Supporting Information

for

Ugi post-condensation copper-triggered oxidative

cascade towards pyrazoles

Aurélie Dos Santos, Laurent El Kaim*, Laurence Grimaud* and Caroline Ronsseray

Address: Laboratoire Chimie et Procédés, Laboratoire Chimie et procédés, UMR 7652-DCSO-CNRS- ENSTA-École Polytechnique, École Nationale Supérieure de Techniques Avancées, 32 Bd Victor, Paris 75015, France

Email: Laurent El Kaim - laurent.elkaim@ensta.fr; Laurence Grimaud -

laurence.grimaud@ensta.fr

* Corresponding author

Table of contents:

I.	General procedures	S2
II.	General Procedure for Syntheses	S3
III.	Spectral data for products	S4–S20

I. General procedures

¹H NMR spectra were recorded on a Bruker Avance 400 spectrometer, using CDCl₃ solvent as reference and/or internal deuterium lock. ¹³C NMR spectra were recorded on a Bruker Avance 400 (100.6 MHz) spectrometer. Two-dimensional NMR spectroscopy [¹H-¹H COSY spectra, ¹H-¹³C COSY spectra (HSQC) and long-range ¹H-¹³C COSY spectra (HMBC)], were carried out to determine the correlation between ¹H and ¹³C. The chemical shifts for all NMR spectra are expressed in parts per million up to the high frequency of the TMS reference. Coupling constants (*J*) are quoted in Hz and are recorded to the nearest 0.1 Hz.

The IR spectra were obtained on a Bruker IFS 66 or a Perkin-Elmer FT 1600 spectrometer. Low resolution mass spectral analysis (EI and CI) were recorded on a Hewlett-Packard HP5989 mass spectrometer by either direct injection or GC/MS coupling with a Hewlett-Packard HP5890 chromatograph. High resolution (HR) mass spectra were performed on a JEOL JMS-GCmate II, GC/MS system spectrometer. TLC was carried out on precoated plates of silica gel 60F₂₅₄.

II. General Procedure for Syntheses

General Procedure A: preparation of Ugi adducts:

To a solution of aldehyde (1 equiv) in methanol (1 M) were added successively allylamine (1 equiv), hydrazono acetic acid (1 equiv) and isocyanide (1 equiv). The resulting mixture was stirred at 40 °C until completion of the reaction (TLC). The solvent was removed under reduced pressure. The product was isolated by flash chromatography on silica gel (PE/Et₂O).

General Procedure B: preparation of pyrrazolidinone:

To a solution of hydrazone **1** (1 equiv) in a 10/70/20 DMF/CH₃COOH/H₂O mixture (0.06 M) was added Cu(OAc)₂ (20 mol %). The resulting mixture was heated at 80 °C under argon. The pH was adjusted to 6 with an aqueous sodium hydrogencarbonate solution, the aqueous phase was extracted with AcOEt. Then the organic layers were washed ten times with water, dried over anhydrous MgSO₄, filtered and concentrated in vacuo. The product was isolated by flash chromatography on silica gel (PE/Et₂O with 1 % of TEA).

III. Spectral data for products from Table 1

(*E*)-*N*-allyl-*N*-(2-(*tert*-butylamino)-2-oxoethyl)-2-(2-phenylhydrazono)propanamide (2a)

Compound 2a was prepared following the general procedure A applied to 2-(2-phenylhydrazono)-propanoic acid (500 mg, 2.8 mmol), formaldehyde (210 μ L, 2.8 mmol), *tert*-butylisocyanide (230 mg, 2.8 mmol).

Yield: 64% (600 mg)

R_f: 0.2 (3:7 P.E./Et₂O)

White solid.

Mp: 137–138 °C

¹H NMR (CDCl₃, 400 MHz) δ 7.52 (br s, 1H, NH) 7.29 (dd, J = 7.8, 7.3 Hz, 2H, H₈), 7.09 (d, J = 7.8 Hz, 2H, H₇), 6.95 (t, J = 7.3 Hz, 1H, H₉), 6.16 (br s, 1H, NH), 5.96–5.88 (m, 1H, H₃), 5.28–5.23 (m, 2H, H₄), 4.34–4.00 (m, 4H, H₂, H₅), 2.14 (s, 3H, H₁), 1.35 (s, 9H, H₆).

 ^{13}C NMR (CDCl₃, 100.6 MHz) δ 168.7 (C_C), 168.6 (C_B), 143.9 (C_E), 136.9 (C_A), 132.8 (C₃), 129.8 (C₈), 122.0 (C₉), 119.0 (C₄), 114.0 (C₇), 53.9 (C₂), 51.7 (C₅), 51.3 (C_D), 29.1 (C₆), 12.6 (C₁).

IR (v, cm⁻¹): 1684, 1653, 1558, 1541, 1508, 1457.

HRMS: calculated for C₁₈H₂₆N₄O₂ 330.2056, found 330.2064.

(*E*)-*N*-allyl-*N*-(2-(*tert*-butylamino)-2-oxoethyl)-2-phenyl-2-(2-phenylhydrazono) acetamide (2b)

Compound 2b was prepared following the general procedure A applied to 2-phenyl-2-(2-phenylhydrazono)acetic acid (500 mg, 2.1 mmol), formaldehyde (160 μ L, 2.1 mmol), *tert*-butylisocyanide (175 mg, 2.1 mmol).

