

Supporting Information

for

Synthesis of *gem*-difluoromethylenated analogues of boronolide

Jing Lin¹, Xiao-Long Qiu² and Feng-Ling Qing*^{1,2}

Address: ¹College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, 2999 North Renmin Lu, Shanghai 201620, China and ²Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China

Email: Feng-Ling Qing - flq@mail.sioc.ac.cn

* Corresponding author

Experimental section

Unless otherwise indicated, all chemicals and solvents were used as received from commercial sources or purified by standard procedures. Optical rotations were recorded on a Jasco P-1030 polarimeter. IR spectra were scanned with a Bio-Rad FTS185 spectrophotometer. ¹H and ¹³C NMR spectra were obtained using a Bruker AM300 and a Bruker AM400 spectrometer, respectively. ¹⁹F NMR spectra were recorded on a Bruker AM300 spectrometer (CFCl₃ as external standard and low field is positive; chemical shifts (δ) are given in ppm and coupling constants (J) in Hz). LRMS were measured on an Agilent system mass spectrometer and HRMS on an APEXIII (7.0 Tesla) FTMS or Waters mass spectrometer. Elemental analyses were performed on a Vario EL III elementary analysis instrument.

(S)-5-(*tert*-Butyldimethylsilyloxy)-1-((2*S*,3*S*)-3-((*S*)-1-(*tert*-butyldimethylsilyloxy)pentyl)-2,2-dimethyl-1,3-dioxolan-4-yl)-2,2-difluoropent-3-yn-1-ol (12a) and (R)-5-(*tert*-butyldimethylsilyloxy)-1-((2*S*,3*S*)-3-((*S*)-1-(*tert*-butyldimethylsilyloxy)pentyl)-2,2-dimethyl-1,3-dioxolan-4-yl)-2,2-difluoropent-3-yn-1-ol (12b)

To a stirred suspension of compound **9** and compound **11** (1.2 g, 4.01 mmol) in THF–H₂O (50 mL, 1:4, v/v), indium powder (400 mg, 3.48 mmol) was added at room temperature. After stirring for 22 h, the reaction mixture was quenched with 1 M HCl. The aqueous phase was extracted with EtOAc, the organic phase washed successively with water and brine, dried over anhydrous Na₂SO₄, filtered and concentrated. The residue was purified by flash chromatography on silica gel (petroleum ether/ethyl acetate = 50:1) to afford **12a** (0.8 g, 48% yield) and **12b** (0.5 g, 30% yield).

12a: yellow oil; $[\alpha]_D^{27} = -3.2$ (c 1.00, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 4.40 (t, J = 4.8 Hz, 2H), 4.18 (t, J = 7.8 Hz, 1H), 4.05 (dd, J = 7.5 Hz, 3.0 Hz, 1H), 3.92 (m, 1H), 3.84 (m, 1H), 1.75 (m, 1H), 1.50 (m, 1H), 1.47 (s, 3H), 1.43 (s, 3H), 1.34 (m, 4H), 0.91 (m, 21H), 0.13 (s, 12H); ¹³C NMR (100 MHz, CDCl₃) δ 113.4 (t, J = 236.6 Hz), 109.7, 87.7, 81.6, 75.5 (t, J = 38.5 Hz), 74.9, 74.4 (t, J = 28.2 Hz), 71.8, 51.3, 32.6, 28.4, 26.9, 25.9, 25.7, 22.8, 18.2, 18.1, 14.0, -4.5, -4.7, -5.2; ¹⁹F NMR (282 MHz, CDCl₃) δ -92.1 (dm, J = 280.3 Hz, 1F), -94.1 (dm, J = 286.2 Hz, 1F); IR (thin film) ν_{max} 3450, 2958, 2260, 1473, 1386, 1256, 837 cm⁻¹; MS (ESI) m/z 551 (M+H)⁺; HRMS Calcd for C₂₇H₅₂F₂O₅Si₂Na: 573.3214; found: 573.3224.

