Supporting Information

for

Syntheses and properties of thienyl-substituted

dithienophenazines

Annemarie Meyer^{§1}, Eva Sigmund^{§1}, Friedhelm Luppertz¹, Gregor Schnakenburg², Immanuel Gadaczek³, Thomas Bredow^{*3}, Stefan-S. Jester¹ and Sigurd Höger ^{*1}

Address: ¹Kekulé-Institut für Organische Chemie und Biochemie, Rheinische Friedrich-Wilhelms-Universität Bonn, Gerhard-Domagk-Str. 1, 53121 Bonn, Germany; ²Institut für Anorganische Chemie, Rheinische Friedrich-Wilhelms-Universität Bonn, Gerhard-Domagk-Str. 1, 53121 Bonn, Germany and ³Institut für Physikalische und Theoretische Chemie, Rheinische Friedrich-Wilhelms-Universität Bonn, Wegelerstr. 12, 53115 Bonn, Germany

Email: Sigurd Höger - hoeger@uni-bonn.de; Thomas Bredow - bredow@thch.uni-bonn.de

^{*}Corresponding author

[§]Both authors contributed equally to this publication

Table of contents

Experimental methods and characterization		S2
Figure 1	¹ H NMR spectrum of 4	S12
Figure 2	¹³ C NMR spectrum of 4	S12
Figure 3	Crystal structures of 4	S13
Crystal data of 4		S14
Figure 4	Crystal structures of 7	S15
Crystal data of 7		S16
Figure 5	¹ H NMR spectrum of 8	S17
Figure 6	¹³ C NMR spectrum of 8	S17
Figure 7	¹ H NMR spectrum of 10a	S18
Figure 8	¹ H NMR spectrum of 10b	S18
Figure 9	¹³ C NMR spectrum of 10b	S19
Figure 10	¹ H NMR spectrum of 11a	S19
Figure 11	¹³ C NMR spectrum of 11a	S20
Figure 12	¹ H NMR spectrum of 11b	S20
Figure 13	¹³ C NMR spectrum of 11b	S21
Figure 14	¹ H NMR spectrum of 12b	S21
Figure 15	¹ H NMR spectrum of 13	S22
Figure 16	¹³ C NMR spectrum of 13	S22
Figure 17	¹ H NMR spectrum of 14	S23
Figure 18	¹³ C NMR spectrum of 14	S23
Figure 19	¹ H NMR spectrum of 15	S24
Figure 20	¹ H NMR spectrum of 16	S24
Figure 21	¹ H NMR spectrum of 17a	S25
Figure 22	¹ H NMR spectrum of 17b	S25
Figure 23	¹ H NMR spectrum of 18	S26
Figure 24	¹³ C NMR spectrum of 18	S26
Figure 25	Absorption (solid line) and emission (dotted line) spectra of quaterthiophene (red) and sexithiophene (black) in CH ₂ Cl ₂	S27
References	, , , , , , , , , , , , , , , , , , , ,	S27

Experimental section

Materials and equipment: All water and air sensitive manipulations were carried out under an argon atmosphere by standard Schlenk techniques. Tetrahydrofuran (THF) was distilled over Na and benzophenone under Ar. Dichloromethane (CH₂Cl₂) was distilled over CaH₂ under Ar. 3,3'-Thenil (**2**) [1], benzo[1,2-*b*:4,3-*b*']dithiophene-7,8-quinone (**7**) [2] and 1,2-diamino-4,5-dihexylbenzol (**9b**) [3] were prepared according to literature procedures. All other commercially available solvents and chemicals

were of reagent grade and used as received. ¹H NMR and ¹³C NMR spectra were recorded on Bruker DPX 300, DPX 400 or DPX 500 spectrometers (300, 400 and 500 for ¹H and 75, 100 and 125 MHz for ¹³C, respectively). Chemical shifts are given in parts per million (ppm) referring to tetramethylsilane (TMS). Mass spectra were measured on a Finnigan ThermoQuest MAT 95 XL (EI-MS), AEI MS-5 (EI-HRMS) and a Bruker Daltronics autoreflex TOF/TOF (MALDI-MS; matrix material: DCTB, no salts added). ICR MALDI data (recorded on a Bruker Daltonics Apex IV FT-ICR) are given for the high-molecular weight materials. m/z peaks smaller than 10% (compared to the basis peak) are not reported. UV-vis absorption spectra were recorded on a Shimadzu UV-2100 spectrometer with 10 mm quartz cuvettes. Fluorescence experiments were carried out on a Horiba Jobin Yvon FluoroMax-4 spectrofluorometer in all-transparent quartz cuvettes by monochromatic excitation at the indicated wavelength. All samples were prepared with appropriate concentrations in dichloromethane. Thin layer chromatography was conducted on silica gel coated aluminium plates (Macherey-Nagel, Alugramm SIL G/UV₂₅₄ 0.25 mm coating with fluorescence indicator). Silica gel 60 M (Macherey-Nagel, 0.040-0.063 mm) was used as the stationary phase for column chromatography. A Shimadzu Recycling GPC System, equipped with a LC-20 AD pump, a SPD-20 A UV detector and a set of three preparative columns from PSS (10^3 Å, 5 μ , 20 × 300 mm) was employed for purification.

STM investigations were performed, with an Agilent 5500 AFM/STM, operated in ambient conditions. Briefly, $2-4 \,\mu\text{L}$ of $10^{-4}-10^{-5} \,\text{M}$ solutions of the respective substance in 1,2,4-trichlorobenzene were dropped onto a freshly cleaved HOPG interface. All measurements were done in situ with bias voltages between $-(0.4-1.6) \,\text{V}$ and tunneling currents in the range of 2–100 pA. In one case molecular self-assembly was observed.

Images were calibrated against a graphite atomic lattice using SPIP (ImageMetrology). Molecular geometries were calculated by force field methods, and adsorbate layers were simulated using Spartan 108 (Wavefunction, Inc.).

Crystal structure determination of 4 and 7: Suitable orange needle-like single crystals of 4 were grown from dichloromethane at ambient temperature. Suitable red plate-like single crystals of 7 were grown from dichloromethane at ambient temperature. The data collection of 4 was carried out on a STOE IPDS-2T diffractometer (area detector) equipped with a low-temperature device (Cryostream

700er series, Oxford Cryosystems, 123(2) K). The data collection of **7** was carried out on a Nonius KappaCCD diffractometer (area detector) equipped with a low-temperature device (Cryostream 600er series, Oxford Cryosystems, 123(2) K). Graphite monochromated Mo- K_{α} radiation (λ = 0.71073 Å) was used. Intensities were measured by fine-slicing ω - and φ -scans and corrected for background, polarization and Lorentz effects. Semi-empirical absorption corrections from equivalent reflections according to Blessing's method [4] were applied for the data sets. The structures were solved by direct methods and refined anisotropically by the least-squares procedure implemented in the SHELX program system [5]. The hydrogen atoms were included isotropically using the riding model on the bound carbon atoms. The illustrations of the molecular structures were prepared with Diamond 2.1c [6] CCDC 771987 (4), and CCDC 771988 (7) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data request/cif.