Yield: 79% (868 mg)

R_f: 0.5 (3:7 PE/Et₂O)

White solid.

Mp: 169-170 °C

¹H NMR (CDCl₃, 400 MHz) δ 10.29 (br s, 1H, NH), 7.73 (d, J = 7.3 Hz, 2H, H₃), 7.41– 7.37 (m, 4H, H₂, H₉), 7.33–7.29 (m, 3H, H₁, H₁₀), 6.90 (t, J = 7.1 Hz, 1H, H₁₁), 5.68– 5.58 (m, 1H, H₅), 5.48 (br s, 1H, NH), 5.16–5.13 (m, 2H, H₆), 4.14 (m, 2H, H₇), 3.94 (d, J = 6.1 Hz, 2H, H₄), 1.44 (s, 9H, H₈).

 13 C NMR (CDCl₃, 100.6 MHz) δ 167.6 (C_D), 167.5 (C_C), 145.5 (C_F), 136.7 (C_B), 134.7 (C_A), 132.9 (C₅), 129.5 (C₁₀), 129.0 (C₂), 128.5 (C₁), 125.5 (C₃), 120.5 (C₁₁), 119.7 (C₆), 113.5 (C₉), 52.7 (C_E), 52.1 (C₄), 47.6 (C₇), 29.3 (C₈).

IR (v, cm⁻¹): 1653, 1558, 1541, 1508, 1457.

HRMS: calculated for C₂₃H₂₈N₄O₂ 392.2212, found 392.2217.

(E)-N-allyl-N-(2-(cyclohexylamino)-2-oxoethyl)-2-(2-phenylhydrazono) propanamide (2c)

Compound **2c** was prepared following the general procedure A applied to 2-(2-phenylhydrazono) propanoic acid (500 mg, 2.8 mmol), formaldehyde (210 μ L, 2.8 mmol), cyclo-hexylisocyanide (403 μ l, 2.8 mmol).

Yield: 78% (780 mg)

 $C_{20}H_{28}N_4O_2$ Mol wt = 356.46 g·mol⁻¹

R_f: 0.1 (3:7 PE/Et₂O)

Brown solid.

Mp: 95-96 °C

¹H NMR (CDCl₃, 400 MHz) δ 7.43 (br s, 1H, NH), 7.29–7.25 (m, 2H, H₁₁), 7.05 (d, J = 7.3 Hz, 2H, H₁₀), 6.94 (t, J = 8.5 Hz, 1H, H₁₂), 6.31–6.11 (m, 1H, NH), 5.92–5.85 (m, 1H, H₃), 5.27–5.21 (m, 2H, H₄), 4.36–4.18 (m, 2H, H₅), 4.15–4.03 (m, 2H, H₂), 3.85–3.76 (m, 1H, H₆), 2.13 (s, 3H, H₁), 1.89–1.86 (m, 2H, H₇), 1.68–1.63 (m, 2H, H₈), 1.61–1.56 (m, 2H, H₉), 1.36–1.30 (m, 2H, H₈), 1.19–1.10 (m, 2H, H₇).

¹³C NMR (CDCl₃, 100.6 MHz) δ 168.1 (C_B, C_C), 143.5 (C_D), 136.2 (C_A), 131.7 (C₃), 129.2 (C₁₁), 121.5 (C₁₂), 118.7 (C₄), 113.6 (C₁₀), 53.3 (C₂), 50.7 (C₅), 48.3 (C₆), 32.8 (C₇), 25.4 (C₉), 24.6 (C₈), 12.1 (C₁).

IR (v, cm⁻¹): 1653, 1597, 1541, 1496, 1454, 1424, 1244.

HRMS: calculated for $C_{20}H_{28}N_4O_2$ 356.2212, found 356.2215

(*E*)-*N*-allyl-*N*-(2-(4-chlorobenzylamino)-2-oxoethyl)-2-(2-phenylhydrazono) propanamide (2d)

¹H NMR (CDCl₃, 400 MHz) δ 7.51 (br s, 1H, NH) 7.29–7.24 (m, 4H, H₈, H₁₀), 7.19–7.17 (m, 2H, H₇), 7.03 (d, *J* = 7.3 Hz, 2H, H₉), 6.96 (t, *J* = 7.3 Hz, 1H, H₁₁), 6.91 (br s, 1H, NH), 5.94–5.87 (m, 1H, H₃), 5.32–5.25 (m, 2H, H₄), 4.43 (d, *J* = 6.0 Hz, 2H, H₆), 4.28–4.16 (m, 4H, H₂, H₅), 2.09 (s, 3H, H₁).

 13 C NMR (CDCl₃, 100.6 MHz) δ 169.6 (C_c), 168.7 (C_B), 143.8 (C_F), 136.9 (C_D), 136.8 (C_A), 133.6 (C_E), 132.9 (C₃), 129.8 (C₈), 129.4 (C₁₀), 129.2 (C₇), 122.1 (C₁₁), 119.2 (C₄), 114.4 (C₉), 53.7 (C₂), 50.9 (C₅), 43.1 (C₆), 12.5 (C₁).

IR (v, cm⁻¹): 1601, 1541, 1492, 1458, 1242.