12b: yellow oil; $[\alpha]_D^{27} = -3.3$ (c 1.00, CHCl_3); ^1H NMR (300 MHz, CDCl_3) δ 4.40 (t, J = 4.8 Hz, 2H), 4.29 (d, J = 8.1 Hz, 1H), 4.00 (dd, J = 9.0 Hz, 4.2 Hz, 1H), 3.82 (m, 2H), 1.65 (m, 1H), 1.44 (s, 6H), 1.36 (m, 5H), 0.92 (m, 21H), 0.14 (s, 6H), 0.08 (s, 6H); ^{13}C NMR (100 MHz, CDCl_3) δ 113.1 (t, J = 237.5 Hz), 110.1, 88.1, 79.5, 75.8 (t, J = 38.9 Hz), 73.2, 71.7 (t, J = 28.2 Hz), 51.2, 32.4, 28.0, 27.3, 26.8, 25.9, 25.7, 22.7, 18.2, 18.1, 14.0, -4.3, -4.7, -5.3; ^{19}F NMR (282 MHz, CDCl_3) δ -94.2 (dm, J = 276.9 Hz, 1F), -96.3 (dm, J = 275.8 Hz, 1F); IR (thin film) ν_{max} 3350, 2933, 2258, 1478, 1386, 1256, 836 cm^{-1} ; MS (ESI) m/z 551 ($\text{M}+\text{H}$) $^+$; HRMS Calcd for $\text{C}_{27}\text{H}_{52}\text{F}_2\text{O}_5\text{Si}_2\text{Na}$: 573.3214; found: 573.3237.

(S,Z)-5-(*tert*-Butyldimethylsilyloxy)-1-((4*R*,5*S*)-5-((*R*)-1-(*tert*-butyldimethylsilyloxy)-pentyl)-2,2-dimethyl-1,3-dioxolan-4-yl)-2,2-difluoropent-3-en-1-ol (13a)

To a solution of Pd-BaSO_4 (42 mg, 42 mg/mmol) in MeOH (15 mL), a solution of quinoline (42 mg, 42 mg/mmol) in MeOH (2 mL) was added at 0 °C. After warming to room temperature, the suspension was stirred for 15 min before compound **12a** (550 mg, 1.00 mmol) in DMF (10 mL) was added. After stirring for another 7 h at 35 °C under hydrogen atmosphere (1 atm), ^{19}F NMR indicated the absence of the starting material **12a**. The reaction mixture was filtered and concentrated. The residue was purified by flash chromatography on silica gel (petroleum ether/ethyl acetate = 50:1) to afford compound **13a** (0.53 g, 96% yield) as a yellow oil.

$[\alpha]_D^{27} = -4.0$ (c 1.00, CHCl_3); ^1H NMR (300 MHz, CDCl_3) δ 5.95 (m, 1H), 5.60 (m, 1H), 4.47 (m, 2H), 4.06 (t, J = 7.5 Hz, 1H), 3.98 (dd, J = 8.1 Hz, 3.0 Hz, 1H), 3.88 (m, 1H), 3.78 (dt, J = 10.5 Hz, 8.7 Hz, 1H), 1.69 (m, 1H), 1.47 (m, 1H), 1.41 (s, 3H), 1.39 (s, 3H) 1.30 (m, 4H), 0.90 (m, 21H), 0.13 (s, 6H), 0.07 (s, 6H); ^{19}F NMR (282 MHz, CDCl_3) δ -101.5 (dt, J = 259.4 Hz, 11.2 Hz, 1F), -103.9 (dt, J = 255.8 Hz, 11.8 Hz, 1F); IR (thin film) ν_{max} 3350, 2958, 2860, 1469, 1383, 1256, 1084, 837, 776 cm^{-1} ; MS (ESI) m/z 553 ($\text{M}+\text{H}$) $^+$; Anal. Calcd for $\text{C}_{24}\text{H}_{46}\text{F}_2\text{O}_4\text{Si}$: C, 58.65; H, 9.84; found: C, 58.73; H, 9.76.