3,3'-Thenil (2): A solution of ethyllithium (59 mL, 1.7 M in dibutyl ether, 0.1 mol) in dry diethyl ether (200 mL) under argon was cooled to -78 °C and stirred. 3-Bromothiophene (1) (16.3 g, 0.1 mol) was added drop wise. Then, a solution of dimethyl oxalate (5.9 g, 0.05 mol) in 150 mL dry diethyl ether was added drop wise via a transfer cannula and the solution was stirred for 2 h at -78 °C. The reaction mixture was warmed to 0 °C and quenched by slowly adding an aqueous sulphuric acid solution (5%). The organic layer separated and was washed successfully with aqueous Na₂CO₃ solution (5%), water and brine, then dried over MgSO₄, filtered and the solvents were removed under vacuum. Purification of the crude product on silica gel (petroleum ether 40/60:CH₂Cl₂ = 1:1, R_f = 0.49) gave 3.71 g (0.033 mol, 33%) of **2** as a yellow solid. ¹H NMR (400 MHz, CDCl₃) δ ppm 8.36 (dd, J = 4.0 Hz, J = 1.6 Hz, 2H), 7.70 (dd, J = 6.8 Hz, J = 1.6 Hz, 2H), 7.39 (dd, J = 6.8 Hz, J = 1.6 Hz, 2H). ¹³C NMR (75 MHz, CDCl₃) δ ppm 185.7, 137.6, 137.7, 127.5, 126.9. MS: (EI) m/z (%) = 222.0 (11) [M⁺⁻], 111.0 (100), 83 (10). EI HRMS: m/z (M⁺) (calcd: 221.9809 g/mol) found: 221.9806. Chemical formula: C₁₀H₆O₂S₂. M_w: 222.28 g/mol.

Benzo[2,1-b:3,4-b']dithiophene-7,8-quinone (3): A solution of 3,3'-thenil (2) (570 mg, 2.6 mmol) in dry dichloromethane (150 mL) was stirred vigorously under argon at rt. A solution of FeCl₃ (880 mg, 5.4 mmol) in nitromethane (25 mL) was

added drop wise and the mixture was stirred over night. Water was added, the organic layer was separated and washed with saturated aqueous NH₄Cl solution and brine, dried over MgSO₄, filtered and the solvents were removed under vacuum. Purification of the crude product on silica gel with CH₂Cl₂ as eluent (R_f = 0.32) gave 405 mg (1.8 mmol, 71%) of **3** as a black solid. ¹H NMR (400 MHz, CDCl₃) δ ppm 7.51 (d, J = 4.4 Hz, 2H), 7.22 (d, J = 4.4 Hz, 2H). ¹³C NMR (125 MHz, CDCl₃) δ ppm 174.6, 143.9, 135.1, 127.8, 125.6. MS (EI): m/z (%) = 219.9 (77) [M⁺⁻], 192.0 (100), 164.0 (15). EI HRMS: m/z (M⁺) (calcd: 219.9652 g/mol) found: 219.9649. Chemical formula: C₁₀H₄O₂S₂. M_w: 220.27 g/mol.

2,5-Dibrombenzo[2,1-*b*:3,4-*b*']dithiophene-7,8-quinone (4): 3 (400 mg, 1.8 mmol) was dissolved in chloroform (9.5 mL) and acetic acid (10 mL) and cooled to 0 °C. A solution of bromine (595 mg, 3.7 mmol) diluted 1:10 (vol.) in chloroform was slowly added. After complete addition the reaction mixture was heated to reflux for 5 h. After cooling to rt the mixture was diluted with aqueous Na₂S₂O₃ solution. The organic layer was separated and washed successfully with saturated aqueous NaHCO₃ solution and brine, then dried over MgSO₄, filtered and concentrated under vacuum. Column chromatography of the crude product on silica gel with CH₂Cl₂ as eluent (R_f = 0.45) gave 650 mg (1.7 mmol, 95%) of **4** as a black solid. ¹H NMR (400 MHz, CDCl₃) δ ppm 7.46 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ ppm 172.6, 143.6, 135.4, 130.1, 114.6. MS (EI): m/z (%) = 375.8 (45) [M⁺⁻], 349.8 (100), 270.8 (62), 161.9 (53), 81.0 (16). EI HRMS: m/z (M⁺) (calcd: 375.7863 g/mol) found: 375.7867. Chemical formula: C₁₀H₂Br₂O₂S₂. M_w: 378.06 g/mol.

3,3'-Bithiophene (6): 5 (3.96 g, 30.93 mmol), **1** (4.58 g, 28.10 mmol), Na₂CO₃ (17.82 g, 168.10 mmol), toluene (140 mL), ethanol (35 mL) and water (35 mL) were purged with argon for 1.5–2 h. Pd(PPh₃)₄ (320 mg, 0.28 mmol) was added and the reaction mixture was heated to reflux for 20 h, cooled to rt, poured into water and extracted with dichloromethane. The organic layer was washed successfully with water (2x), saturated aqueous NaHCO₃ solution and brine, then dried over MgSO₄, filtered and concentrated on a rotary evaporator. The crude product was purified by column chromatography on silica gel (petroleum ether 40/60:CH₂Cl₂ = 2:1, R_f = 0.60) to give 4.06 g (24.40 mmol, 87%) of **6** as colorless crystals. ¹H NMR (400 MHz, CDCl₃) δ ppm 7.38 (dd, J = 1.46 Hz, J = 2.79 Hz, 2H), 7.35 (dd, J = 2.90 Hz, J = 5.05

Hz, 2H), 7.34 (dd, J = 1.49 Hz, J = 5.03 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ ppm 137.2, 126.3, 126.0, 119.7. MS (EI): m/z (%) = 165.9 (100) [M⁺⁻], 134.0 (10), 121.0 (25), 82.9 (10). EI HRMS: m/z (M⁺) (calcd: 165.9905 g/mol) found: 162.9911. Chemical formula: C₈H₆S₂. M_w: 166.26 g/mol.

Benzo[1,2-*b*:4,3-*b*]dithiophen-7,8-quinone (7): To a solution of **6** (1.96 g, 11.79 mmol) in 1,2-dichloroethane (25 mL) oxalyl chloride (0.60 mL, 6.99 mmol) was added. The reaction mixture was stirred for 5 d under reflux. Then another portion of oxalyl chloride (0.60 mL, 6.99 mmol) was added and the solution was stirred for additional 5 d under reflux. The mixture was cooled to rt and stored over night. A red precipitate was collected and washed with *n*-hexane and warm ethanol to afford 2.20 g (9.98 mmol, 85%) of **7**. ¹H NMR (400 MHz, CDCl₃) δ ppm 7.82 (d, J = 4.97 Hz, 2H), 7.29 (d, J = 4.97 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ ppm 173.8, 142.4, 138.5, 135.0, 124.8. MS: (EI) m/z (%) = 219.9 (75) [M⁺⁻], 191.9 (100), 163.9 (25). EI HRMS: m/z (M⁺) (calcd: 219.9647 g/mol) found: 219.9651. Chemical formula: C₁₀H₄O₂S₂. M_w: 220.27 g/mol.

2,5-Dibromo-benzo[1,2-*b*:4,3-*b*]dithiophene-7,8-quinone (8): The synthesis was performed analogous to the synthesis of **4** (CH₂Cl₂, R_f = 0.56). **8** was obtained as a red solid (yield: 97%). ¹H NMR (400 MHz, CDCl₃) δ ppm 7.23 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ ppm 173.9, 141.5, 138.3, 128.8, 127.8. MS (EI): m/z (%) = 375.8 (40) [M⁺⁻], 349.8 (100), 321.8 (10), 242.8 (15), 161.9 (20), 80.9 (15). EI HRMS: m/z (M⁺) (calcd: 375.7857 g/mol) found: 375.7864. Chemical formula: C₁₀H₂Br₂O₂S₂. M_w: 380.08 g/mol.

2,5-Dibromo-9,10-dimethyldithieno[3,2-*a*:**2**',**3**'-*c*]**phenazine (10a)**: A solution of **4** (267 mg, 0.7 mmol) and **9a** (88 mg, 0.6 mmol) in acetic acid (25 mL) was stirred at 50 °C for 2 h and over night at rt. The yellow precipitate was filtered and washed with methanol. The crude product was purified by chromatography on silica gel (petroleum ether 40/60:CH₂Cl₂ = 2:1, R_f = 0.68) to yield 310 mg (0.7 mmol, 93%) of **10a** as a yellow solid. ¹H NMR (400 MHz, CDCl₃) δ ppm 8.49 (s, 2H), 8.12 (s, 2H), 2.61 (s, 6H). MS (EI): m/z (%) = 475.9 (47) [M⁺⁻], 462.9 (11), 396.9 (11). EI HRMS: m/z (M⁺) (calcd: 475.8647 g/mol) found: 475.8651. Chemical formula: C₁₈H₁₀Br₂N₂S₂. M_w: 478.22 g/mol.

