{-1} 3353br, m (N–H, O–H), 2928s, 2858m, 1577m, 1467m and 1074w; ¹H NMR (400 MHz, CDCl₃) δ 3.46–3.40 (1H, m, OCH), 2.80 (1H, dt, *J* 13, 4, 3, CH(*H*)N), 2.51 (1H, dt, *J* 10, 5, 4 C*H*(H)N), 2.24 (3H, br, NH₂, OH), 1.47–1.39 (2H, m, C*H*₂CH₃) and 0.94 (3H, t, *J* 8, CH₃); ¹³C NMR (100 MHz, CDCl₃) δ 73.4 (CHO), 46.9 (CH₂N), 27.6 (*C*H₂CH₃) and 10.0 (CH₃); MS FI *m*/*z* 90 (M + H⁺, 100) and 60 (40); HRMS calcd for C₄H₁₂NO, 90.0919, found 90.0917.

Diethyl (S)-2-ethylaziridin-1-ylphosphonate 1k

Diethyl chlorophosphate (1.95 mL, 13.5 mmol) was added to a stirred solution of the above prepared β -amino alcohol **16** (600 mg, 6.7 mmol) and Et₃N (2.81 mL, 20.2 mmol) in THF (60 mL) at room temperature under argon. Following stirring for 20 h, NaH (60% w/w dispersion in mineral oil, 1.62 g, 40.4 mmol) was added and the suspension was stirred for a further 16 h. H₂O (0.75 mL) was added and the suspension was filtered through a plug of MgSO₄ and washed with Et₂O (100 mL). Following removal of the solvent under reduced pressure, and column chromatography (EtOAc/CHCl₃ 1:2), aziridine **1k** was obtained as a pale yellow oil (725 mg, 52%). [α]²⁰_D = +2.32

(*c* 1.0, CHCl₃); $R_{\rm f}$ 0.55 (EtOAc/CHCl₃ 1:2); $v_{\rm max}/{\rm cm}^{-1}$ 2982s, 1466m, 1394m, 1260s (P=O), 1032s and 971s; ¹H NMR (400 MHz, CDCl₃) δ 4.16–4.09 (4H, m, 2 × OCH₂), 2.48–2.38 (1H, m, NCH), 2.29 (1H, dd, *J* 10, 6, CH(*H*)N), 1.88 (1H, dd, *J* 10, 4, C*H*(H)N), 1.57–1.40 (2H, m, CH₂), 1.31 (6H, t, *J* 7, 2 × OCH₂CH₃) and 0.98 (3H, t, *J* 8, CH₃); ¹³C NMR (100 MHz, CDCl₃) δ 63.2 (2 × OCH₂, t, *J*_{*C*-*P*} 7), 38.1 (CHN, d, *J*_{*C*-*P*} 6), 30.5 (CH₂N, d, *J*_{*C*-*P*} 7), 25.5 (CH₂, d, *J*_{*C*-*P*} 5), 16.3 (2 × OCH₂CH₃, d, *J*_{*C*-*P*</sup> 6) and 10.9 (CH₃); ³¹P NMR (162 MHz, CDCl₃) δ 15.3; MS CI *m*/*z* 208 (M + H⁺, 97), 154 (10), 100 (30), 72 (100) and 96 (90); HRMS calcd for C₈H₁₉NO₃³¹P, 208.1103, found 208.1101.}

