Supporting Information

 for Brønsted acid-promoted azide-olefin [3 + 2] cycloadditions for the preparation of contiguous aminopolyols: The importance of disiloxane ring size to a diastereoselective, bidirectional approach to zwittermicin A.Hubert Muchalski, Ki Bum Hong and Jeffrey N. Johnston*1

Address: ${ }^{1}$ Vanderbilt University and Vanderbilt Institute of Chemical Biology, Nashville, TN 37235, United States Email: Jeffrey N. Johnston - jeffrey.n.johnston@vanderbilt.edu
*Corresponding Author

Experimental procedures, ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra

Contents

General Experimental Details 2
Triazoline 10 2
General Procedure for Triflic Acid-Promoted Bis(triazoline) Formation 2
Triazoline 11 3
2,3-anti/ $2^{\prime}, 3^{\prime}$-anti Bis(triazoline) 13a 3
2,3-anti/2', 3^{\prime}-anti Bis(triazoline) 14a 3
Bis(oxazolidine dione) 15 4
Bis(oxazolidine dione) 16 4
Bis(oxazolidine dione) 17 5
Assignment of Relative Stereochemistry for Bis(Triazoline) 10a 5
Spectra of compounds 10a, 11c, 12a, 13a, 14a, 15-17 6

General Experimental Details. Flame-dried (under vacuum) glassware was used for all reactions. All reagents and solvents were commercial grade and purified prior to use when necessary. Acetonitrile (MeCN) and tetrahydrofuran (THF) were dried by passage through a column of activated alumina as described by Grubbs. ${ }^{1}$ Thin layer chromatography (TLC) was performed using glass-backed silica gel ($250 \mu \mathrm{~m}$) plates and flash chromatography utilized 230-400 mesh silica gel from Sorbent Technologies. UV light, and/or the use of ceric ammonium molybdate and potassium iodoplatinate solutions were used to visualize products. IR spectra were recorded on a Nicolet Avatar 360 or a Thermo Electron (Nicolet) IR100/IR200 spectrophotometer and are reported in wavenumbers (cm^{-1}). Liquids and oils were analyzed as neat films on a NaCl plate (transmission), whereas solids were applied to a diamond plate (ATR) if a thin film could not be prepared. ${ }^{2}$ Nuclear magnetic resonance spectra (NMR) were acquired on a Bruker instrument: AV-400 (400 MHz), DRX-500 (500 MHz), or AVII-600 (600 MHz). Chemical shifts are measured relative to residual nondeuterated solvent peaks as an internal standard set to $\delta 7.26$ and $\delta 77.0\left(\mathrm{CDCl}_{3}\right)$ for ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$, respectively. Multiplicities are reported as singlet (s), doublet (d), triplet (t), quartet (q) or combinations thereof while higher coupling patterns are not abbreviated. High resolution mass spectra were recorded using a a Kratos MS-80 spectrometer by use of chemical ionization (CI) or electrospray ionization (ESI) at Indiana University. A post-acquisition gain correction was applied using sodium formate or sodium iodide as the lock mass. Regioselection of the ($3+2$) cycloaddition has been shown to favor the β-aminoxoazolidine dione in our prior work. ${ }^{3}$

