

Supporting Information
for
Cross-metathesis of allylcarboranes with O-
allylcyclodextrins

Ivan Šnajdr¹, Zbyněk Janoušek², Jindřich Jindřich¹, and Martin Kotora*¹

Address: ¹Department of Organic and Nuclear Chemistry, Faculty of Science, Charles University in Prague, Hlavova 8, 128 43 Praha 2, Czech Republic and ²Institute of Inorganic Chemistry of the Academy of Science, v.v.i., Husinec-Řež 1001, 250 68 Řež, Czech Republic.

Email: Martin Kotora - kotora@natur.cuni.cz

* Corresponding author

**Experimental details and characterisation data of
peracetylated cyclodextrins 2a, 2b and 2c.**

General

2^l -O-allyl- β -cyclodextrin [1], and 3^l -O-allyl- β -cyclodextrin [2], and 6^l -O-allyl- β -cyclodextrin [3], were prepared according to the previously described procedures.

General Procedure for Peracetylation of Allylcyclodextrins.

Suspension of allylcyclodextrin (1 mmol) in acetic anhydride (0.47 mol) and triethylamine (0.36 mol) was stirred at 80 °C for 5 hours. After cooling to room

temperature, the reaction mixture was diluted by the addition of 0.5 M HCl (60 mL) and the extracted with CHCl_3 (3×50 mL). The combined organic extracts were dried over anhydrous Na_2SO_4 , concentrated in vacuo to give brown residue that was subsequently purified by column chromatography (silica gel, eluent: $\text{CHCl}_3/\text{MeOH}$, 100:1.)

Per-O-acetyl-2^l-O-allyl- β -cyclodextrin 2a. The compound was prepared from 2^l-O-allyl- β -cyclodextrin (1.92 g, 1.6 mmol). Column chromatography gave the title compound, 3.08 g (94%), as a white powder whose spectral data were in agreement with the published data [4].

Per-O-acetyl-3^l-O-allyl- β -cyclodextrin 2b: The compound was prepared from 3^l-O-allyl- β -cyclodextrin (0.48 g, 0.4 mmol). Column chromatography gave the title compound, 0.77 g (94%), as a white powder: m. p. 130.6 °C; $[\alpha]_D^{20} = +114.2$ ($c = 0.0026$ in MeOH); IR (KBr): $\tilde{\nu} = 2953, 1747, 1368, 1237, 1044 \text{ cm}^{-1}$; ^1H NMR (600 MHz, CDCl_3): $\delta = 5.91$ (ddt, $J = 17.2, 10.2, 5.4$ Hz, 1 H, H-2'), 5.47 (dd, $J = 9.0, 1.2$ Hz, 1 H, H-3), 5.35-5.23 (m, 6 H, 5 \times H-3, H-3'b), 5.14-5.10 (m, 2 H, H-3'a, H-1), 5.08-5.01 (m, 6 H, 6 \times H-1), 4.80-4.66 (m, 7 H, 7 \times H-2), 4.58 (dd, $J = 12.6, 1.2$ Hz, 1 H, H-6), 4.55-4.45 (m, 6 H, 5 \times H-6, H-1'a), 4.36 (dd, $J = 12.6, 4.2$ Hz, 1 H, H-6'), 4.29-4.02 (m, 14 H, H-1'b, 7 \times H-6, 6 \times H-5), 3.91-3.88 (m, 1 H, H-5'), 3.79 (dd, $J = 9.0, 1.2$ Hz, 1 H, H-3^l), 3.76-3.64 (m, 6 H, 6 \times H-4), 3.56 (t, $J = 9.0$ Hz, 1 H, H-4^l), 2.12-1.97 (m, 60 H, 20 \times CH_3); ^{13}C NMR (150 MHz, CDCl_3): $\delta = 170.87$ -169.31 (20 \times C=O), 135.49 (C-2'), 115.88 (C-3'), 97.58 (C-1^l), 97.35 (C-1), 97.34 (C-1), 97.07 (C-1), 96.61 (C-1), 96.33 (C-1), 96.26 (C-1), 80.94 (C-4^l), 77.51-69.24 (7 \times C-2, 6 \times C-3, 6 \times C-4, 7 \times C-5), 77.43 (C-3^l), 74.71 (C-1'), 62.40 (C-6^l), 62.72-62.33 (6 \times C-6),

21.12–20.71 (20 \times CH₃); MS (EI, *m/z* (rel.%)): 2038.4 (100), 1851.3 (18), 1030.8 (62), 937.8 (10).

Per-O-acetyl-6¹-O-allyl- β -cyclodextrin 2c. The compound was prepared from 6¹-O-allyl- β -cyclodextrin (8 g, 6.8 mmol). Column chromatography gave the title compound, 13.16 g (96%), as a white powder whose spectral data were in agreement with the published data [1].

References

1. Jindrich, J.; Pitha, J.; Lindberg, B.; Seffers, P.; Harata, K. *Carbohydr. Res.* **1995**, 266, 75–80. doi:[10.1016/0008-6215\(94\)00251-A](https://doi.org/10.1016/0008-6215(94)00251-A)
2. Masurier, N.; Estour, F.; Lefèvre, B.; Brasme, B.; Masson, P.; Lafont, O. *Carbohydr. Res.* **2006**, 341, 935–940. doi:[10.1016/j.carres.2006.02.012](https://doi.org/10.1016/j.carres.2006.02.012)
3. Jindřich, J.; Tišlerová, I. *J. Org. Chem.* **2005**, 70, 9054–9055. doi:[10.1021/jo051339c](https://doi.org/10.1021/jo051339c)
4. Řezanka, M., Eignerová, B., Jindřich, J., Kotora, K. *Eur. J. Org. Chem.* **2010**, 6256–6262. doi: [10.1002/ejoc.201000807](https://doi.org/10.1002/ejoc.201000807)