(R,Z)-5-(*tert*-Butyldimethylsilyloxy)-1-((4*R*,5*S*)-5-((*R*)-1-(*tert*-butyldimethylsilyloxy)-pentyl)-2,2-dimethyl-1,3-dioxolan-4-yl)-2,2-difluoropent-3-en-1-ol (13b)

To a solution of Pd-BaSO_4 (34 mg, 42 mg/mmol) in MeOH (15 mL), a solution of quinoline (34 mg, 42 mg/mmol) in MeOH (2 mL) was added at 0 °C. After warming to room temperature, the suspension was stirred for 15 min before compound **12b** (440 mg, 0.80 mmol) in DMF (10 mL) was added. After stirring for another 3.5 h at 35 °C under hydrogen atmosphere, ^{19}F NMR indicated the absence of the starting material **12b**. The reaction mixture

was filtered and concentrated. The residue was purified by flash chromatography on silica gel (petroleum ether/ethyl acetate = 20:1) to afford compound **13b** (0.41 g, 92% yield) as a yellow oil.

$[\alpha]_D^{27} = -6.1$ (*c* 1.00, CHCl_3); ^1H NMR (300 MHz, CDCl_3) δ 5.98 (m, 1H), 5.51 (m, 1H), 4.47 (m, 2H), 4.21 (d, *J* = 8.7 Hz, 1H), 3.98 (dd, *J* = 8.7 Hz, 4.2 Hz, 1H), 3.75 (m, 2H), 1.63 (m, 1H), 1.42 (s, 6H), 1.35 (m, 5H), 0.90 (m, 21H), 0.08 (s, 12H); ^{19}F NMR (282 MHz, CDCl_3) δ -101.8 (dt, *J* = 251.3 Hz, 12.4 Hz, 1F), -103.8 (dt, *J* = 259.4 Hz, 12.1 Hz, 1F); IR (thin film) ν_{max} 3350, 2958, 2860, 1472, 1382, 1255, 1082, 837, 775 cm^{-1} ; MS (ESI) *m/z* 553 ($\text{M}+\text{H}$) $^+$; Anal. Calcd for $\text{C}_{24}\text{H}_{46}\text{F}_2\text{O}_4\text{Si}$: C, 58.65; H, 9.84; found: C, 58.97; H, 9.84.

(*S,Z*)-5-((4*R*,5*S*)-5-((*R*)-1-(*tert*-Butyldimethylsilyloxy)pentyl)-2,2-dimethyl-1,3-dioxolan-4-yl)-4,4-difluoropent-2-ene-1,5-diol (14a)

To a solution of **13a** (440 mg, 0.80 mmol) in MeOH (20 mL), CSA (9 mg, 0.02 mmol) was added. After stirring for 1 h, the reaction mixture was quenched with saturated NaHCO_3 . The aqueous phase was extracted with EtOAc , organic phase washed with brine, dried over anhydrous Na_2SO_4 , filtered, concentrated and purified by flash chromatography on silica gel (petroleum ether/ethyl acetate = 4:1) to give **14a** (279 mg, 80% yield) as a clear oil.

$[\alpha]_D^{27} = -6.5^\circ$ (*c* 1.00, CHCl_3); ^1H NMR (300 MHz, CDCl_3) δ 6.08 (m, 1H), 5.68 (m, 1H), 4.37 (m, 2H), 4.04 (t, *J* = 7.5 Hz, 1H), 3.99 (m, 1H), 3.93 (m, 1H), 3.80 (dt, *J* = 10.2 Hz, 7.8 Hz, 1H), 2.29 (brs, 2H), 1.72 (m, 1H), 1.46 (m, 2H), 1.41 (s, 3H), 1.40 (s, 3H) 1.33 (m, 3H), 0.91 (m, 12H), 0.13 (s, 6H); ^{19}F NMR (282 MHz, CDCl_3) δ -100.4 (dd, *J* = 258.0 Hz, 16.6 Hz, 1F), -103.5 (ddd, *J* = 255.8 Hz, 16.1 Hz, 8.7 Hz, 1F); IR (thin film) ν_{max} 3403, 2960, 2862, 1469, 1371, 1256, 1075, 837, 776 cm^{-1} ; MS (ESI) *m/z* 461 ($\text{M}+\text{Na}$) $^+$; Anal. Calcd for $\text{C}_{24}\text{H}_{46}\text{F}_2\text{O}_4\text{Si}$: C, 57.50; H, 9.19; found: C, 57.57; H, 8.93.