HRMS: calculated for $C_{21}H_{23}CIN_4O_2$ 398.1510, found 398.1516.

(*E*)-*N*-allyl-*N*-(2-(cyclohexylamino)-2-oxoethyl)-2-phenyl-2-(2-phenylhydrazono) acetamide (2e)

Compound **2e** was prepared following the general procedure A applied to 2-phenyl-2-(2-phenylhydrazono)acetic acid (673 mg, 2.8 mmol), formaldehyde (210 μ L, 2.8 mmol), cyclohexylisocyanide (403 μ L, 2.8 mmol).

Yield: 94% (1.1 g)

 $C_{25}H_{30}N_4O_2$ Mol wt = 418.53 g·mol⁻¹

Rf : 0.3 (3:7 PE/Et₂O)

White solid.

Mp: 184-185 °C

¹H NMR (CDCl₃, 400 MHz) δ 9.99 (br s, 1H, NH), 7.63 (d, *J* = 7.6 Hz, 2H, H₃), 7.31– 7.27 (m, 3H, H₁, H₁₂), 7.24–7.19 (m, 4H, H₂, H₁₃), 6.81 (t, *J* = 7.3 Hz, 1H, H₁₄), 5.64 (br s, 1H, NH), 5.59–5.49 (m, 1H, H₅), 5.07–5.03 (m, 2H, H₆), 4.10 (s, 2H, H₇), 3.86 (d, *J* = 5.8 Hz, 2H, H₄), 3.85–3.76 (m, 1H, H₈), 1.91–1.87 (m, 2H, H₉), 1.65–1.62 (m, 2H, H₁₀), 1.57–1.52 (m, 2H, H₁₁), 1.33–1.27 (m, 2H, H₁₀), 1.13–1.06 (m, 2H, H₉).

 13 C NMR (CDCl₃, 100.6 MHz) δ 167.5 (C_D), 167.3 (C_C), 145.3 (C_E), 136.7 (C_B), 134.7 (C_A), 132.9 (C₅), 129.5 (C₂), 129.0 (C₁₃), 128.6 (C₁), 125.5 (C₃), 120.6 (C₁₄), 119.9 (C₆), 113.6 (C₁₂), 52.2 (C₄), 49.4 (C₈), 47.2 (C₇), 33.4 (C₉), 26.0 (C₁₁), 25.3 (C₁₀).

IR (v, cm⁻¹): 1653, 1624, 1558, 1541, 1507, 1457.

HRMS: calculated for $C_{25}H_{30}N_4O_2$ 418.2369, found 418.2375.

(*E*)-methyl 2-(2-(*N*-allyl-2-(2-(4-chlorophenyl)hydrazono)-3-methylbutanamido) acetamido)propanoate (2f)

¹H NMR (CDCl₃, 400 MHz) δ 7.55 (br s, 1H, NH), 7.15 (d, *J* = 8.6 Hz, 2H, H₁₁), 7.09 (d, *J* = 8.6 Hz, 2H, H₁₀), 6.57 (br s, 1H, NH), 5.70 (ddt, *J* = 16.9, 10.8, 5.6 Hz, 1H, H₄), 5.23 (d, *J* = 10.8 Hz, 1H, H₅), 5.18 (d, *J* = 16.9 Hz, 1H, H₅), 4.67 (quint, *J* = 7.3 Hz, 1H, H₇), 4.20 (d, *J* = 15.9 Hz, 1H, H₆), 4.10 (d, *J* = 15.9 Hz, 1H, H₆), 3.87 (ddt, *J* = 16.9, 10.8, 5.6 Hz, 2H, H₃), 3.77 (s, 3H, H₉), 2.83 (sept, *J* = 7.1 Hz, 1H, H₂), 1.45 (d, *J* = 7.3 Hz, 3H, H₈), 1.21 (d, *J* = 7.1 Hz, 3H, H₁), 1.19 (d, *J* = 7.1 Hz, 3H, H₁).

 13 C NMR (CDCl₃, 100.6 MHz) δ 173.2 (C_D), 167.9 (C_B), 167.8 (C_C), 144.1 (C_E), 143.9 (C_A), 132.3 (C₄), 128.8 (C₁₁), 123.7 (C_F), 119.4 (C₅), 113.6 (C₁₀), 52.6 (C₉), 51.1 (C₃), 48.5 (C₇), 46.2 (C₆), 32.3 (C₂), 20.2 (C₁), 19.9 (C₁), 18.4 (C₈).

IR (v, cm⁻¹): 2926, 2361, 1744, 1688, 1626, 1602, 1542, 1492, 1454, 1255, 1209.

HRMS: calculated for $C_{20}H_{27}CIN_4O_4$ 422.1721, found 422.1722.

(E)-2-(N-allyl-2-(2-phenylhydrazono)acetamido)-N-cyclohexylbutanamide (3g)

Compound **3g** was prepared following the general procedure A applied to 2-(2-phenylhydrazono)acetic acid (500 mg, 3.05 mmol), propionaldehyde (220 μ L, 3.05 mmol), cyclo-hexylisocyanide (380 μ L, 3.05 mmol).

Yield: 58% (653 mg)

 $R_{\rm f}: 0.25 (100\% {\rm Et}_2{\rm O})$ Mol wt = 370.48 g·mol⁻¹

Red solid.

