Supporting Information

for

Hyperbranched polyethylenimine bearing cyclodextrin moieties showing temperature and pH controlled dye release

Indra Böhm[‡], Susanne Katharina Kreth[‡], Helmut Ritter*,[‡]

Address: Institut für Organische und Makromolekulare Chemie II, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, D-40225 Düsseldorf, Germany Fax: (+49) 211 8115840

Email: Helmut Ritter* - h.ritter@uni-duesseldorf.de

*Corresponding author

‡Equal contributors

Experimental details

Synthesis of cyclodextrin modified hyperbranched PEI 3

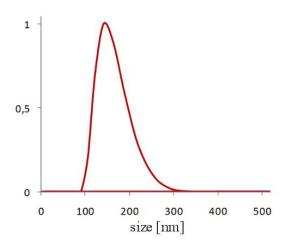
Scheme S1: Synthesis of 3

Commercially available hyperbranched PEI ($M_w = 10.000~g/mol$) was employed. The polymer-analogous amidation with 5-hexynoic acid was implemented under microwave conditions. A solution of 5-hexynoic acid (1 g, 0.89 mmol) and PEI (1.12 g) in 8 mL DMF was added to a pressure-resistant test tube. The tube was sealed and placed in the CEM monomode microwave and irradiated at 85 °C and 60 W for 30 min. The subsequent reaction was implemented, without isolation of the intermediate, by adding sodium ascorbate (36 mg, 0.02 mmol), copper(II) sulfate pentahydrate (14 mg, 0.01 mmol) and mono-(6-azido-6-desoxy)- β -cyclodextrin (2.12 g, 0.18 mmol) to the solution. The tube was sealed and placed again in the CEM monomode microwave and irradiated at 85 °C and 60 W for 60 min. The product PEI-CD 1 was precipitated with acetone (100 mL) and dialyzed (MWCO 3500) to separate the polymer 1 from the catalysts and the monomers. The product was freeze-dried to afford 92% of pure product as a brownish powder.

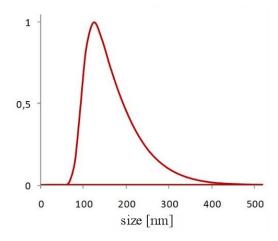
3: UV (water): $\lambda_{\text{max}}(\varepsilon) = 300 \text{ nm} (1200 \text{ L} \cdot \text{mol}^{-1} \cdot \text{cm}^{-1})$; ¹H NMR (DMSO- d_6): $\delta = 083-0.84$ (8H, -CH₂-), 0.93 (3H, C=CH), 1.13-1.27 (12H, -CH₂-), 1.35-1.41 (4H, -CH₂-), 1.46 (8H, -CH₂-), 1.62-1.65 (4H,

-CH₂-), 1.78–1.81 (8H, -CH₂-), 1.35–1.41 (4H, -CH₂-), 2.05–2.08 (16H, -CH₂-), 2.10–2.17 (16H, -CH₂-), 2.22–2.25 (8H, -CH₂-), 2.33–2.35 (8H, -CH₂-), 2.78 (12H, -CH₂-), 2.80 (4H, -CH₂-), 2.93 (12H, -CH₂-), 3.34 (14H, H-2, 4), 3.56–3.63 (br, 28H, H-3, 5, 6), 4.49 (br, 6H, OH-6), 4.82 (d, 7H, H-1), 5.76 (14H, OH-2, 3), 7.79 (1H, -CH-), 8.02 (1H, -NH); IR: 3 304 (OH), 2 927 (CH), 2 825 (CH), 1 651 (Amid I), 1 546 (Amid II), 1 401 (OH), 1 151 (CN), 1 079 (OH), 1 028 (CH), 939, 853, 753 (NH), 703 (CH) cm⁻¹; Elemental analysis: C 50.32, H 7.84, N 10.93%.

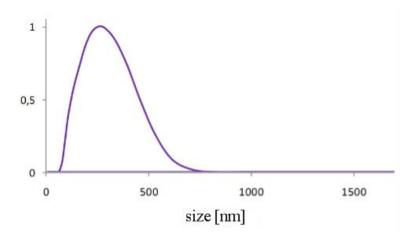
Synthesis of dye 2

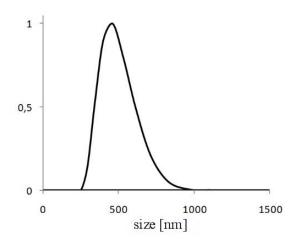

3.62 mmol of the 1,4-dichloroanthraquinone (synthesized according to literature procedure [1]), 1.71 g (11.3 mmol) adamantylamine and 1.18 g (8.31 mmol) disodium hydrogen phosphate were suspended in 4 mL *N*-methylpyrrolidone and heated to 180 °C for 12 h. The reaction mixture was poured into 100 mL of water and filtered off. Drying at 60 °C for 24 h gave the corresponding dye in a yield of 60 %.