- **2,5-Dibrom-9,10-dihexyldithieno[3,2-***a*:**2**',**3**'-*c*]**phenazine (10b):** The synthesis was carried out analogous to the synthesis of **10a** (petroleum ether 40/60:CH₂Cl₂ = 1:1, R_f = 0.76). **10b** was obtained as an orange solid (yield: 53%). ¹H NMR (400 MHz, CDCl₃) δ ppm 8.36 (s, 2H), 8.03 (s, 2H), 2.89 (t, J= 7.8 Hz, 4H), 1.84–1.76 (m, 4H), 1.56–1.48 (m, 4H), 1.41–1.35 (m, 8H), 0.94 (t, J= 7.2 Hz, 6H). ¹³C NMR (75 MHz, CDCl₃) δ ppm 145.3, 140.7, 137.4, 134. 8, 134.6, 127.4, 127.1, 112.9, 33.0, 31.8, 30.3, 29.5, 22.7, 14.1. MS (EI): m/z (%) = 616.0 (49) [M⁺⁻], 476.8 (31). ICR MALDI: m/z (M⁺) (calcd: 616.0212 g/mol) found: 616.0289. Chemical formula: C₂₈H₃₀Br₂N₂S₂. M_w: 618.49 g/mol.
- **2,5-Dibromo-9,10-dimethyldithieno[2,3-***a*:**3**',**2**'-*c*]phenazine (11a): The synthesis was carried out analogous to the synthesis of **10a** (petroleum ether 40/60:CH₂Cl₂ = 2:1, R_f = 0.52). **11a** was obtained as a yellow solid (yield: 50%). ¹H NMR (400 MHz, CDCl₃) δ ppm 8.01 (s, 2H), 7.66 (s, 2H), 2.57 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ ppm 167.8, 161.2, 155.2, 140.9, 136.4, 128.2, 126.0, 125.4, 20.6. MS (EI): m/z (%) = 475.9 (100) [M⁺⁻], 460.9 (10), 394.8 (5). EI HRMS: m/z (M⁺) (calcd: 475.8647 g/mol) found: 475.8652. Chemical formula: C₁₈H₁₀Br₂N₂S₂. M_w: 478.22 g/mol.
- **2,5-Dibromo-9,10-dihexyldithieno[2,3-a:3',2'-c]phenazine (11b):** The synthesis was carried out analogous to the synthesis of **10a** (petroleum ether 40/60:CH₂Cl₂ = 2:1, R_f = 0.25). **11b** was obtained as a yellow solid (yield: 63%). ¹H NMR (400 MHz, CDCl₃) δ ppm 7.98 (s, 2H), 7.59 (s, 2H), 2.87 (t, J = 7.7 Hz, 4H), 1.83–1.74 (m, 4H), 1.55–1.46 (m, 4H), 1.45–1.33 (m, 8H), 0.93 (t, J = 7.1 Hz, 6H). ¹³C NMR (75 MHz, CDCl₃) δ ppm 144.9, 141.0, 139.2, 136.1, 135.6, 129.8, 127.2, 123.1, 33.0, 31.8, 30.4, 29.46, 22.6, 14.1. MS (EI): m/z (%) = 616.0 (50) [M⁺⁻], 538.1 (20), 402.0 (40). EI HRMS: m/z (M⁺) (calcd: 616.0212 g/mol) found: 616.0211. Chemical formula: C₂₈H₃₀Br₂N₂S₂. M_w: 616.02 g/mol.
- **2,5-Dithienyl-9,10-dimethyldithieno[3,2-a:2',3'-c]phenazine (12a):** The synthesis was carried out analogous to the synthesis of **6** (petroleum ether 40/60:CH₂Cl₂ = 1:1, $R_f = 0.28$). **12a** was obtained as an orange solid (yield: 23%). NMR measurements were not possible due to its low solubility. MS (EI): m/z (%) = 484.0 (100) [M⁺⁻], 402.0 (7), 242.0 (14). EI HRMS: m/z (M⁺) (calcd: 484.0196 g/mol) found: 484.0203. Chemical formula: C₂₆H₁₆N₂S₄. M_w: 484.68 g/mol.

2,5-Dithienyl-9,10-dihexyldithieno[3,2-a:2',3'-c]phenazine (12b): The synthesis was carried out analogous to the synthesis of **6.** Purification of the crude product on silica gel (petroleum ether 40/60:CH₂Cl₂ = 2:1, R_f = 0.29) did not give satisfactory results. Purification by rec-GPC gave **12b** as an orange solid (yield: 36%). ¹H NMR (400 MHz, CDCl₃) δ ppm 8.42 (m, 4H), 8.08 (s, 2H), 8.04 (s, 2H), 7.56 (d, J = 5.3 Hz, 2H), 2.89 (t, J = 7.9 Hz, 4H), 1.84–1.76 (m, 4H), 1.55–1.48 (m, 4H), 1.40–1.38 (m, 8H), 0.94 (t, J = 6.8 Hz, 3H), 0.93 (t, J = 6.8 Hz, 3H). MS (EI): m/z (%) = 624.2 (100) [M⁺⁻], 540.1 (27), 483.0 (24), 460.2 (7). ICR MALDI: m/z (M⁺) (calcd: 624.1761 g/mol) found: 624.1756. Chemical formula: $C_{36}H_{36}N_2S_4$. M_w : 624.18 g/mol.

2,5-Bisdithienyl-9,10-dihexyldithieno[3,2-a:2',3'-c]phenazine (13): The synthesis was carried out analogous to the synthesis of **6** (petroleum ether 40/60:CH₂Cl₂ = 2:1, $R_{\rm f} = 0.62$). **13** was obtained as a red solid (yield: 26%). ¹H NMR (400 MHz, CDCl₃) δ ppm 8.36 (s, 2H), 8.15 (s, 2H), 7.25 (dd, 2H, J = 5.0 Hz), 7.16 (dd, 2H, J = 3.4 Hz), 7.08 (d, 2H, J = 3.6 Hz), 7.03 (dd, 2H, J = 5.0 Hz), 6.98 (d, 2H, J = 3.7 Hz), 2.88 (t, J = 8.0 Hz, 4H), 1.83–1.77 (m, 4H), 1.53–1.51 (m, 4H), 1.45–1.35 (m, 8H), 0.94 (t, J = 6.0 Hz 6H). ¹³C NMR (100 MHz, CDCl₃) δ ppm 137.8, 136.8, 136.8, 136.7, 136.7, 134.9, 128.0, 125.8, 125.3, 124.8, 124.8, 124.3, 124.3, 124.1, 124.0, 120.1, 33.0, 31.8, 29.8, 29.6, 22.7, 14.1. MS (EI): m/z (%) = 788.1 (7) [M⁺⁻], 624.1 (100). ICR MALDI m/z (M⁺) (calcd: 788.1516 g/mol) found: 788.1515. Chemical formula: C₄₄H₄₀N₂S₆. M_w: 789.19 g/mol.