Mp: 95-96 °C

¹H NMR (CDCl₃, 400 MHz) δ 8.26 (br s, 1H, NH), 7.34 (s, 1H, H₁), 7.32–7.30 (m, 2H, H₁₃), 7.07 (d, *J* = 7.1 Hz, 2H, H₁₂), 7.00–6.97 (m, 1H, H₁₄), 6.40–6.38 (m, 1H, NH), 5.95–5.89 (m, 1H, H₃), 5.23 (d, *J* = 16.9 Hz, 1H, H₄), 5.18 (d, *J* = 10.1 Hz, 1H, H₄), 4.83 (t, *J* = 6.8 Hz, 1H, H₅), 4.34–4.16 (m, 2H, H₂), 3.75–3.76 (m, 1H, H₈), 2.08–2.01 (m, 1H, H₆), 1.91–1.82 (m, 2H, H₉), 1.70–1.67 (m, 3H, H₆, H₁₀), 1.62–1.58 (m, 1H, H₁₁), 1.38–1.31 (m, 2H, H₁₀), 1.17–1.12 (m, 3H, H₉, H₁₁), 0.96 (t, *J* = 6.8 Hz, 3H, H₇).

¹³C NMR (CDCl₃, 100.6 MHz) δ 170.1 (C_B), 166.3 (C_A), 143.6 (C_C), 135.3 (C₃), 129.7 (C₁₃), 128.0 (C₁), 122.1 (C₁₄), 117.5 (C₄), 114.0 (C₁₂), 60.2 (C₅), 48.6 (C₈), 47.9 (C₂), 33.3 (C₉), 33.1 (C₉), 25.8 (C₁₁), 25.2 (C₁₀), 22.0 (C₆), 11.2 (C₇).

IR (v, cm⁻¹): 2931, 2361, 1648, 1538, 1453, 1250.

HRMS: calculated for C₂₁H₃₀N₄O₂ 370.2369, found 370.2369

(*E*)-2-(*N*-allyl-2-phenyl-2-(2-phenylhydrazono)acetamido)-*N*-cyclohexyl-4methylpentanamide (3h)

Compound **3h** was prepared following the general procedure A applied to 2-phenyl-2-(2-phenylhydrazono)acetic acid (673 mg, 2.8 mmol), isovaleraldehyde (300 μ L, 2.8 mmol), cyclohexylisocyanide (403 μ L, 2.8 mmol).

Yield: 52% (660 mg)

 $C_{29}H_{38}N_4O_2$ Mol wt = 474.64 g·mol⁻¹ *R*_f: 0.6 (5:5 PE/Et₂O)

Yellow solid

Mp: 67-68 °C

Obtained as a mixture of two rotamers A:B in a 1.2:0.8 ratio

¹H NMR (CDCl₃, 400 MHz) δ 9.15 (br s, 0.6 H_A, NH), 8.13 (br s, 0.4 H_B, NH), 7.70 (d, J = 7.8 Hz, 0.8H_B, H₃), 7.65 (d, J = 7.8 Hz, 1.2H_A, H₃), 7.44–7.35 (m, 2H, H₂), 7.32–7.24 (m, 3H, 1.2H_A, H₁, H₁₅, H₁₆), 7.16 (d, J = 8.3 Hz, 0.8H_B, H₁₅), 6.94 (t, J = 7.8 Hz, 0.4H_B, H₁₇), 6.90 (t, J = 7.8 Hz, 0.6H_A, H₁₇), 6.05–5.96 (m, 0.4H_B, H₅), 5.96 (br s, 1H, NH), 5.63 (ddt, J = 16.7, 10.3, 6.5 Hz, 0.6H_A, H₅), 5.37 (d, J = 16.7 Hz, 0.4H_B, H₆), 5.25 (d, J = 10.3 Hz, 0.4H_B, H₆), 5.02 (d, J = 16.7 Hz, 0.6H_A, H₆), 4.98 (d, J = 10.3 Hz, 0.6H_A, H₆), 4.93–4.90 (m, 1H, H₇), 4.31 (dd, J = 14.4, 6.5 Hz, 0.4H_B, H₄), 4.04 (dd, J = 14.4, 6.5 Hz, 0.4H_B, H₄), 3.98–3.91 (m, 1H, H₁₁), 3.89–3.77 (m, 1.2H_A, H₄), 2.03–1.94 (m, 2H, H₁₂), 1.74–1.61 (m, 6H, H₈, H₁₃), 1.41–1.36 (m, 2H, H₁₄), 1.25–1.17 (m, 3H, H₉, H₁₂), 1.06 (d, J = 6.0 Hz, 1.8H_A, H₁₀), 1.02 (d, J = 6.0 Hz, 1.8H_A, H₁₀), 0.62 (d, J = 6.0 Hz, 1.2H_B, H₁₀), 0.46 (d, J = 6.0 Hz, 1.2H_B, H₁₀).