(*R,Z*)-5-((4*R*,5*S*)-5-((*R*)-1-(*tert*-Butyldimethylsilyloxy)pentyl)-2,2-dimethyl-1,3-dioxolan-4-yl)-4,4-difluoropent-2-ene-1,5-diol (14b)

Compound **14b** was prepared from compound **13b** (415 mg, 0.75 mmol) using the same conditions as described for compound **14a**; yield: 273 mg (83%); clear oil.

$[\alpha]_D^{27} = -8.2$ (*c* 1.00, CHCl_3); ^1H NMR (300 MHz, CDCl_3) δ 6.07 (m, 1H), 5.60 (m, 1H), 4.40 (m, 2H), 4.24 (d, *J* = 8.4 Hz, 1H), 3.99 (dd, *J* = 8.7 Hz, 3.9 Hz, 1H), 3.80 (m, 2H), 2.16 (brs, 2H), 1.64 (m, 1H), 1.43 (s, 6H), 1.35 (m, 5H), 0.90 (m, 12H), 0.08 (s, 6H); ^{13}C NMR (100 MHz, CDCl_3) δ 138.4, 121.8 (t, *J* = 26.0 Hz), 120.2 (t, *J* = 243.8 Hz), 109.5, 78.8, 72.7, 71.1, 70.6 (t, *J* = 29.8 Hz), 58.5, 32.1, 27.6, 26.8, 26.4, 25.4, 22.3, 17.6, 13.5, -4.8, -5.0; ^{19}F NMR

(282 MHz, CDCl_3) δ -101.8 (ddd, $J = 256.6$ Hz, 15.5 Hz, 8.7 Hz, 1F), -103.8 (dt, $J = 258.0$ Hz, 15.8 Hz, 1F); IR (thin film) ν_{max} 3350, 2958, 2860, 1469, 1383, 1256, 1084, 837, 776 cm^{-1} ; MS (ESI) m/z 461 ($\text{M}+\text{Na}$) $^+$; HRMS Calcd for $\text{C}_{21}\text{H}_{40}\text{F}_2\text{O}_5\text{SiNa}$: 461.2505; found: 461.2486.

(S)-6-((4S,5S)-5-((R)-1-(*tert*-Butyldimethylsilyloxy)pentyl)-2,2-dimethyl-1,3-dioxolan-4-yl)-5,5-difluoro-5,6-dihydropyran-2-one (15a)

To a solution of **14a** (230 mg, 0.53 mmol) in CH_2Cl_2 (15 mL), BAIB (508 mg, 1.57 mmol) and TEMPO (16 mg, 20 mol %) was added at room temperature. After stirring for 3 h, the reaction mixture was quenched with saturated aqueous $\text{Na}_2\text{S}_2\text{O}_3$ and extracted with CH_2Cl_2 . The combined organic extracts were washed successively with saturated NaHCO_3 and brine, dried over anhydrous Na_2SO_4 , filtered and concentrated. The residue was purified by flash chromatography on silica gel (petroleum ether/ethyl acetate = 20:1) to afford **15a** (184 mg, 80% yield) as a white solid, $\text{mp} = 88\text{--}90$ $^{\circ}\text{C}$.