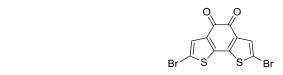
2,5-(3-Hexyl)bisthienyl-9,10-dihexyldithieno[3,2-a:2',3'-c]phenazine (14): 10b (100 mg, 0.16 mmol), 3-hexyl-thiophene-2-boronic acid pinacol ester (190 mg, 0.65 mmol), aqueous Cs_2CO_3 solution (1M; 2 mL) and toluene (5.5 mL) were purged with argon for 1.5–2 h. $Pd(PPh_3)_4$ (10 mg, 8.0 µmol) was added and the reaction mixture was heated to reflux for 20 h, cooled to rt, poured into water and extracted with dichloromethane. The organic layer was washed successfully with water (2x), saturated aqueous $NaHCO_3$ solution and brine, then dried over $MgSO_4$, filtered and evaporated. Purification of the crude product on silica gel (petroleum ether $40/60:CH_2Cl_2 = 2:1$, $R_f = 0.64$) did not give satisfactory results. Purification by *rec*-GPC gave 25 mg (0.03 mmol, 19%) of **14** as an orange solid. 1H NMR (400 MHz, $CDCl_3$) δ ppm 8.47 (s, 2H), 8.13 (s, 2H), 7.29 (d, J = 5.2 Hz, 2H), 7.02 (d, J = 5.2 Hz,

2H), 2.95 (t, J = 6.4 Hz, 4H), 2.91 (t, J = 6.4 Hz, 4H), 1.85–1.78 (m, 4H), 1.78–1.72 (m, 4H), 1.53–1.50 (m, 4H), 1.47–1.44 (m, 4H), 1.40–1.38 (m, 8H), 1.37–1.34 (m, 8H), 0.93 (t, J = 5.6 Hz, 6H), 0.89 (t, J = 5.6 Hz, 6H). ¹³C NMR (125 MHz, CDCl₃) δ ppm 145.2, 140.9, 140.6, 139.0, 135.5, 135.0, 134.6, 130.2, 130.2, 127.2, 124.8, 123.0, 33.1, 31.8, 31.7, 30.6, 30.5, 29.7, 29.5, 29.4, 29.2, 22.6, 22.6, 14.11. MS (EI): m/z (%) = 792.4 (100) (M⁺⁺), 721.4 (9). ICR MALDI: m/z (M⁺) (calcd: 792.3639 g/mol) found: 792.3634. Chemical formula: C₄₈H₆₀N₂S₄. M_w: 793.26 g/mol.

2,5-(5-Hexyl)-bisdithienyl-9,10-dihexyldithieno[3,2-a:2',3'-c]phenazine (15): 10b (200 mg, 0.3 mmol), 5-hexyl-dithiophene-2-boronic acid pinacol ester (487 mg, 1.3 mmol), Aliquat 336 (60 mg, 0.15 mmol), aqueous Na₂CO₃ solution (2M; 4.5 mL) and toluene (20 mL) were purged with argon for 1.5–2 h. Pd(PPh₃)₄ (10 mg, 9 μmol) was added and the reaction mixture was heated to reflux for 20h, cooled to rt, poured into water and extracted with dichloromethane. The organic layer was successfully washed with aqueous 0.1 M HCl, saturated aqueous Na₂CO₃ solution and brine, then dried over MgSO₄, filtered and evaporated. Purification of the crude product on silica gel (petroleum ether 40/60:CH₂Cl₂ = 2:1, $R_{\rm f}$ = 0.56) gave 65 mg (0.06 mmol, 21%) of **15** as a red solid. ¹H NMR (400 MHz, CDCl₃) δ ppm 8.00 (s, 2H), 7.86 (s, 2H), 6.94 (dd, 4H, J = 2.8 Hz, J = 3.2 Hz), 6.84 (d, 2H, J = 3.6 Hz), 6.68 (d, 2H, J = 3.6 Hz), 2.81 (t, 4H, J = 7.6 Hz), 2.65 (t, 4H, J = 7.6 Hz), 1.76–1.68 (m, 8H), 1.45–1.36 (m, 24H), 0.95 (t, J = 6.8 Hz, 6H), 0.94 (t, J = 6.8 Hz, 6H). MS (MALDI-pos, DCTB): m/z (%) = 956.3 (100) (M⁺⁻). ICR MALDI: m/z (M⁺) (calcd: 956.3393 g/mol) found: 956.3388. Chemical formula: C₅₆H₆₄N₂S₆. M_w: 957.51 g/mol.

2,5-Dithienyl-9,10-dimethyldithieno[2,3-*a*:3',2'-*c*]phenazine (16): The synthesis was carried out analogous to the synthesis of **6** (petroleum ether 40/60:CHCl₃ = 1:4, $R_f = 0.40$). **16** was obtained as an orange solid (yield: 49%). ¹H NMR (400 MHz, CDCl₃) δ ppm 8.08 (s, 2H), 7.77 (s, 2H), 7.46 (dd, 2H, J = 0.9Hz, J = 3.6 Hz), 7.37 (dd, 2H, J = 0.9 Hz, J = 5.1 Hz), 7.13 (dd, 2H, J = 3.6 Hz, J = 5.1 Hz), 2.57 (s, 6H). MS (EI): m/z (%) = 484.0 (100) [M⁺⁻], 469.0 (5), 402.0 (5), 242.0 (20). EI HRMS: m/z (M⁺) (calcd: 484.0191 g/mol) found: 484.0185. Chemical formula: C₂₆H₁₆N₂S₄. M_w: 484.68 g/mol.

2,5-Bisbithienyl-9,10-dimethyldithieno[2,3-*a*:3',2'-*c*]phenazine (17a): The synthesis was carried out analogous to the synthesis of **6**. **17a** was obtained as a red solid (recrystallization from *o*-xylene) (yield: 15%). ¹H NMR (400 MHz, DMSO-d₆) δ ppm 8.29 (s, 2H), 7.99 (s, 2H), 7.61 (dd, J = 0.8Hz, J = 5.0 Hz, 2H), 7.55 (d, J = 3.8 Hz, 2H), 7.43 (dd, J = 1.0 Hz, J = 3.5 Hz, 2H), 7.38 (d, J = 3.8 Hz, 2H), 7.17 (dd, J = 3.7 Hz, J = 4.9 Hz, 2H), 2.52 (s, 6H). MS: (MALDI-pos, *DCTB*) m/z (%) = 648.0 (100) [M⁺⁻]. ICR MALDI. m/z (M⁺) (calcd: 647.9945 g/mol) found: 647.9946. Chemical formula: $C_{34}H_{20}N_2S_6$. M_w : 648.93 g/mol.


2,5-Bisbithienyl-9,10-dihexyldithieno[2,3-*a*:3',2'-*c*]phenazine (17b): The synthesis was carried out analogous to the synthesis of **6.** The crude product of **17b** was obtained as a red solid (yield: 19%). An analytical sample could only be obtained by purification via *rec*-GPC. ¹H NMR (400 MHz, CDCl₃) δ ppm 8.03 (s, 2H), 7.72 (s, 2H), 7.32 (d, J = 3.76 Hz, 2H), 7.27 (dd, J = 5.11, 1.08 Hz, 2H), 7.24 (dd, J = 3.57, 1.00 Hz, 2H), 7.16 (d, J = 3.77 Hz, 2H), 7.06 (dd, J = 3.77, 5.08 Hz, 2H), 2.86 (t, J = 7.78 Hz, 4H), 1.86–1.72 (m, 4H), 1.54–1.45 (m, 4H), 1.42–1.35 (m, 8H), 0.93 (t, J = 6.48 Hz, 6H). MS (MALDI-pos, DCTB): m/z (%) = 788.2 (100) [M⁺]. ICR MALDI: m/z (M⁺) (calcd: 788.1510 g/mol) found: 788.1511. Chemical formula: $C_{44}H_{40}N_2S_6$. M_w : 789.19 g/mol.