¹³C NMR (CDCl₃, 100.6 MHz) δ 169.9 (C_D), 167.9 (A, C_C), 167.7 (B, C_C), 144.7 (A, C_E), 144.3 (B, C_E), 138.1 (A, C_B), 138.1 (B, C_B), 134.3 (A, C_A), 134.0 (B, C_A), 133.5 (A, C₅), 133.2 (B, C₅), 129.6 (B, C₁), 129.4 (B, C₁₆), 129.2 (A, C₁₆), 129.1 (B, C₂), 128.7 (B, C₂), 128.5 (A, C₁), 125.6 (B, C₃), 125.1 (A, C₃), 121.5 (B, C₁₇), 120.5 (A, C₁₇), 119.1 (A, C₆), 118.6 (B, C₆), 113.8 (B, C₁₅), 113.3 (A, C₁₅), 60.2 (B, C₇), 56.6 (A, C₇), 50.2 (C₄), 48.8 (A, C₁₁), 48.6 (B, C₁₁), 37.4 (A, C₈), 37.3 (B, C₈), 33.1 (A, C₁₂), 33.0 (B, C₁₂), 25.5 (B, C₁₄), 25.3 (A, C₁₄), 25.3 (C₉) 24.9 (A, C₁₃), 24.8 (B, C₁₃), 23.2 (A, C₁₀), 22.6 (B, C₁₀), 21.9 (A, C₁₀), 21.4 (B, C₁₀).

IR (v, cm⁻¹): 2932, 2361, 1621, 1540, 1263.

HRMS: calculated for $C_{29}H_{38}N_4O_2$ 474.2994, found 474.2983.

(*E*)-*N*-allyl-*N*-(1-(*ter*-butylamino)-2-methyl-1-oxopropan-2-yl)-2-(2-phenylhydrazono)propanamide (3i)

Compound **3i** was prepared following the general procedure A applied to 2-(2-phenylhydrazono)propanoic acid (500 mg, 2.8 mmol), acetone (210 μ L, 2.8 mmol), *tert*-butylisocyanide (317 μ L, 1 mmol).

Yield: 50% (505 mg)

R_f: 0.6 (100% Et₂O)

Yellow solid.

Mp: 123–124 °C

¹H NMR (CDCl₃, 400 MHz) δ 7.32 (br s, 1H, NH), 7.27 (dd, J = 8.0, 7.3 Hz, 2H, H₈), 7.07 (d, J = 8.0 Hz, 2H, H₇), 6.92 (t, J = 7.3 Hz, 1H, H₉), 6.01 (ddt, J = 16.9, 10.4, 5.2 Hz, 1H, H₃), 5.73 (br s, 1H, NH), 5.18 (d, J = 16.9 Hz, 1H, H₄), 5.17 (d, J = 10.3 Hz, 1H, H₄), 4.29 (d, J = 5.2 Hz, 2H, H₂), 2.04 (s, 3H, H₁), 1.53 (s, 6H, H₅), 1.31 (s, 9H, H₆).

 ^{13}C NMR (CDCl₃, 100.6 MHz) δ 174.3 (C_D), 170.0 (C_B), 144.4 (C_F), 138.5 (C_A), 137.7 (C₃), 129.7 (C₈), 121.5 (C₉), 117.1 (C₄), 113.8 (C₇), 64.1 (C_E), 51.1 (C_C), 49.1 (C₂), 29.0 (C₆), 24.9 (C₅), 12.7 (C₁).

IR (v, cm⁻¹): 1684, 1558, 1541, 1508.

HRMS: calculated for $C_{20}H_{30}N_4O_2$ 358.2369, found 358.2370

N-tert-butyl-2-(6a-methyl-3,6-dioxo-2-phenyl-hexahydropyrrolo[3,4-c]pyrazol-5(1*H*)-yl)acetamide (3a)

Compound **3a** was prepared following the general procedure B applied to hydrazone **2a** (100 mg, 0.3 mmol). $HN^{-N}_{A_{3}}$ Yield: 84% (87 mg) $R_{f}: 0.3$ (AcOEt 100%) Yellow solid. HN^{-7}_{D} Mp: 200 °C (degradation)

 $C_{18}H_{24}N_4O_3$ Mol wt = 344.41 g·mol⁻¹

¹H NMR (CDCl₃, 400 MHz) δ 7.83 (d, J = 8.3 Hz, 2H, H₃), 7.37 (dd, J = 8.3, 7.3 Hz, 2H, H₂), 7.17 (t, J = 7.3 Hz, 1H, H₁), 5.52 (br s, 1H, NH *t*Bu), 4.89 (br s, 1H, NH), 3.93 (d, J = 16.2 Hz, 1H, H₆), 3.85 (dd, J = 10.3, 6.3 Hz, 1H, H₅), 3.80 (d, J = 16.2 Hz, 1H, H₆), 3.76 (d, J = 10.3 Hz, 1H, H₅), 3.22 (d, J = 6.3Hz, 1H, H₄), 1.63 (s, 3H, H₈), 1.25 (s, 9H, H₇).

 ^{13}C NMR (CDCl₃, 100.6 MHz) δ 174.6 (C_E), 169.8 (C_B), 166.3 (C_C), 138.1 (C_A), 129.2 (C₂), 125.8 (C₁), 119.5 (C₃), 63.7 (C_F), 52.0 (C_D), 48.0 (C₄, C₆), 47.6 (C₅), 29.0 (C₇), 18.9 (C₈).

IR (v, cm⁻¹): 1684, 1541, 1497, 1363.

HRMS: calculated for $C_{18}H_{24}N_4O_3$ 344.1848, found 344.1855.