$[\alpha]_D^{27} = 60.7$ (c 1.00, CHCl_3); ^1H NMR (300 MHz, CDCl_3) δ 6.81 (m, 1H), 6.31 (d, $J = 10.5$ Hz, 1H), 4.60 (dt, $J = 18.6$ Hz, 6.3 Hz, 1H), 4.58 (t, $J = 6.3$ Hz, 1H), 4.25 (dd, $J = 6.0$ Hz, 1.5 Hz, 1H), 3.78 (m, 1H), 1.75 (m, 1H), 1.55 (m, 1H), 1.48 (s, 3H), 1.43 (s, 3H), 1.34 (m, 4H), 0.91 (m, 12H), 0.09 (s, 3H), 0.06 (s, 3H); ^{13}C NMR (100 MHz, CDCl_3) δ 159.4, 138.1 (dd, $J = 41.7$ Hz, 34.6 Hz), 126.1 (t, $J = 12.7$ Hz), 112.2 (t, $J = 324.6$ Hz), 110.9, 80.4, 79.8 (t, $J = 37.5$ Hz), 72.8, 71.6, 34.1, 27.7, 27.4, 27.1, 25.9, 22.9, 18.2, 14.0, -4.1 , -4.8 ; ^{19}F NMR (282 MHz, CDCl_3) δ -106.1 (dd, $J = 292.2$ Hz, 18.1 Hz, 1F), -107.9 (dd, $J = 293.2$ Hz, 6.2 Hz, 1F); IR (thin film) ν_{max} 2933, 2860, 1757, 1653, 1460, 1384, 1255, 834, 777 cm^{-1} ; MS (ESI) m/z 435 ($\text{M}+\text{H}$) $^+$, 457 ($\text{M}+\text{Na}$) $^+$; HRMS Calcd for $\text{C}_{21}\text{H}_{34}\text{F}_2\text{O}_5\text{SiNa}$: 457.2192; found: 457.2179.

(R)-6-((4S,5S)-5-((R)-1-(*tert*-Butyldimethylsilyloxy)pentyl)-2,2-dimethyl-1,3-dioxolan-4-yl)-5,5-difluoro-5,6-dihydropyran-2-one (15b)

Compound **15b** was prepared from compound **14b** (150 mg, 0.34 mmol) using the same conditions as described for compound **15a**; yield: 126 mg (85%); clear oil.

$[\alpha]_D^{27} = 66.8$ (c 1.00, CHCl_3); ^1H NMR (300 MHz, CDCl_3) δ 6.67 (m, 1H), 6.28 (d, $J = 9.9$ Hz, 1H), 4.81 (d, $J = 15.0$ Hz, 1H), 4.31 (dd, $J = 9.0$ Hz, 2.4 Hz, 1H), 4.21 (dd, $J = 9.0$ Hz, 4.2 Hz, 1H), 3.90 (dt, $J = 8.1$ Hz, 3.9 Hz, 1H), 1.70 (m, 1H), 1.46–1.31 (m, 11H), 0.91 (m, 12H), 0.11 (s, 3H), 0.10 (s, 3H); ^{19}F NMR (282 MHz, CDCl_3) δ -85.2 (dd, $J = 291.3$ Hz, 14.4 Hz, 1F), -113.1 (dd, $J = 290.7$ Hz, 8.5 Hz, 1F); IR (thin film) ν_{max} 2934, 2857, 1755,

1460, 1384, 1252, 834, 777 cm^{-1} ; MS (ESI) m/z 435 ($\text{M}+\text{H}$) $^+$, 457 ($\text{M}+\text{Na}$) $^+$; Anal. Calcd for $\text{C}_{24}\text{H}_{46}\text{F}_2\text{O}_4\text{Si}$: C, 58.04; H, 8.35; found: C, 58.51; H, 8.40.

(S)-5,5-Difluoro-6-((1*S*,2*R*,3*S*)-1,2,3-trihydroxyheptyl)-5,6-dihydropyran-2-one (5)

To a solution of **15a** (120 mg, 0.28 mmol) in THF (10 mL), HCl (6 M, 5 mL) was added at room temperature. After the absence of the starting material, the reaction was quenched with saturated aqueous NaHCO_3 . The aqueous phase was extracted with EtOAc, the organic phase washed with brine, dried over anhydrous Na_2SO_4 , filtered, concentrated and purified by flash chromatography on silica gel (petroleum ether/ethyl acetate = 1:1) to afford **5** (70 mg, 90% yield) as a white solid, mp = 88–90 °C.