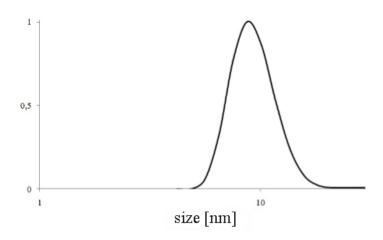
2: UV/Vis (chloroform): λ_{max} (ε) = 524 nm; IR: 2 905, 2 848 v(C-H)_{adamantyl}, 1 706 v(C=O), 1 598 v(C=O)_{anthraquinone}, 1 516 δ (N-H), 1 452 δ (C-H) _{asym}, 1 306 δ (C-H)_{sym}, 810 v(C-H)_{aromatic} out-of-plane deformation vibrations (2 neighbouring H atoms), 721 v(C-H)_{aromatic} out-of-plane deformation vibrations (4 neighbouring H atoms) cm⁻¹; ¹H-NMR (CDCl₃): δ = 8.14 (m, 2H, H1), 7.65 (m, 2H, H2), 7.31 (m, 2H,


Scheme S2: Synthesis of adamantyl-containing dyes 2

H3), 1.70 and 2.11 (m, 15H, adamantyl) ppm; MS (EI): m/z = 506 ([M]⁺).


DLS of salt 4, PEI with 1, complex 5, compound 3 and RAMEB-CD with 2


Figure S1: $d_{\rm H}$ of salt **4** (compound **3** with a $d_{\rm H}$ of 8 nm was combined with dye **1** leading to a $d_{\rm H}$ of 163 nm) ($C_{\rm p}$ = 0.5 g/L, in H₂O, pH 7, 25°C).


Figure S2: Unmodified PEI with a $d_{\rm H}$ of 4 nm was combined with dye **1** leading to a $d_{\rm H}$ of 152 nm (C_p = 0.5 g/L, in H₂O, pH 7, 25°C).

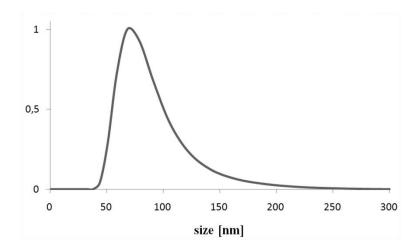

Figure S3: $d_{\rm H}$ of complex **5** (compound **3** with a $d_{\rm H}$ from 8 nm was combined with dye **2** leading to a $d_{\rm H}$ 260 nm) ($C_{\rm p}$ = 0.5 g/L, in H₂O, pH 7, 25°C).

Figure S4: $d_{\rm H}$ of complex **6** ($d_{\rm H}$ of 480 nm which verifies an inclusion of both dyes (**1** and **2**)) ($C_p = 0.5$ g/L, in H_2O , pH 7, 25°C).

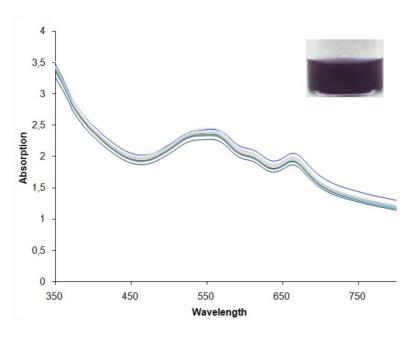


Figure S5: $d_{\rm H}$ of compound 3 ($C_{\rm p}$ = 0.5 g/L, in H₂O, pH 7, 25°C).

Figure S6: DLS measurements of RAMEB-CD and dye **2** showing a $d_{\rm H}$ of 68 nm ($C_{\rm p}$ = 0.5 g/L, in H₂O, pH 7, 25°C).

UV-vis spectra and photo of complex 5

Figure S7: UV/Vis spectra and photo of complex **5** in solution (pH 1–14 at day 1) showing no sensitivity to pH change.

[1] Schönhagen, H.; Schmitz, R. Process for the preparation of 1,4-dichloroanthraquinone. DE3513981A1, October 30, 1986.