N-tert-butyl-2-(3,6-dioxo-2,6a-diphenyl-hexahydropyrrolo[3,4-c]pyrazol-5(1*H*)-yl)acetamide (3b)

 $C_{23}H_{26}N_4O_3$ Mol wt = 406.48 g·mol⁻¹

¹H NMR (CDCl₃, 400 MHz) δ 7.91 (d, J = 8.1 Hz, 2H, H₃), 7.66 (d, J = 7.6 Hz, 2H, H₈), 7.51–7.45 (m, 3H, H₉, H₁₀), 7.40 (dd, J = 8.1, 7.6 Hz, 2H, H₂), 7.20 (t, J = 7.6 Hz, 1H, H₁), 5.53 (br s, 1H, NH *t*-Bu), 5.23 (br s, 1H, NH), 3.97–3.84 (m, 4H, H₅, H₆), 3.74–3.72 (m, 1H, H₄), 1.18 (s, 9H, H₇).

 ^{13}C NMR (CDCl₃, 100.6 MHz) δ 173.2 (C_E), 169.0 (C_B), 166.3 (C_C), 138.0 (C_A), 134.9 (C_G), 130.0 (C₁₀), 129.8 (C₉), 129.3 (C₂), 126.4 (C₈), 126.0 (C₁), 119.7 (C₃), 68.9 (C_F), 51.9 (C_D), 48.9 (C₆), 48.2 (C₅), 48.0 (C₄), 28.8 (C₇).

IR (v, cm⁻¹): 1684, 1558, 1541, 1508, 1457.

HRMS: calculated for $C_{23}H_{26}N_4O_3$ 406.2005, found 406.2004.

N-cyclohexyl-2-(6a-methyl-3,6-dioxo-2-phenyl-hexahydropyrrolo[3,4-c]pyrazol-5(1*H*)-yl)acetamide (3c)

 $C_{20}H_{26}N_4O_3$ Mol wt = 370.45 g·mol⁻¹

¹H NMR (CDCl₃, 400 MHz) δ 7.82 (d, J = 8.1 Hz, 2H, H₃), 7.35 (dd, J = 8.1, 7.5 Hz, 2H, H₂), 7.15 (t, J = 7.5 Hz, 1H, H₁), 5.60 (br s, 1H, NH Cy), 4.88 (br s, 1H, NH), 3.98 (d, J = 15.4 Hz, 1H, H₆), 3.86–3.82 (m, 2H, H₅, H₆) 3.75 (d, J = 10.1 Hz, 1H, H₅), 3.70–3.61 (m, 1H, H₇), 3.22 (d, J = 6.5 Hz, 1H, H₄), 1.79–1.75 (m, 2H, H₈), 1.62 (s, 3H, H₁₁), 1.60–1.49 (m, 4H, H₉, H₁₀), 1.28–1.21 (m, 2H, H₉), 1.02–0.92 (m, 2H, H₈).

¹³C NMR (CDCl₃, 100.6 MHz) δ 174.7 (C_D), 169.9 (C_B), 166.2 (C_C), 138.1 (C_A), 129.3 (C₂), 125.8 (C₁), 119.5 (C₃), 63.8 (C_E), 48.8 (C₄), 48.1 (C₇), 47.7 (C₆), 47.5 (C₅), 33.2 (C₈), 33.1 (C₈), 25.7 (C₁₀), 25.1 (C₉), 18.8 (C₁₁).

IR (v, cm⁻¹): 1698, 1595, 1541, 1497, 1457, 1362.

HRMS: calculated for $C_{20}H_{26}N_4O_3$ 370.2005, found 370.2002.

N-(4-chlorobenzyl)-2-(6a-methyl-3,6-dioxo-2-phenyl-hexahydropyrrolo[3,4c]pyrazol-5(1H)-yl)acetamide (3d)

Compound **3d** was prepared following the general procedure B applied to hydrazone **2d** (100 mg, 0.25 mmol).

Yield: 90% (95 mg)

*R*_f: 0.2 (AcOEt 100%)

White solid.

Mp: 175–176°C (degradation)

 $C_{21}H_{21}CIN_4O_3$ Mol wt = 412.87 g·mol⁻¹

¹H NMR (CDCl₃, 400 MHz) δ 7.78 (d, *J* = 8.3 Hz, 2H, H₃), 7.37 (dd, *J* = 8.3, 7.0 Hz, 2H, H₂), 7.24 (d, *J* = 7.8 Hz, 2H, H₉), 7.19 (t, *J* = 7.0 Hz, 1H, H₁), 7.13 (d, *J* = 7.8 Hz, 2H, H₈), 6.10 (br s, 1H, NH Bn), 4.81 (br s, 1H, NH), 4.41–4.31 (m, 2H, H₇), 4.12 (d, *J* = 15.9 Hz, 1H, H₆), 3.89 (d, *J* = 15.9 Hz, 1H, H₆), 3.89–3.81 (m, 2H, H₅), 3.25 (d, *J* = 5.8 Hz, 1H, H₄), 1.61 (s, 3H, H₁₀).

 13 C NMR (CDCl₃, 100.6 MHz) δ 174.8 (C_F), 169.6 (C_B), 167.2 (C_C), 137.9 (C_A), 136.3 (C_D), 133.7 (C_E), 129.4 (C₈), 129.2 (C₂, C₉), 125.8 (C₁), 119.4 (C₃), 63.6 (C_G), 48.0 (C₄), 47.8 (C₆), 47.3 (C₅), 43.3 (C₇), 18.8 (C₁₀).