$[\alpha]_D^{28} = 44.3^\circ$ (c 0.50, CHCl_3); ^1H NMR (300 MHz, CDCl_3) δ 6.82 (m, 1H), 6.32 (d, J = 9.9 Hz, 1H), 4.75 (dt, J = 19.8 Hz, 8.4 Hz, 1H), 4.23 (d, J = 8.1 Hz, 1H), 3.84 (m, 2H), 2.57 (brs, 3H), 1.60 (m, 2H), 1.41 (m, 4H), 0.93 (t, J = 6.6 Hz, 3H); ^{13}C NMR (100 MHz, CDCl_3) δ 159.9, 138.3 (dd, J = 33.3 Hz, 25.0 Hz), 125.8 (t, J = 9.3 Hz), 112.8 (t, J = 244.4 Hz), 76.5 (t, J = 32.8 Hz), 73.8, 70.5, 70.1, 33.2, 27.5, 22.5, 14.0; ^{19}F NMR (282 MHz, CDCl_3) δ -106.5 (dt, J = 292.2 Hz, 8.2 Hz, 1F), -108.5 (dd, J = 293.0 Hz, 19.5 Hz, 1F); IR (thin film) ν_{max} 2933, 2860, 1757, 1653, 1460, 1384, 1255, 834, 777 cm^{-1} ; MS (ESI) m/z 298 ($\text{M}+\text{NH}_4$) $^+$, 335 ($\text{M}+\text{Na}+\text{CH}_3\text{OH}$) $^+$; HRMS Calcd for $\text{C}_{12}\text{H}_{18}\text{F}_2\text{O}_5\text{Na}$: 303.1015; found: 303.1021.

(R)-5,5-Difluoro-6-((1*S*,2*R*,3*S*)-1,2,3-trihydroxyheptyl)-5,6-dihydropyran-2-one (7)

Compound **7** was prepared from compound **15b** (100 mg, 0.23 mmol) using the same conditions as described for compound **15a**; yield: 60 mg (93%); clear oil.

$[\alpha]_D^{27} = -10.6$ (c 0.50, CHCl_3); ^1H NMR (300 MHz, CDCl_3) δ 6.77 (m, 1H), 6.33 (d, J = 9.9 Hz, 1H), 4.81 (ddd, J = 14.4 Hz, 8.4 Hz, 5.1 Hz, 1H), 4.20 (m, 1H), 3.80 (m, 1H), 3.70 (m, 1H), 2.91 (brs, 3H), 1.57 (m, 2H), 1.35 (m, 4H), 0.92 (t, J = 6.6 Hz, 3H); ^{13}C NMR (100 MHz, CDCl_3): δ 160.2, 137.2 (dd, J = 40.2 Hz, 36.2 Hz), 126.5 (t, J = 10.8 Hz), 112.2 (dd, J = 324.3 Hz, 317.0 Hz), 79.5 (dd, J = 42.8 Hz, 37.0 Hz), 72.7, 72.0, 70.5, 33.3, 27.7, 22.5, 14.0; ^{19}F NMR (282 MHz, CDCl_3) δ -98.6 (dd, J = 289.6 Hz, 8.3 Hz, 1F), -109.5 (ddd, J = 290.7 Hz, 14.7 Hz, 4.2 Hz, 1F); IR (thin film) ν_{max} 2933, 2860, 1757, 1653, 1460, 1384, 1255, 834, 777 cm^{-1} ; MS (ESI) m/z 298 ($\text{M}+\text{NH}_4$) $^+$, 335 ($\text{M}+\text{Na}+\text{CH}_3\text{OH}$) $^+$; HRMS Calcd for $\text{C}_{12}\text{H}_{18}\text{F}_2\text{O}_5\text{Na}$: 303.1015; found: 303.1017.

gem-Difluoromethylenated boronolide (4)

To a solution of **5** (30 mg, 0.11 mmol) in CH_2Cl_2 (3 mL), Et_3N (0.2 mL, 1.6 mmol), DMAP (3.9 mg, 0.033 mmol) followed by Ac_2O (55 mg, 0.55 mmol) was added at 0 °C. The resulting mixture was warmed to room temperature and stirred overnight. The reaction was quenched with a saturated NaHCO_3 solution and extracted with CH_2Cl_2 . The organic layer was washed with brine, dried over anhydrous Na_2SO_4 , filtered and concentrated. The residue was purified by flash chromatography on silica gel (petroleum ether/ethyl acetate = 4:1) to afford compound **4** (37 mg, 85% yield) as a white solid, $\text{mp} = 93\text{--}94$ °C.