2,5-(5-Hexyl)bisdithienyl-9,10-dihexyldithieno[2,3-a:3',2'-c]phenazine (18): 11b (455 mg, 0.74 mmol), 5-hexyl-dithiophene-2-boronic acid pinacol ester (835 mg, 2.22 mmol), Aliquat 336 (100 mg, 0.25 mmol), aqueous Na₂CO₃ solution (2M; 5 mL) and toluene (15 mL) were purged with argon for 1.5–2 h. Pd(PPh₃)₄ (80 mg, 70 μmol) was added and the reaction mixture was heated to reflux for 20 h, cooled to rt, poured into water and extracted with dichloromethane. The organic layer was washed successfully with water (2x), saturated aqueous NaHCO₃ solution and brine, dried over MgSO₄, filtered and evaporated. Purification of the crude product on silica gel (petroleum ether 40/60:CH₂Cl₂ = 2:1, R_f = 0.42) gave 400 mg (0.42 mmol, 56%) of 18 as a red solid. ¹H NMR (400 MHz, CD₂Cl₂) δ ppm 7.57 (s, 2H), 6.92 (d, J = 3.45 Hz, 2H), 6.91 (s, 2H), 6.86 (d, J = 3.63 Hz, 2H), 6.76 (d, J = 3.67 Hz, 2H), 6.70 (d, J = 3.47 Hz, 2H), 2.83 (t, J = 7.65 Hz, 4H), 2.53 (t, J = 7.47 Hz, 4H), 1.77–1.62 (m, 16H), 1.42–1.35 (m, 16H), 0.96 (t, J = 6.56 Hz, 6H), 0.95 (t, J = 7.11 Hz, 6H). ¹³C NMR (100 MHz, CD₂Cl₂) δ ppm 145.7, 144.2, 140.3, 139.9, 137.6, 137.6, 134.9, 134.8,

134.4, 132.9, 125.6, 125.2, 124.9, 123.4, 123.1, 117.2, 32.6, 32.1, 31.7, 31.7, 30.3, 29.8, 29.3, 29.0, 22.9, 22.8, 14.1, 14.0. MS (MALDI-pos, *DCTB*): m/z (%) = 956.3 (100) [M⁺⁻]. ICR MALDI: m/z (M⁺) (calcd: 956.3388 g/mol) found: 956.3388. Chemical formula: $C_{56}H_{64}N_2S_6$. M_w : 957.51 g/mol.

Quaterthiophene (19): The synthesis was carried out analogous to the synthesis of **6** (petroleum ether 40/60:CH₂Cl₂ = 5:1, R_f = 0.48). **19** was obtained as a yellow solid (yield: 48%). ¹H NMR (400 MHz, CDCl₃) δ ppm 7.22 (dd, ³J = 5.2 Hz, ⁴J = 1.2 Hz, 2H), 7.18 (dd, ³J = 5.2 Hz, ⁴J = 1.2 Hz, 2H), 7.08 (dd, ³J = 5.2 Hz, ⁴J = 3.8 Hz, 4H), 7.02 (dd, ³J = 5.2 Hz, ⁴J = 3.6 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ ppm 137.0, 136.3, 135.8, 127.9, 124.5, 124.3, 124.2, 123.7. MS (EI): m/z (%) = 330.0 (20) [M⁺⁻], 272.2 (50), 165.0 (20), 149.0 (100). EI HRMS: m/z (M⁺) (calcd: 329.9660 g/mol) found: 329.9661. Chemical formula: C₁₆H₁₀S₄. M_w: 330.51 g/mol.

Sexithiophene (20): The synthesis was carried out analogous to the synthesis of **6** (petroleum ether 40/60:CH₂Cl₂ = 5:1, R_f = 0.45). **20** was obtained as an orange solid (yield: 15%). NMR measurements were not possible due to its low solubility. MS (EI) m/z (%) = 493.8 (100) [M⁺⁻], 329.9 (10), 246.9 (20). EI HRMS: m/z (M⁺) (calcd: 493.9414 g/mol) found: 493.9422. Chemical formula: C₂₄H₁₄S₆. M_w: 494.76 g/mol.

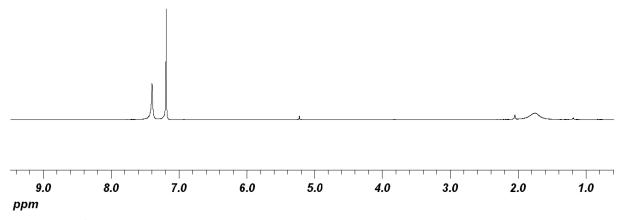
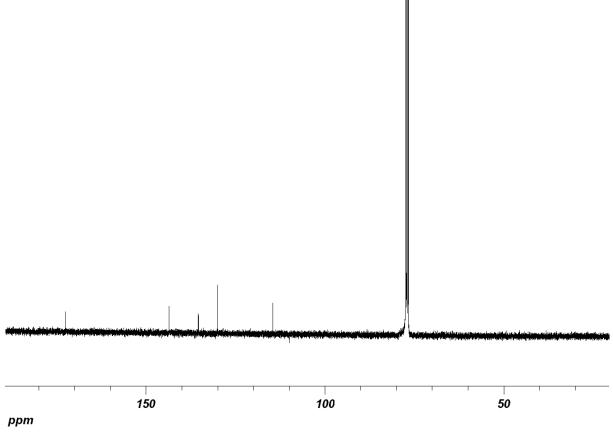
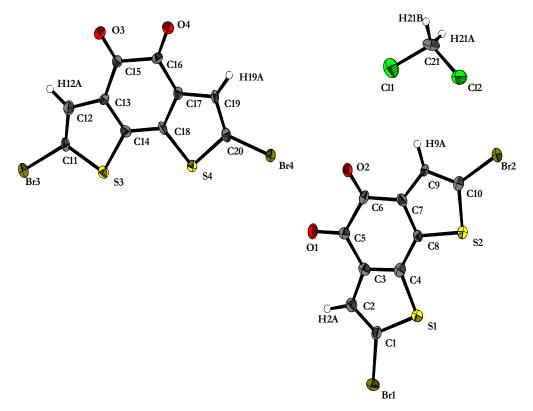
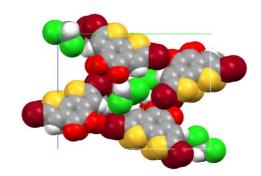
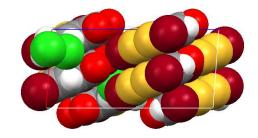


Figure 1: ¹H NMR spectrum of 4 (400 MHz, CDCl₃).

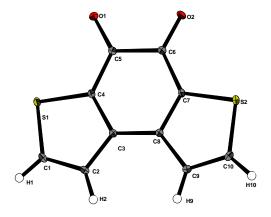





Figure 2: ¹³C NMR spectrum of 4 (100 MHz, CDCl₃).

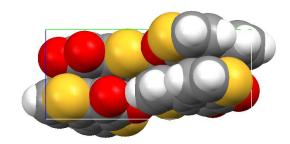
Asymmetric unit of 4.

Packing of 4; view along a.

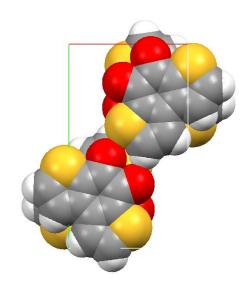
Packing of 4; view along b.


Figure 3: Crystal structures of 4.