Triazoline 10. A solution of the bis(imide) ($80.1 \mathrm{mg}, 123 \mu \mathrm{~mol}$) in benzyl azide ($300 \mu \mathrm{~L}, 2.76 \mathrm{mmol}$) was subjected to $100^{\circ} \mathrm{C}$ for 45 min in a Biotage microwave. ${ }^{4}$ The mixture was directly purified using flash chromatography ($\mathrm{SiO}_{2}, 30 \%$ ethyl acetate in hexanes) to afford the mixture of triazolines ($1: 2: 1$) as a yellow oil ($81.6 \mathrm{mg}, 72 \%$).
Data for the 2,3-anti/2', $\mathbf{3}^{\prime}$-anti bis(triazoline) 10a. $[\alpha]_{\mathrm{D}}^{20}-44.0$ (c $0.50, \mathrm{CHCl}_{3}$); $\mathrm{R}_{f}=0.27$ ($25 \% \mathrm{EtOAc} /$ hexanes); IR (film) $3384,3088,3064,3032,2957,2933,2894,2859,1746,1687 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.25-7.11$ (m, 10H); $5.92(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}) ; 5.10(\mathrm{~d}, J=15.0 \mathrm{~Hz}, 1 \mathrm{H}) ; 4.88(\mathrm{~d}, J=15.0 \mathrm{~Hz}, 1 \mathrm{H}) ; 4.82(\mathrm{~d}, \mathrm{~J}=15.0 \mathrm{~Hz}, 1 \mathrm{H})$; $4.72(\mathrm{~d}, J=15.0 \mathrm{~Hz}, 1 \mathrm{H}) ; 4.15(\mathrm{dd}, J=13.2,6.0 \mathrm{~Hz}, 1 \mathrm{H}) ; 4.00(\mathrm{dd}, J=10.2,7.8 \mathrm{~Hz}, 1 \mathrm{H}) ; 3.78(\mathrm{~s}, 3 \mathrm{H}) ; 1.57(\mathrm{t}, J=$ $5.6 \mathrm{~Hz}, 1 \mathrm{H}) ; 0.92(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) ppm 169.5, 154.9, 136.8, 136.1, 128.4, 128.0, 127.5, 127.3, 127.2, 83.0, 72.5, 62.0, 54.1, 54.0, 48.4, 32.2, 27.0, 21.2; HRMS (CI): Exact mass calcd for $\mathrm{C}_{49} \mathrm{H}_{61} \mathrm{~N}_{8} \mathrm{O}_{8} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+}$ 917.4382, found 917.4404.

General Procedure for Triflic Acid-Promoted Bis(triazoline) Formation To a solution of the bisimide (1 equiv.) and benzyl azide (10 equiv.) in acetonitrile (0.15 m) at $-20^{\circ} \mathrm{C}$ was added triflic acid (5 equiv.) via syringe and the solution was stirred at $-20^{\circ} \mathrm{C}$ for 18 h . The reaction was quenched with triethylamine (5 equiv) via syringe and the reaction mixture was warmed to rt. The reaction mixture was poured into water and extracted with ethyl acetate. The combined organic layers were washed with brine, dried and concentrated. The resulting brown oil was purified using flash chromatography to afford the product.

Triazoline 11. The imide ($48.4 \mathrm{mg}, 68.5 \mu \mathrm{~mol}$) was treated with benzyl azide $(91.1 \mathrm{mg}, 685 \mu \mathrm{~mol})$ according to the general procedure and purified using flash column chromatography ($\mathrm{SiO}_{2}, 30 \%$ ethyl acetate in hexanes) to afford the triazoline mixture (1:9:9) as a yellow oil ($36.0 \mathrm{mg}, 54 \%$).
Data for the 2,3-syn $/ 2^{\prime}, 3^{\prime}$-syn bis(triazoline) 11c. $[\alpha]_{\mathrm{D}}^{20}+92.8$ (c $0.75, \mathrm{CHCl}_{3}$); $\mathrm{R}_{f}=0.20\left(50 \% \mathrm{Et}_{2} \mathrm{O} /\right.$ hexanes $) ; \mathrm{IR}$ (film) 3064, 3032, 2932, 2858, 1740, $1692 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.31-7.12(\mathrm{~m}, 10 \mathrm{H}) ; 6.40(\mathrm{~d}, J=$ $9.6 \mathrm{~Hz}, 1 \mathrm{H}) ; 5.03$ (sept, $J=6.4 \mathrm{~Hz}, 1 \mathrm{H}) ; 5.00(\mathrm{~d}, J=15.4 \mathrm{~Hz}, 1 \mathrm{H}) ; 4.90(\mathrm{~d}, J=15.2 \mathrm{~Hz}, 1 \mathrm{H}) ; 4.86(\mathrm{~d}, J=15.2 \mathrm{~Hz}, 1 \mathrm{H})$; 4.58 (d, $J=15.6 \mathrm{~Hz}, 1 \mathrm{H}) ; 4.17$ (ddd, $J=10.4,5.1,5.1 \mathrm{~Hz}, 1 \mathrm{H}) ; 3.85(\mathrm{dd}, J=9.1,4.7 \mathrm{~Hz}, 1 \mathrm{H}) ; 1.54(\mathrm{t}, \mathrm{J}=5.6 \mathrm{~Hz}, 1 \mathrm{H})$; $1.26(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}) ; 1.17(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}) ; 0.92(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \mathrm{ppm} 169.9,153.7,137.2$, $135.6,128.7,128.4,128.0,127.8,127.5,127.3,82.0,71.9,67.9,62.5,53.0,48.2,33.2,27.0,21.7,21.4,21.3$ HRMS (ESI): Exact mass calcd for $\mathrm{C}_{53} \mathrm{H}_{69} \mathrm{~N}_{8} \mathrm{O}_{8} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+} 973.5008$, found 973.4994.