Diethyl (2S,3S)-3-ethylaziridin-2-ylphosphonate (-)-3k

Following **General procedure B** using aziridine **1k** (100 mg, 0.48 mmol, all other reagents were scaled accordingly) for 4 h gave, following purification of the resulting residue by column chromatography (EtOAc/CHCl₃/MeOH 1:1:0.05), aziridinylphosphonate (–)-**3k** as a pale yellow oil (89 mg, 89%). The enantiomeric excess (>99% ee) was determined by chiral HPLC analysis of the benzoate derivative, see below. $[\alpha]^{20}_{D} = -16.5$ (*c* 1.0, CHCl₃); R_f 0.50 (EtOAc/CHCl₃/MeOH 1:1:0.05); v_{max}/cm^{-1} 3289br (N–H), 2985s, 1648m, 1464m, 1394m, 1227s (P=O) and 1026s; ¹H NMR (400 MHz, CDCl₃) δ 4.17–4.09 (4H, m, 2 × OCH₂), 2.32 (1H, br.s, CHN), 1.61–1.42 (4H, m, CHP, NH, CH₂), 1.34 (6H, t, *J* 7, 2 × OCH₂C*H*₃) and 1.01 (3H, t, *J* 8, CH₃); ¹³C NMR (100 MHz, CDCl₃) δ 62.4 (POCH₂, d, *J*_{*C*·P} 6), 62.3 (POCH₂, d, *J*_{*C*·P} 6), 36.1 (CHN), 28.2 (PC, d, *J*_{*C*·P} 186), 26.0 (CH₂), 16.4 (OCH₂CH₃, t, *J*_{*C*·P} 5) and 11.1 (CH₃); ³¹P NMR (162 MHz, CDCl₃) δ 26.5; MS CI *m*/*z* 208 (M + H⁺, 80), 98 (30), 72 (40) and 70 (100); HRMS calcd for C₈H₁₉NO₃³¹P, 208.1103, found 208.1103.

Diethyl (2S,3S)-1-benzoyl-3-ethylaziridin-2-ylphosphonate (+)-17

Benzoyl chloride (49 mg, 0.35 mmol) was added to a stirred solution of aziridinylphosphonate (-)-**3k** (60 mg, 0.29 mmol) and Et₃N (49 µL, 0.35 mmol) in CH₂Cl₂ (3 mL) at room temperature under argon. Following stirring for 2 h, H₂O (10 mL) was added and the aqueous phase was washed with CH_2Cl_2 (3 × 5 mL), the combined organic phase was dried (MgSO₄) and evaporated under reduced pressure. Purification of the residue by column chromatography (EtOAc/CHCl₃ 1:2) gave diethyl (2S,3S)-1-benzoyl-3-ethylaziridin-2-ylphosphonate (+)-**17** as a colourless oil (81 mg, 90%). $[\alpha]_{D}^{20}$ = +14.8 (c 1.0, CHCl₃); R_f 0.60 (EtOAc/CHCl₃ 1:2); v_{max}/cm⁻¹ 3289br.m (N–H), 2985s, 1678s (C=O), 1451w, 1254s (P=O), 1025s, 968m and 723m; ¹H NMR (400 MHz, CDCl₃) δ 8.05–8.03 (2H, m, 2 × $C_{Ar}H$), 7.58–7.54 (1H, m, $C_{Ar}H$), 7.47–7.43 (2H, m, 2 × $C_{Ar}H$), 4.20–4.09 (4H, m, 2 × OCH₂), 3.16–3.10 (1H, m, NCH), 2.66 (1H, dd, ²*J*_{*H-P*} 18, ³*J*_{*H-H*} 3.5, CHP), 1.77–1.66 (1H, m, CH₃C*H*(H)), 1.35 (3H, t, J7, OCH₂CH₃), 1.31 (3H, t, J7, OCH₂CH₃), 1.14–1.03 (1H, m, CH₃CH(H)) and 0.97 (3H, t, J 8, CH₃); ¹³C NMR (100 MHz, CDCl₃) δ 176.3 (C=O), 133.2 (CAr quat), 132.9 (2 × CAr), 129.1 (2 × CAr), 128.4 (CAr), 63.1 (OCH₂, d, J_{C-P} 6), 62.5 (OCH₂, d, J_{C-P} 6), 44.9 (CHN, d, J_{C-P} 4), 34.4 (PC, J_{C-P} 201), 24.3 (CH₂), 16.4 (OCH₂CH₃, t, J_{C-P} 6) and 11.0 (CH₃); ³¹P NMR (162 MHz, CDCl₃) δ 20.1; MS CI m/z 312 (M + H⁺, 15), 174 (100), 156 (40) and 105 (35); HRMS calcd for C₁₅H₂₃NO₄³¹P, 312.1365, found 312.1370.