Crystal data of 4:


Device Type Empirical formula Formula weight Temperature Wavelength Crystal system, space group Unit cell dimensions

Volume Z, Calculated density Absorption coefficient F(000) Crystal size Theta range for data collection 2.32 to 28.00° Limiting indices -10 <= h <= 9, -27 <= k <= 27, -18 <= 10 Completeness to theta = 28.00 98.0% Completeness to theta = 28.00Absorption correction Max. and min. transmission Refinement method Data / restraints / parameters 5987 / 0 / 316 Goodness-of-fit on F^2 Final R indices [I>2sigma(I)] $R_1 = 0.0672$, $wR_2 = 0.1211$ R indices (all data) Largest diff. peak and hole


STOE IPDS 2T $C_{21}H_6Br_4Cl_2O_4S_4$ 841.04 123(2) K 0.71073 Å Monoclinic, P $2_1/c$ $a = 7.5928(8) \text{ Å } \alpha = 90^{\circ}$ $b = 20.9792(11) \text{ Å } \beta = 94.236(8)^{\circ}$ $c = 15.9792(13) \text{ Å } \gamma = 90^{\circ}$ 2538.4(4) Å³ 4, 2.201 gcm⁻³ 6.911 mm⁻¹ 1608 0.3 x 0.02 x 0.02 mm -10 <= h <= 9, -27 <= k <= 27, -18 <= 1 <= 2198.0% Semi-empirical from equivalents 0.68355 and 0.528 Full-matrix least-squares on F^2 0.895 $R_1 = 0.1545$, $wR_2 = 0.1478$ $0.889 \text{ and } -1.138 \text{ eA}^{-3}$

Asymmetric unit of **7**.

Packing of **7**; view along a.

Packing of **7**; view along c.

Figure 4: Crystal structures of 7.

Crystal data of 7:

Device Type Empirical formula Formula weight Temperature Wavelength Crystal system, space group Unit cell dimensions

Volume Z, Calculated density Absorption coefficient F(000) Crystal size Theta range for data collection Theta range roll
Limiting indices -----Reflections collected / unique 7685 / 98.4% Absorption correction Max. and min. transmission 0.91287 and 0.79308 Refinement method Data / restraints / parameters 2029 / 0 / 128Goodness-of-fit on F^2 1.044Goodness-of-fit on F^2 Final R indices [I>2sigma(I)] $R_1 = 0.0272$, $wR_2 = 0.0699$ R indices (all data) $R_1 = 0.0376$, $wR_2 = 0.0736$ R indices (all data) Extinction coefficient Largest diff. peak and hole $0.292 \text{ and } -0.316 \text{ eÅ}^{-3}$

Nonius KappaCCD $C_{10}H_4O_2S_2$ 220.27 123(2) K 0.71073 Å Monoclinic, P $2_1/c$ $a = 8.9233(4) \text{ Å } \alpha = 90^{\circ}$ $b = 14.8008(8) \text{ Å } \beta = 102.935(3)$ ° $c = 6.6258(2) \text{ Å } \gamma = 90^{\circ}$ 852.88(7) Å³ 4, 1.715 gcm⁻³ 0.585 mm⁻¹ 448 0.6 x 0.429 x 0.161 mm 2.75 to 27.99° -11 <= h <= 10, -17 <= k <= 19, -8 <= 1 <= 7 $7685 / 2029 [R_{int} = 0.0424]$ Semi-empirical from equivalents Full-matrix least-squares on F^2 1.044 0.0068(13)

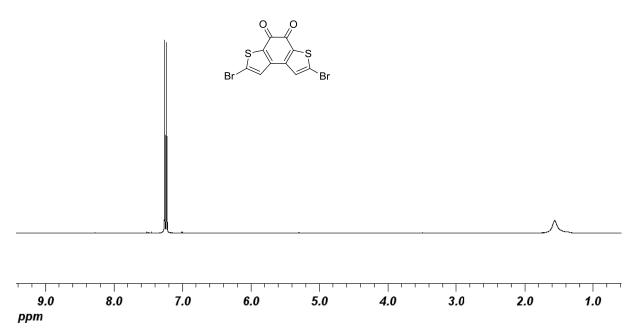


Figure 5: ¹H NMR spectrum of 8 (400 MHz, CDCl₃).

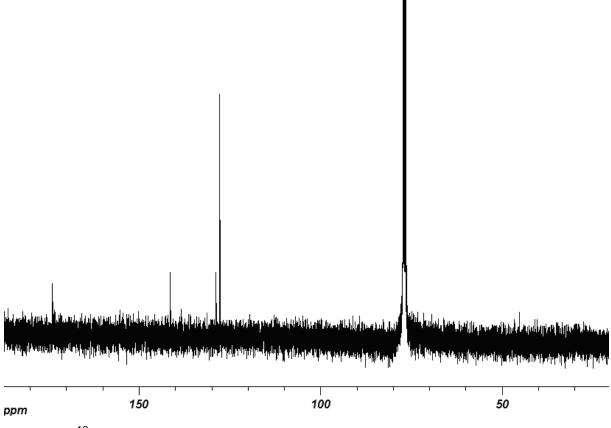
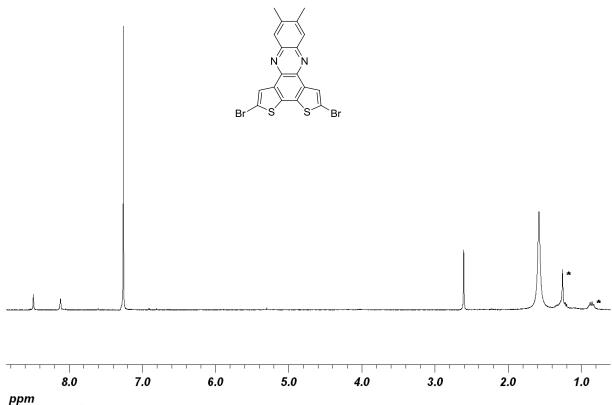



Figure 6: ¹³C NMR spectrum of 8 (100 MHz, CDCl₃).

 ppm Figure 7: 1 H NMR spectrum of 10a (400 MHz, CDCl₃).

^{*}The spectrum includes some residual petroleum ether.

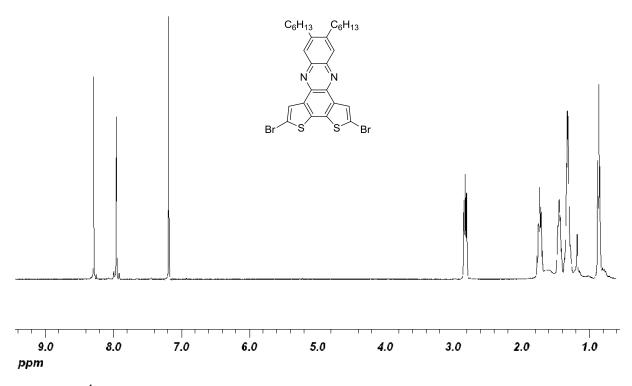


Figure 8: ¹H NMR spectrum of **10b** (400 MHz, CDCl₃).

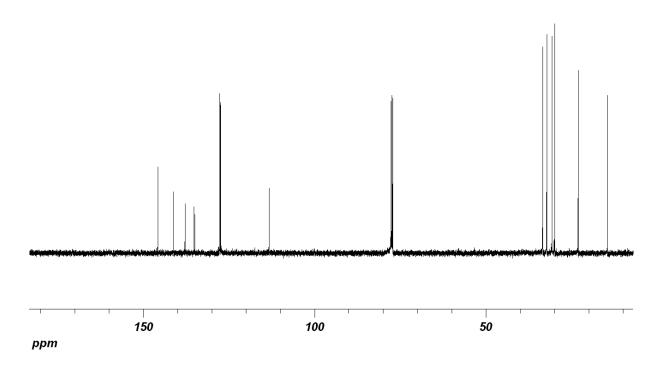


Figure 9: ¹³C NMR spectrum of **10b** (75 MHz, CDCl₃).