2,3-anti/2', $\mathbf{3}^{\prime}$-anti Bis(triazoline) 13a. The imide ($410 \mathrm{mg}, 540 \mu \mathrm{~mol}$) was treated with benzyl azide (665 mg , $5.00 \mathrm{mmol})$ according to the general procedure and purified using flash column chromatography $\left(\mathrm{SiO}_{2}, 25 \%\right.$ ethyl acetate in hexanes) to afford the triazoline mixture ($18: 1: 1$) as a yellow oil ($150 \mathrm{mg}, 27 \%$). $[\alpha]_{\mathrm{D}}^{20}+56.9$ (c 0.23 , $\left.\mathrm{CHCl}_{3}\right) ; \mathrm{R}_{f}=0.37$ (25% EtOAc/hexanes); IR (film) 3031, 2945, 2866, 1740, 1691, $1496 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $(600 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.26-7.18(\mathrm{~m}, 8 \mathrm{H}) ; 7.10-7.08(\mathrm{~m}, 2 \mathrm{H}) ; 6.08(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}) ; 5.28(\mathrm{~d}, J=15.4 \mathrm{~Hz}, 1 \mathrm{H}) ; 4.95(\mathrm{~d}, J=$ $15.2 \mathrm{~Hz}, 1 \mathrm{H}) ; 4.86(\mathrm{~d}, J=15.2 \mathrm{~Hz}, 1 \mathrm{H}) ; 4.49(\mathrm{~d}, J=15.4 \mathrm{~Hz}, 1 \mathrm{H}) ; 4.24(\mathrm{ddd}, J=7.8,5.9,1.5 \mathrm{~Hz}, 1 \mathrm{H}) ; 3.82(\mathrm{dd}, J=$ $10.2,1.4 \mathrm{~Hz}, 1 \mathrm{H}) ; 3.79$ (s, 3H); 1.20 (dd, $J=8.1,5.7 \mathrm{~Hz}, 1 \mathrm{H}) ; 1.07-1.08$ (m, 6H); 1.01-0.96 (m, 4H); 0.90-0.85 (m, $4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) ppm 169.9, 154.9, 137.0, 135.3, 128.6, 128.5, 128.0, 127.8, 127.3, 127.3, 81.3, 66.1, 62.3, 54.0, 52.7, 48.2, 36.2, 17.5 (2C), 17.4, 16.9, 13.9, 12.6; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{53} \mathrm{H}_{70} \mathrm{~N}_{8} \mathrm{NaO}_{9} \mathrm{Si}_{2}$ ${ }^{[\mathrm{M}+\mathrm{Na}]^{+}} 1041.4702$, found 1041.4757.

2,3-anti/2', $\mathbf{3}^{\prime}$-anti Bis(triazoline) 14a. The imide ($35 \mathrm{mg}, 43 \mu \mathrm{~mol}$) was treated with benzyl azide ($57 \mathrm{mg}, 430 \mu \mathrm{~mol}$) according to the general procedure and purified using flash column chromatography ($\mathrm{SiO}_{2}, 25 \%$ ethyl acetate in hexanes) to afford the triazoline mixture (18:1:1) as a yellow oil ($34.9 \mathrm{mg}, 75 \%$). $[\alpha]_{\mathrm{D}}^{20}+132.9$ (c $0.85, \mathrm{CHCl}_{3}$); R_{f}
$=0.50\left(25 \%\right.$ EtOAc /hexanes); IR (film) 3064, 3032, 2943, 2866, 1734, 1685, $1496 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 7.28-7.16(\mathrm{~m}, 8 \mathrm{H}) ; 7.13-7.07(\mathrm{~m}, 2 \mathrm{H}) ; 6.03(\mathrm{~d}, J=9.9 \mathrm{~Hz}, 1 \mathrm{H}) ; 5.32(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}) ; 5.03$ (septet, $J=6.3 \mathrm{~Hz}$, $1 \mathrm{H}) ; 4.98(\mathrm{~d}, J=15.1 \mathrm{~Hz}, 1 \mathrm{H}) ; 4.82(\mathrm{~d}, J=15.1 \mathrm{~Hz}, 1 \mathrm{H}) ; 4.51(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}) ; 4.33-4.25(\mathrm{~m}, 1 \mathrm{H}) ; 3.83(\mathrm{dd}$, $J=10.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}) ; 1.29(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}) ; 1.23(\mathrm{dd}, J=8.1,5.8 \mathrm{~Hz}, 1 \mathrm{H}) ; 1.17(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}) ; 1.12-0.80$ (m, 14H); ${ }^{13} \mathrm{C}$ NMR (150 MHz, CDCl_{3}) ppm 170.0, 153.8, 137.3, 135.4, 128.6, 128.3, 128.0, 127.7, 127.4, 127.1, 81.2, $77.2,71.9,66.4,62.2,52.7,48.1,35.6,21.8,21.3,17.5,17.4$ (2C), 16.8, 13.8, 12.5; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{57} \mathrm{H}_{78} \mathrm{~N}_{8} \mathrm{NaO}_{9} \mathrm{Si}_{2}[\mathrm{M}+\mathrm{Na}]^{+}$1097.5328, found 1097.5304.