The enantiomeric excess (>99%) was determined by chiral HPLC analysis, Chiralcel OJ-H column (250 × 4.6 mm), 98:2 hexane:*i*-PrOH, 0.25 ml/min. $t_R = 76.2$ min. Chiral HPLC analysis of racemic diethyl (2*R**,3*R**)-1-benzoyl-3-ethylaziridin-2-ylphosphonate **17**: Chiralcel OJ-H column, 98:2 hexane:*i*-PrOH, 0.25 ml/min. $t_R = 71.8$ and 90.1 min.

Diethyl (S)-(2-aminobutyl)phosphonate (+)-18

Ammonium formate (304 mg, 4.83 mmol) was added to a stirred suspension of aziridinylphosphonate (-)-**3k** (50 mg, 0.24 mmol) and 10% Pd/C (10 mg, 0.01 mmol) in MeOH (5 mL) at room temperature under argon. Following stirring at reflux for 16 h, the suspension was cooled and NH₄OH (25% aqueous solution) was added until pH > 8. The aqueous phase was washed with CH_2Cl_2 (3 × 5 mL), the combined organic phase was dried (MgSO₄) and evaporated under reduced pressure. Purification by column chromatography (CH₂Cl₂ to CH₂Cl₂/MeOH/NH₄OH 96:3:1) gave β -amino phosphonate (+)-18 as a colourless oil (34 mg, 68%). The enantiomeric excess (>99% ee) was determined by chiral HPLC analysis of the benzoate derivative, see below. $[\alpha]^{20}_{D} = +16.3$ (c 0.58, MeOH), lit. $[11] [\alpha]^{20}_{D} = +7.3$ (c 2.3, MeOH, 64% ee), lit. (ent.) $[12] [\alpha]^{20}_{D} = -3.9$ (c 0.71, CH₂Cl₂, 24% ee); $R_f 0.12$ (CH₂Cl₂/MeOH/NH₄OH 96:3:1); IR (neat) 3423br.m (N–H), 1643m, 1209w (P=O) and 1025m cm⁻¹; ¹H NMR (250 MHz, CD₃OD) δ 4.20–4.09 (4H, m, 2 × OCH₂), 3.14–3.04 (1H, m, CHN), 2.09–1.99 (1H, m, CH(H)P), 1.88–1.80 (1H, m, CH(H)P), 1.63–1.45 (2H, m, CH₂), 1.35 (6H, t, J 7, 2 × OCH₂CH₃), 0.97 (3H, t, J 8, CH₃); ¹³C NMR (100 MHz, CD₃OD) δ 63.6 (POCH₂, d, *J*_{C-P} 6), 48.7 (CHN, d, *J*_{C-P} 4), 33.6 (PCH₂, d, *J*_{C-P} 138), 31.7 (CH₂, d, J_{C-P} 14), 16.9 (2 × OCH₂CH₃, d, J_{C-P} 6), 10.5 (CH₃); ³¹P NMR (162 MHz, CD₃OD) δ 31.4; MS CI m/z 210 (M + H⁺, 100), 193 (30), 153 (35); HRMS calcd for C₈H₂₁NO₃³¹P, 210.1259, found 210.1256.