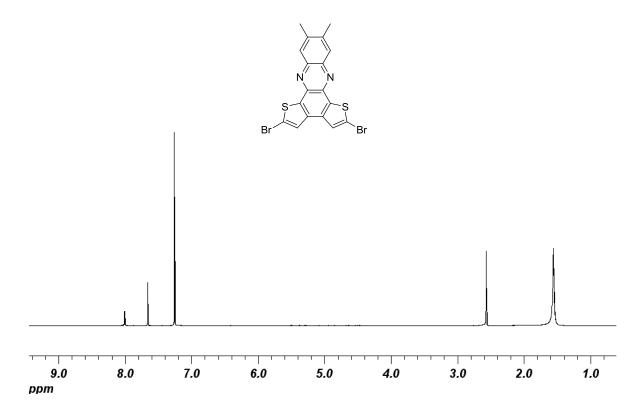


Figure 10: ¹H NMR spectrum of 11a (400 MHz, CDCl₃).

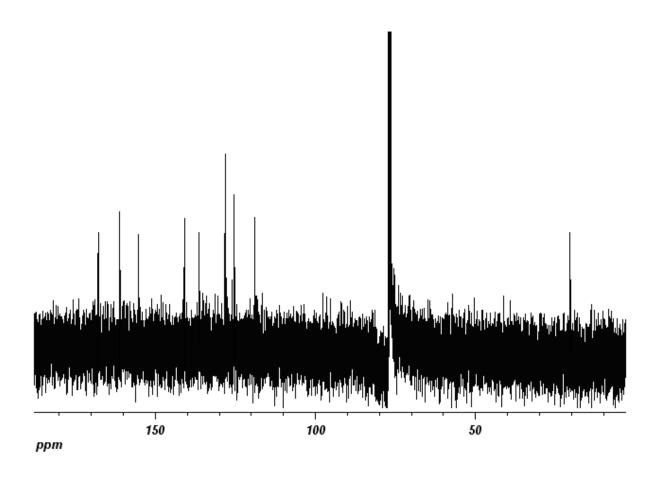


Figure 11: ¹³C NMR spectrum of 11a (100 MHz, CDCl₃).

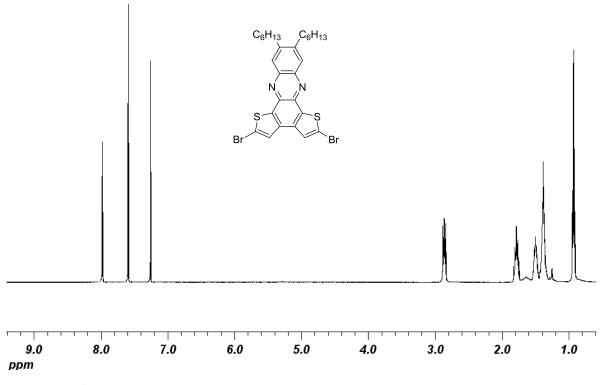
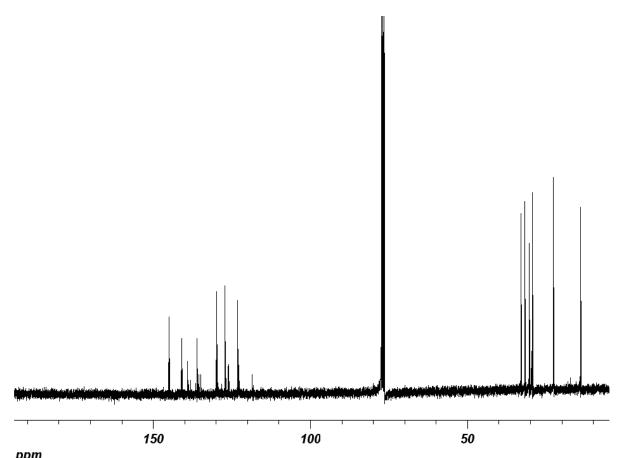



Figure 12: ¹H NMR spectrum of 11b (400 MHz, CDCl₃).

Figure 13: 13 C NMR spectrum of **11b** (75 MHz, CDCl₃).

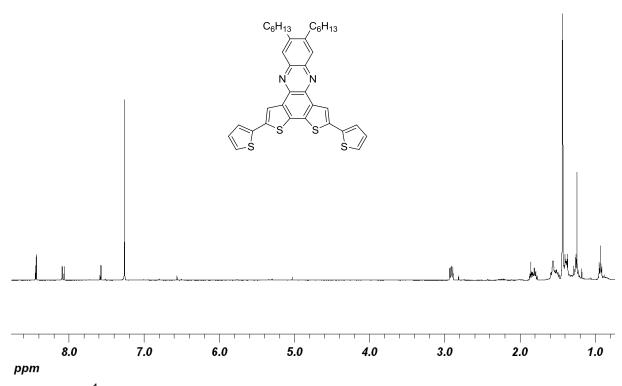


Figure 14: 1 H NMR spectrum of 12b (400 MHz, CDCl $_{3}$).

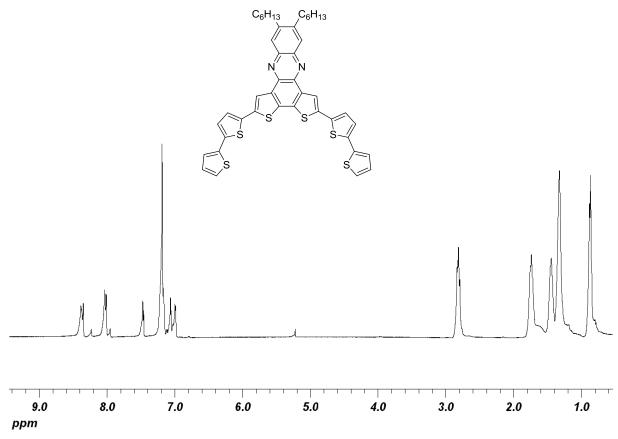


Figure 15: ¹H NMR spectrum of 13 (400 MHz, CDCl₃).

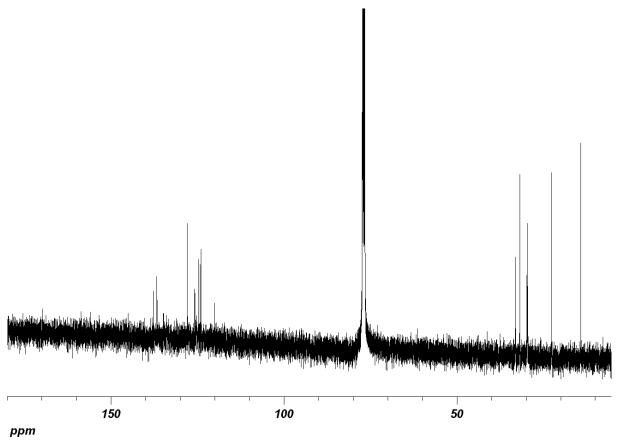


Figure 16: ¹³C NMR spe..ctrum of 13 (100 MHz, CDCl₃).

Figure 17: ¹H NMR spectrum of 14 (400 MHz, CDCl₃).

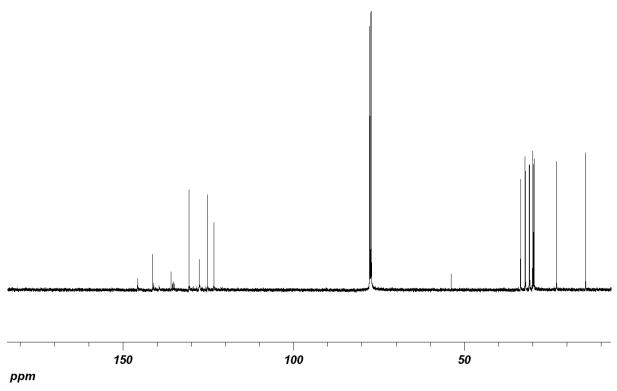


Figure 18: 13 C NMR spectrum of 14 (125 MHz, CDCl₃).