Bis(oxazolidine dione) 15. To a solution of triazoline ($125 \mathrm{mg}, 136 \mu \mathrm{~mol}$) in acetonitrile ($500 \mu \mathrm{~L}$) at $0^{\circ} \mathrm{C}$ was added triflic acid $(26 \mu \mathrm{~L}, 300 \mu \mathrm{~mol})$ via syringe. The solution was slowly warmed to rt and stirred for 15 h and then quenched with triethylamine $(42 \mu \mathrm{~L}, 300 \mu \mathrm{~mol})$. The reaction mixture was poured into water and extracted with ethyl acetate. The combined organic layers were washed with brine, dried and concentrated. The resulting yellow oil was purified using flash chromatography ($\mathrm{SiO}_{2}, 25 \%$ ethyl acetate in hexanes) to afford the bis(oxazolidine dione) as a yellow oil ($58 \mathrm{mg}, 51 \%$) $[\alpha]_{\mathrm{D}}^{20}-49.3$ (c 1.5, CHCl_{3}); $\mathrm{R}_{f}=0.30(25 \% \mathrm{EtOAc} /$ hexanes); IR (film) 3341, 3031, 2931, 2857, 1815, 1735, $1496 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.46-7.38(\mathrm{~m}, 3 \mathrm{H}) ; 7.33-7.15$ $(\mathrm{m}, 7 \mathrm{H}) ; 4.69(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}) ; 4.68(\mathrm{~s}, 2 \mathrm{H}) ; 4.49(\mathrm{ddd}, J=11.0,4.94 .9 \mathrm{~Hz}, 1 \mathrm{H}) ; 3.91(\mathrm{~d}, J=12.6 \mathrm{~Hz}, 1 \mathrm{H}) ; 3.75$ (d, $J=12.6 \mathrm{~Hz}, 1 \mathrm{H}) ; 3.07$ (dd, $J=5.5,4.1 \mathrm{~Hz}, 1 \mathrm{H}) ; 1.97$ (dd, $J=5.8,4.8 \mathrm{~Hz}, 1 \mathrm{H}) ; 1.92$ (brs, 1 H); 0.98 (s, 9 H$)$; ${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) ppm 171.8, 155.2, 139.5, 134.6, 129.0, 128.9, 128.8, 128.73, 128.67, 128.6, 128.5, 128.4, 128.3, 127.2, 79.5, 69.7, 62.8, 53.6, 43.7, 33.9, 27.1, 21.2; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{47} \mathrm{H}_{57} \mathrm{~N}_{4} \mathrm{O}_{8} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+}$ 833.3946, found 833.3946.