Diethyl (S)-2-benzamidobutylphosphonate (-)-19

Benzoyl chloride (32 mg, 0.23 mmol) was added to a stirred solution of β-amino phosphonate (+)- **18** (40 mg, 0.19 mmol) and Et₃N (32 μL, 0.23 mmol) in CH₂Cl₂ (3 mL) at room temperature under argon. Following stirring for 2 h, H₂O (10 mL) was added, the aqueous phase was washed with CH₂Cl₂ (3 × 5 mL), the combined organic phase was dried (MgSO₄) and evaporated under reduced pressure. Purification by column chromatography (EtOAc/CHCl₃ 1:2) gave diethyl (*S*)-2benzamidobutylphosphonate (-)-**19** as a colourless oil (54 mg, 91%). [α]²⁰_D = -28.6 (*c* 0.3, CHCl₃); *R*_f 0.36 (EtOAc/CHCl₃ 1:2); IR (neat) 3304br.m (N–H), 2934s, 1713s (C=O), 1579s, 1226s (P=O), 1053s, 959s and 712m cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.87–7.84 (2H, m, 2 × C_{Ar}H), 7.49– 7.38 (3H, m, 3 × C_{Ar}H), 4.48–4.32 (1H, m, NCH), 4.20–4.03 (4H, m, 2 × OCH₂), 2.17–2.11 (2H, m, PCH₂), 1.89–1.70 (2H, m, CH₂), 1.34 (3H, t, *J* 7, OCH₂C*H*₃), 1.28 (3H, t, *J* 7, OCH₂C*H*₃), 0.98 (3H, t, *J* 8, CH₃); ¹³C NMR (100 MHz, CDCl₃) δ 166.7 (C=O), 134.5 (C_{Ar quat}), 131.3 (2 × C_{Ar}), 128.5 (2 × C_{Ar}), 127.0 (C_{Ar}), 62.1 (OCH₂, *J*_{C-P} 6), 61.5 (OCH₂, *J*_{C-P} 6), 46.9 (CHN, *J*_{C-P} 6), 29.2 (CHP, *J*_{C-P} 139), 28.3 (CH₂, *J*_{C-P} 5), 16.4 (2 × OCH₂CH₃, t, *J*_{C-P} 6), 10.7 (CH₃); ³¹P NMR (162 MHz, CDCl₃) δ 30.3; MS CI *m*/z 314 (M + H⁺, 100), 193 (20), 131 (20), 122 (25), 103 (15), 87 (10); HRMS calcd for C₁₅H₂₅NO₄³¹P, 314.1521, found 314.1529.

The enantiomeric excess (>99%) was determined by chiral HPLC analysis, Chiralcel OJ-H column, 98:2 hexane:*i*-PrOH, 0.25 ml/min. $t_R = 156.2$ min. Chiral HPLC analysis of racemic diethyl 2-benzamidobutylphosphonate **19**: Chiralcel OD-H column, 98:2 hexane:*i*-PrOH, 0.25 ml/min. $t_R = 155.4$ and 181.7 min.

References

- Pangborn, A. B.; Giardello, M. A.; Grubbs, R. H.; Rosen, R. K.; Timmers, F. J. Organometallics 1996, 15, 1518–1520. doi:10.1021/om9503712
- Gottlieb, H. E.; Kotlyar, V.; Nudelman, A. J. Org. Chem. 1997, 62, 7512–7515.
 doi:<u>10.1021/jo971176v</u>
- 3. Zwierzak, A.; Zawadzki, S. Synthesis 1972, 416–417. doi: 10.1055/s-1972-21890
- Zawadzki, S.; Zwierzak, A. *Tetrahedron* 1973, 29, 315–320. doi:<u>10.1016/S0040-4020(01)93296-X</u>
- Osowska-Pacewicka, K.; Zwierzak, A. J. Prakt. Chem. 1986, 328, 441–444. doi:<u>10.1002/prac.19863280321</u>
- Brosius, A. D.; Overman, L. E.; Schwink, L. J. Am. Chem. Soc. 1999, 121, 700–709. doi:<u>10.1021/ja983013+</u>
- 7. Osowska-Pacewicka, K.; Zwierzak, A. Synthesis 1996, 333-335. doi: 10.1055/s-1996-4213
- Gajda, T.; Napieraj, A.; Osowska-Pacewicka, K.; Zawadzki, S.; Zwierzak, A. *Tetrahedron* 1997, *53*, 4935–4946. doi:10.1016/S0040-4020(97)00188-9
- Hodgson, D. M.; Humphreys, P. G.; Miles, S. M.; Brierley, C. A. J.; Ward, J. G. J. Org. Chem. 2007, 72, 10009–10021. doi:10.1021/jo701901t
- Wenghoefer, H. M.; Lee, K. T.; Srivastava, R. M.; Srimannarayana, G.; Clapp, L. B. J. *Heterocycl. Chem.* 1970, 7, 1407–1411. doi:<u>10.1002/jhet.5570070631</u>
- 11. Yuan, C.; Xu, C.; Zhang, Y. *Tetrahedron* **2003**, *59*, 6095–6102. doi:<u>10.1016/S0040-</u> <u>4020(03)00995-5</u>
- 12. Palacios, F.; Aparicio, D.; Ochoa de Retana, A. M.; de los Santos, J. M.; Gil, J. I.; López de Munain, R. *Tetrahedron: Asymmetry* 2003, 14, 689–700. doi:<u>10.1016/S0957-</u>4166(03)00089-2