IR (v, cm⁻¹): 1684, 1541, 1276, 1261.

HRMS: calculated for $C_{21}H_{21}CIN_4O_3$ 412.1302, found 412.1290.

N-cyclohexyl-2-(3,6-dioxo-2,6a-diphenyl-hexahydropyrrolo[3,4-c]pyrazol-5(1*H*)yl)acetamide (3e)

Compound **3e** was prepared following the general procedure B applied to hydrazone **2e** (100 mg, 0.24 mmol).

Yield: 72% (75 mg)

R_f: 0.7 (AcOEt 100%)

Yellow oil

 $C_{25}H_{28}N_4O_3$ Mol wt = 432.51 g·mol⁻¹

¹H NMR (CDCl₃, 400 MHz) δ 7.89 (d, *J* = 8.6 Hz, 2H, H₃), 7.65 (d, *J* = 8.1 Hz, 2H, H₁₁), 7.48–7.42 (m, 3H, H₁₂, H₁₃), 7.39 (dd, *J* = 8.6, 7.8 Hz, 2H, H₂), 7.18 (t, *J*=7.8 Hz, 1H, H₁), 5.60 (br s, 1H, NH Cy), 5.21 (br s, 1H, NH cycle), 4.01–3.96 (m, 2H, H₆), 3.91–3.87 (m, 2H, H₅), 3.74–3.70 (m, 1H, H₇), 3.66–3.57 (m, 1H, H₄), 1.79–1.48 (m, 4H, H₈, H₉), 1.31–1.16 (m, 2H, H₁₀), 1.00–0.75 (m, 4H, H₈, H₉).

 ^{13}C NMR (CDCl₃, 100.6 MHz) δ 173.3 (C_D), 169.0 (C_B), 166.1 (C_C), 138.0 (C_A), 134.7 (C_F), 129.9 (C₁₃), 129.7 (C₁₂), 129.3 (C₂), 126.4 (C₁₁), 125.9 (C₁), 119.7 (C₃), 68.9 (C_E), 48.6 (C₄), 48.3 (C₅), 47.9 (C₇), 33.0 (C₈), 32.9 (C₈), 25.6 (C₁₀), 24.9 (C₉).

IR (v, cm⁻¹): 1697, 1596, 1542, 1496, 1448, 1363.

HRMS: calculated for $C_{25}H_{28}N_4O_3$ 432.2161, found 432.2169.

Methyl 2-(2-(2-(4-chlorophenyl)-6a-isopropyl-3,6-dioxohexahydropyrrolo[3,4c]pyrazol-5(1*H*)-yl)acetamido)propanoate (3f)

Compound **3f** was prepared following the general procedure B applied to hydrazone **2f** (20 mg, 0.047 mmol).

Yield: 49% (10 mg)

*R*_f: 0.3 (AcOEt 100%)

Orange oil

 $C_{20}H_{25}CIN_4O_5$ Mol wt = 436.88 g·mol⁻¹

Obtained as a mixture of two diastereomers A:B in a 1.1:0.9 ratio :

¹H NMR (CDCl₃, 400 MHz) δ 7.78 (d, J = 8.8 Hz, 1.1H_A, H₂), 7.77 (d, J = 8.8 Hz, 0.9H_B, H₂), 7.31 (d, J = 8.8 Hz, 2H, H₁), 6.42 (d, J = 7.5 Hz, 0.45H_B, NH), 6.41 (d, J = 7.5 Hz, 0.55H_A, NH), 5.00 (br s, 0.45H_B, NH), 4.98 (br s, 0.55H_A, NH), 4.54 (q, J = 6.8 Hz, 0.55H_A, H₆), 4.52 (q, J = 6.8 Hz, 0.45H_B, H₆), 4.28 (d, J = 16.4 Hz, 0.45H_B, H₅), 4.23 (d, J = 16.4 Hz, 0.55H_A, H₅), 3.89–3.85 (m, 1H, H₄), 3.80–3.72 (m, 2H, H₄, H₅), 3.71 (s, 1.65H_A, H₈), 3.71 (s, 1.35H_B, H₈), 3.28 (d, J = 7.5 Hz, 1H, H₃), 2.28 (sept, J = 6.5 Hz, 1H, H₉), 1.36 (d, J = 6.8 Hz, 1.35H_B, H₇), 1.35 (d, J = 6.8 Hz, 1.65H_A, H₇), 1.15–1.09 (m, 6H, H₁₀).

¹³C NMR (CDCl₃, 100.6 MHz) δ 174.2 (C_F), 173.0 (A, C_E), 172.8 (B, C_E), 168.7 (C_C), 166.4 (B, C_D), 166.3 (A, C_D), 136.3 (B, C_A), 136.1 (A, C_A), 130.4 (B, C_B), 130.3 (A, C_B), 128.8 (B, C₁), 128.8 (A, C₁), 120.2 (C₂), 69.0 (B, C_G), 69.0 (A, C_G), 52.6 (C₈), 49.2 (B, C₄), 49.2 (A, C₄), 48.1 (B, C₆), 48.0 (A, C₆), 46.6 (B, C₅), 46.5 (A, C₅), 44.0 (B, C₃), 43.8 (A, C₃), 32.0 (B, C₉), 31.9 (A, C₉), 18.3 (B, C₇), 18.1 (A, C₇), 17.3 (B, C₁₀), 17.2 (A, C₁₀).