Bis(oxazolidine dione) 16. To a solution of triazoline ($150 \mathrm{mg}, 145 \mu \mathrm{~mol}$) in acetonitrile $(1.0 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ was added triflic acid $(40 \mu \mathrm{~L}, 450 \mu \mathrm{~mol})$ via syringe. The solution was slowly warmed to rt and stirred for 10 h and then quenched with triethylamine $(63 \mu \mathrm{~L}, 450 \mu \mathrm{~mol})$. The reaction mixture was poured into water and extracted with ethyl acetate. The combined organic layers were washed with brine, dried and concentrated. The resulting yellow oil was purified using flash chromatography ($\mathrm{SiO}_{2}, 20 \%$ ethyl acetate in hexanes) to afford the bis(oxazolidine dione) as a yellow oil ($96 \mathrm{mg}, 71 \%$). $[\alpha]_{\mathrm{D}}^{20}+25.1$ (c $0.71, \mathrm{CHCl}_{3}$); $\mathrm{R}_{f}=0.38(25 \% \mathrm{EtOAc} /$ hexanes $)$; IR (film) 3064, 3031, 2945, 2867, 1815, 1738, $1496 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.38-7.36$ (m, 2H); 7.28-7.21 $(\mathrm{m}, 6 \mathrm{H}) ; 7.14-7.12(\mathrm{~m}, 2 \mathrm{H}) ; 4.94(\mathrm{~d}, J=4.3 \mathrm{~Hz}, 1 \mathrm{H}) ; 4.68(\mathrm{~d}, J=14.5 \mathrm{~Hz}, 1 \mathrm{H}) ; 4.65(\mathrm{~d}, J=14.6 \mathrm{~Hz}, 1 \mathrm{H}) ; 4.31$ (ddd, $J=7.5,5.2,5.2 \mathrm{~Hz}, 1 \mathrm{H}) ; 3.81(\mathrm{~d}, J=13.0 \mathrm{~Hz}, 1 \mathrm{H}) ; 3.73(\mathrm{~d}, J=13.0 \mathrm{~Hz}, 1 \mathrm{H}) ; 3.13(\mathrm{~d}, J=4.5,4.6 \mathrm{~Hz}, 1 \mathrm{H}) ; 1.86$ (dd, $J=7.6,5.7 \mathrm{~Hz}, 1 \mathrm{H}) ; 1.09-0.98(\mathrm{~m}, 14 \mathrm{H}) ; \mathrm{N}-\mathrm{H}$ was not observed; ${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) ppm 171.4, 155.1,
139.4, 134.6, 129.0, 128.9, 128.8, 128.6, 128.6, 128.4, 128.3, 128.2, 127.2, 79.9, 68.0, 63.6, 53.2, 43.6, 36.8, 17.6, 17.5, 17.4, 17.2, 13.6, 12.8; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{51} \mathrm{H}_{67} \mathrm{~N}_{4} \mathrm{O}_{9} \mathrm{Si}_{2}[\mathrm{M}+\mathrm{H}]^{+} 935.4446$, found 935.4454.

Bis(oxazolidine dione) 17. To a solution of the bis(oxazolidine dione) ($100 \mathrm{mg}, 107 \mu \mathrm{~mol}$) in tetrahydrofuran $(500 \mu \mathrm{~L})$ was added HF -pyridine complex $(65 \mu \mathrm{~L})$ and the reaction was stirred at rt for 1 h . The reaction mixture was poured into water and extracted with dichloromethane. The combined organic layers were dried, concentrated and purified using flash chromatography $\left(\mathrm{SiO}_{2}, 50-70 \%\right.$ ethyl acetate in hexanes) to afford the diol as a colorless oil ($28 \mathrm{mg}, 38 \%$). $[\alpha]_{\mathrm{D}}^{20}+30.0\left(c 0.54, \mathrm{CHCl}_{3}\right) ; \mathrm{R}_{f}=0.45$ ($50 \% \mathrm{EtOAc} /$ hexanes); IR (film) 3482, 3031, 2924, $1811,1732 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.38-7.34(\mathrm{~m}, 2 \mathrm{H}) ; 7.28-7.22(\mathrm{~m}, 6 \mathrm{H}) ; 7.18-7.13(\mathrm{~m}, 2 \mathrm{H}) ; 4.95(\mathrm{~d}, \mathrm{~J}$ $=2.0 \mathrm{~Hz}, 1 \mathrm{H}) ; 4.61(\mathrm{~d}, J=15.2 \mathrm{~Hz}, 1 \mathrm{H}) ; 4.57(\mathrm{~d}, J=15.2 \mathrm{~Hz}, 1 \mathrm{H}) ; 3.81(\mathrm{~d}, J=12.5 \mathrm{~Hz}, 1 \mathrm{H}) ; 3.76$ (ddd, $J=11.0$, 5.7, $5.7 \mathrm{~Hz}, 1 \mathrm{H}) ; 3.67(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 1 \mathrm{H}) ; 3.05(\mathrm{dd}, J=9.1,2.0 \mathrm{~Hz}, 1 \mathrm{H}) ; 1.80(\mathrm{dd}, J=5.6,5.3 \mathrm{~Hz}, 1 \mathrm{H}) ; 1.70$ (brs 2 H$)$; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) ppm 172.5, 155.9, 138.6, 134.5, 128.7, 128.7, 128.6, 128.5, 128.2, 127.5, 79.3, 68.9, 62.4, 52.4, 43.7, 41.0; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{39} \mathrm{H}_{41} \mathrm{~N}_{4} \mathrm{O}_{8}[\mathrm{M}+\mathrm{H}]^{+}$693.2924, found 693.2953.