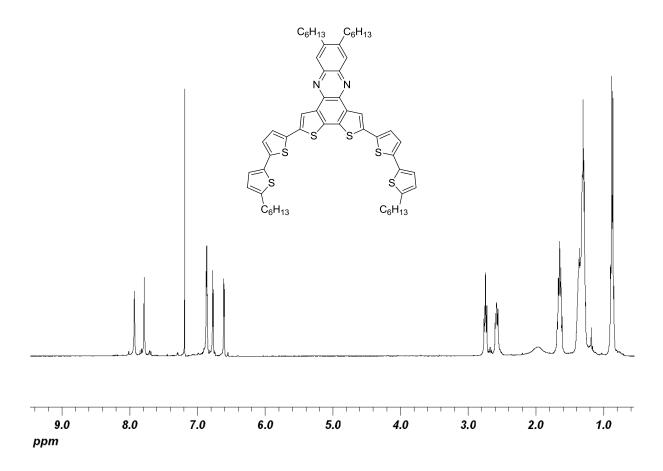


Figure 19: ¹H NMR spectrum of 15 (400 MHz, CDCl₃).

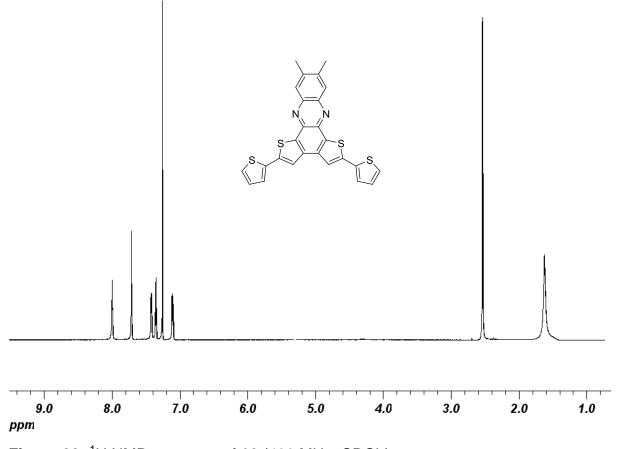


Figure 20: ¹H NMR spectrum of 16 (400 MHz, CDCl₃).

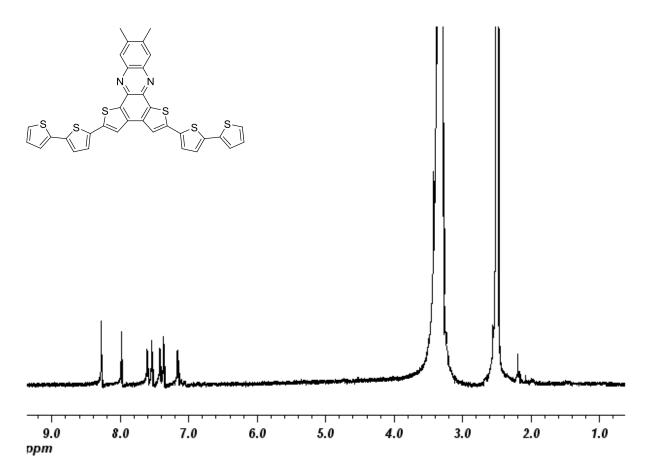


Figure 21: ¹H NMR spectrum of 17a (400 MHz, DMSO-d₆).

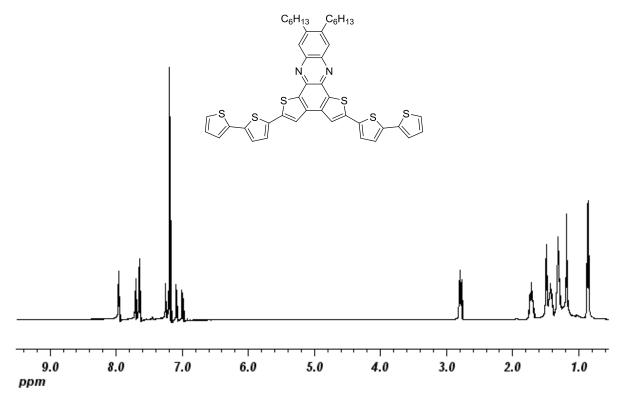


Figure 22: ¹H NMR spectrum of 17b (400 MHz, CDCl₃).

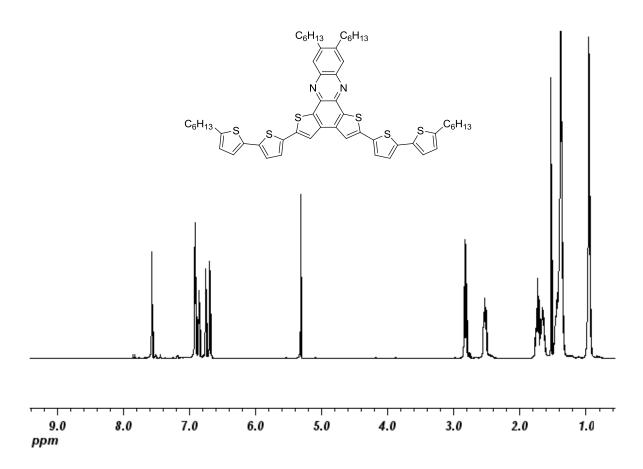


Figure 23: 1 H NMR spectrum of 18 (400 MHz, $CD_{2}CI_{2}$).

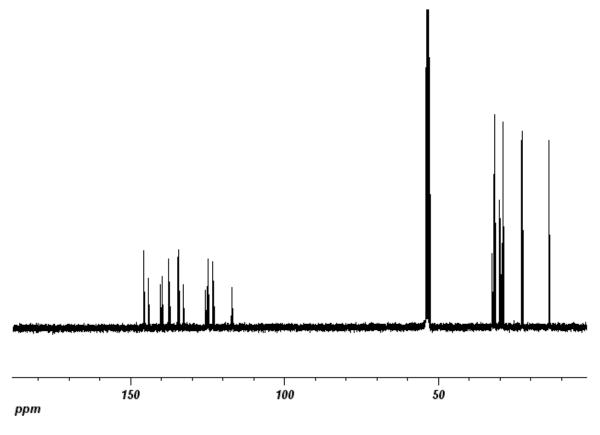
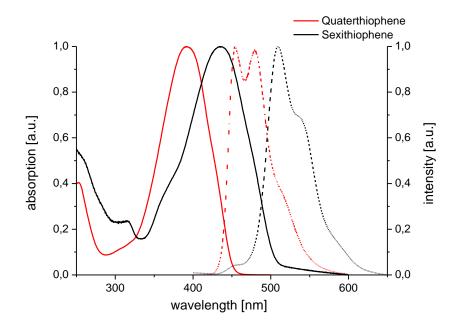



Figure 24: ¹³C NMR spectrum of 18 (100 MHz, CD₂Cl₂).

Figure 25: Absorption (solid line) and emission (dotted line) spectra of quaterthiophene (red) and sexithiophene (black) in CH₂Cl₂.

References

- Nyberg, K. Acta Chem. Scand. 1969, 23, 1087–1089. doi:10.3891/acta.chem.scand.23-1087
- Phillips, K. E. S.; Katz, T. J.; Jockusch, S.; Lovinger, A. J.; Turro, N. J. *J. Am. Chem. Soc.* 2001, 123, 11899–11907. doi:10.1021/ja011706b
- 3. Zhang, F.; Bai, S.; Yap, G. P.; Fox, J. M. *J. Am. Chem. Soc.* **2005**, *127*, 10590–10599. doi:10.1021/ja050886c
- Blessing, R. H. Acta Crystallogr., Sect. A 1995, 51, 33–38.
 doi:10.1107/S0108767394005726
- 5. Sheldrick, G. M. SHELXS97 and SHELXL97, University of Göttingen: Germany, 1997.
- 6. Brandenburg, K. DIAMOND 2.1c, Crystal Impact GbR: Bonn, Germany, 1999.