$[\alpha]_D^{22} = 7.4$ (*c* 0.50, CHCl_3); ^1H NMR (300 MHz, CDCl_3) δ 6.77 (m, 1H), 6.31 (d, *J* = 10.5 Hz, 1H), 5.61 (dd, *J* = 7.8 Hz, 3.3 Hz, 1H), 5.45 (dd, *J* = 6.9 Hz, 3.3 Hz, 1H), 5.05 (m, 1H), 4.70 (ddd, *J* = 15.0 Hz, 9.6 Hz, 8.1 Hz, 1H), 2.14 (s, 3H), 2.12 (s, 3H), 2.07 (s, 3H), 1.28 (m, 6H), 0.89 (t, *J* = 7.2 Hz, 3H); ^{13}C NMR (100 MHz, CDCl_3) δ 170.4, 169.7, 169.0, 158.4, 137.7 (dd, *J* = 29.7 Hz, 27.4 Hz), 126.1 (t, *J* = 9.3 Hz), 112.2 (t, *J* = 242.2 Hz), 75.8 (t, *J* = 27.5 Hz), 71.5, 71.6, 66.5, 30.1, 27.0, 22.3, 20.8, 20.5, 13.8; ^{19}F NMR (282 MHz, CDCl_3) δ -106.6 to -106.7 (m, 2F); IR (thin film) ν_{max} 2923, 1785, 1650, 1374, 1067 cm^{-1} ; MS (ESI) *m/z* 461 ($\text{M}^+ \text{Na}^+\text{CH}_3\text{OH}$)⁺; HRMS Calcd for $\text{C}_{18}\text{H}_{24}\text{F}_2\text{O}_8\text{Na}$: 429.1332; found: 429.1347.

5-epi-gem-Difluoromethylenated boronolide (6)

Compound **6** was prepared from compound **7** (25 mg, 0.09 mmol) using the same conditions as described for compound **4**; yield: 30 mg (83%); clear oil.

$[\alpha]_D^{24} = -46.1$ (*c* 0.85, CHCl_3); ^1H NMR (300 MHz, CDCl_3) δ 6.73 (m, 1H), 6.32 (d, *J* = 10.2 Hz, 1H), 5.59 (d, *J* = 6.6 Hz, 1H), 5.43 (dd, *J* = 6.9 Hz, 3.6 Hz, 1H), 5.11 (m, 1H), 4.91 (m, 1H), 2.11 (s, 6H), 2.06 (s, 3H), 1.27 (m, 6H), 0.87 (t, *J* = 7.2 Hz, 3H); ^{13}C NMR (100 MHz, CDCl_3) δ 170.6, 169.7, 168.9, 158.9, 136.6 (t, *J* = 28.3 Hz), 126.4 (t, *J* = 9.9 Hz), 111.8 (t, *J* = 238.2 Hz), 76.4 (dd, *J* = 32.7 Hz, 26.0 Hz), 71.6, 71.0, 66.1, 30.3, 27.0, 22.2, 20.6, 20.4, 13.7; ^{19}F NMR (282 MHz, CDCl_3) δ -100.1 (dt, *J* = 292.2 Hz, 9.0 Hz, 1F), -110.1 (ddd, *J* = 291.0 Hz, 14.1 Hz, 4.5 Hz, 1F); IR (thin film) ν_{max} 2961, 1753, 1559, 1375, 1221 cm^{-1} ; MS (ESI) *m/z* 461 ($\text{M}^+ \text{Na}^+\text{CH}_3\text{OH}$)⁺; HRMS Calcd for $\text{C}_{19}\text{H}_{28}\text{F}_2\text{O}_9\text{Na}$: 461.1594; found: 461.1602.