Assignment of Relative Stereochemistry for Bis(Triazoline) 10a

Structural assignment of the triazolines was accomplished using 2D NMR (NOESY). Beginning at C1 next to the amide functionality, crosspeaks for $\mathrm{H} 1 / \mathrm{H} 2, \mathrm{H} 1 / \mathrm{H} 3, \mathrm{H} 1 / \mathrm{H} 4, \mathrm{H} 2 / \mathrm{H} 3, \mathrm{H} 2 / \mathrm{H} 6$, and $\mathrm{H} 3 / \mathrm{H} 6$ defined the orientation of all hydrogens and single bond rotations (Figure 1). No H1/H6 correlation was observed, supporting the rotamer depicted wherein this hydrogen is oriented away from H1. In contrast, the syn-anti diastereomer is not consistent with the observed crosspeaks. First, to support crosspeaks for $\mathrm{H} 2 / \mathrm{H} 6$ and $\mathrm{H} 3 / \mathrm{H} 6$, the syn-anti diastereomer should have an $\mathrm{H} 4 / \mathrm{H} 6$ correlation, which was not observed. Additionally, single bond rotation to avoid this $\mathrm{H} 4 / \mathrm{H} 6$ correlation gave opposite orientation between H 2 and both of H 3 which was not consistent with observed crosspeak between H 2 and H3.

$\frac{10 \mathbf{a}}{2,3-\text { anti/2',3'-anti }}$

Figure 1. Diagnostic NOESY correlations for 2,3-anti/2', 3^{\prime}-anti bis(triazoline) 10a

References

[1] Pangborn, A. B.; Giardello, M. A.; Grubbs, R. H.; Rosen, R. K.; Timmers, F. J. Organometallics 1996, 15, 15181520.
[2] Note that triazoline $\mathrm{N}=\mathrm{N}$ stretches are very weak when observed.
[3] (a) Mahoney, J. M.; Smith, C. R.; Johnston, J. N. J. Am. Chem. Soc. 2005, 127, 1354-1355; (b) Hong, K. B.; Donahue, M. G.; Johnston, J. N. J. Am. Chem. Soc. 2008, 130, 2323-2328; (c) Donahue, M. G.; Hong, K. B.; Johnston, J. N. Bioorg. Med. Chem. Lett. 2009, 19, 4971-4973.
[4] Caution should always be used when azides are heated or treated with strong acid, but we have never observed an explosion during our studies.

Spectra of compounds 10a, 11c, 12a, 13a, 14a, 15-17

Figure 2. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right)$ of 10a

Figure 3. DEPT135 NMR (top) and ${ }^{13} \mathrm{C}$ NMR (bottom) $\left(\mathrm{CDCl}_{3}\right)$ of 10a

Figure 4. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ of 11c

Figure 5. DEPT135 NMR (top) and ${ }^{13} \mathrm{C}$ NMR (bottom) $\left(\mathrm{CDCl}_{3}\right)$ of $\mathbf{1 1 c}$

Figure 6. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right)$ of 13a

Figure 7. DEPT135 NMR (top) and ${ }^{13} \mathrm{C}$ NMR (bottom) $\left(\mathrm{CDCl}_{3}\right)$ of 13a

Figure 8. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right)$ of $\mathbf{1 4 a}$

Figure 9. DEPT135 NMR (top) and ${ }^{13} \mathrm{C}$ NMR (bottom) $\left(\mathrm{CDCl}_{3}\right)$ of 14a

Figure 10. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right)$ of $\mathbf{1 5}$

Figure 11. DEPT135 NMR (top) and ${ }^{13} \mathrm{C}$ NMR (bottom) $\left(\mathrm{CDCl}_{3}\right)$ of $\mathbf{1 5}$

Figure 12. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ of 16

Figure 13. DEPT135 NMR (top) and ${ }^{13} \mathrm{C}$ NMR (bottom) $\left(\mathrm{CDCl}_{3}\right)$ of $\mathbf{1 6}$

Figure 14. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ of $\mathbf{1 7}$

Figure 15. DEPT135 NMR (top) and ${ }^{13} \mathrm{C}$ NMR (bottom) $\left(\mathrm{CDCl}_{3}\right)$ of $\mathbf{1 7}$