IR (v, cm⁻¹): 2925, 2361, 1681, 1492, 1460, 1360, 1211.

HRMS: calculated for $C_{20}H_{25}CIN_4O_5$ 436,1513, found 436.1515.

(*E*)-*N*-cyclohexyl-2-(4-formyl-2-hydroxy-3-(phenyldiazenyl)-1*H*-pyrrol-1-yl)butanamide (4g)

 $C_{21}H_{26}N_4O_3$ Mol wt = 382.45 g·mol⁻¹

To a solution of hydrazone 3g (400 mg, 1.08 mmol) in a 20/80 H₂O/CH₃CO₂H mixture (0.06 M) was added Cu(OAc)₂ (215 mg, 1.08 mmol, 1 equiv). The resulting mixture was heated at 80 °C under argon for 3 h. The pH was adiusted to 6 with an aqueous sodium hydrogenocarbonate solution, and the aqueous phase was extracted with AcOEt. Then the organic layers were washed ten times with water (1 mL), dried over anhydrous MgSO₄, filtered and concentrated in vacuo. The product was isolated by flash chromatography on silica gel (PE/Et₂O).

Yield: 14% (12 mg)

R_f: 0.4 (Et₂O 100%)

Yellow oil

¹H NMR (CDCl₃, 400 MHz) δ 9.26 (s, 1H, H₁₁), 8.27 (s, 1H, H₁₂), 7.48 (d, *J* = 7.8 Hz, 2H, H₈), 7.38 (dd, *J* = 7.8, 7.3 Hz, 2H, H₉), 7.13 (t, *J* = 7.3 Hz, 1H, H₁₀), 4.80 (t, *J* = 7.8 Hz, 1H, H₃), 3.79–3.70 (m, 1H, H₄), 2.15–2.08 (m, 1H, H₂), 1.96–1.82 (m, 3H, H₂, H₅), 1.74–1.66 (m, 3H, H₆, H₇), 1.60–1.50 (m, 1H, H₇), 1.38–1.29 (m, 2H, H₆), 1.20–1.11 (m, 2H, H₅), 0.98 (t, *J* = 7.3 Hz, 3H, H₁).

¹³C NMR (CDCl₃, 100.6 MHz) δ 184.1 (C₁₁), 168.3 (C_B), 164.6 (C_A), 148.2 (C₁₂), 142.5 (C_D), 129.8 (C₉), 126.3 (C_E), 124.8 (C₁₀), 116.8 (C₈), 114.4 (C_C), 56.8 (C₃), 49.3 (C₄), 33.3 (C₅), 33.1 (C₅), 26.2 (C₂), 25.7 (C₇), 25.2 (C₆), 25.1 (C₆), 10.8 (C₁).

IR (v, cm⁻¹): 1733, 1717, 1698, 1653, 1558, 1541, 1521, 1508, 1473, 1419, 1276.

HRMS: calculated for C₂₁H₂₆N₄O₃ 382.2005, found 382.2008.

5-allyl-2-methyl-6a-phenyl-hexahydropyrrolo[3,4-c]pyrazol-6(6aH)-one (6)

 $C_{15}H_{19}N_3O$ Mol wt = 257.33 g·mol⁻¹ A solution of 2-oxo-2-phenylacetic acid (150 mg, 1 mmol), in DCM (0.5 M, 2 mL), with oxalyl chloride (94 µL, 1.1 mmol), with one drop of DMF was stirred for 2 h at room temperature. Then a solution of diallyamine (136 μ L, 1.1 mmol) in DCM (1 M, 1.1 mL) and TEA (153 μ L, 1.1 mmol) was added dropwise. The solution was filtered and washed with citric acid in water. The aqueous phase was extracted with DCM twice and the combined organic layers were dried over MgSO₄, filtered and concentrated in vacuo. The product, used without further purification, was diluted in methanol (1 M, 1 mL) with methylhydrazine (80 µL, 1.5 mmol) and acetic acid (86 µL, 1.5 mmol). The mixture was heated under microwave irradiation at 120 °C (200 W, 13 bar) for 30 min. The mixture was then washed with water and the aqueous phase was extracted with DCM. The organic layers were dried over MgSO₄, filtered and concentrated in vacuo.

Yield: 62% (160 mg)

*R*_f: 0.1 (AcOEt 100%)

Orange oil

¹H NMR (CDCl₃, 400 MHz) δ 7.40 (d, J = 7.1 Hz, 2H, H₈), 7.27 (dd, J = 7.8, 7.1 Hz, 2H, H₉), 7.20 (t, J = 7.8 Hz, 1H, H₁₀), 5.71–5.61 (m, 1H, H₆), 5.18 (dd, J = 15.4, 1.2 Hz, 1H, H₇), 5.14 (dd, J = 8.5, 1.2Hz, 1H, H₇), 4.00 (dd, J = 15.4, 6.1 Hz, 1H, H₅), 3.81 (dd, J = 15.4, 6.1 Hz, 1H, H₅), 3.67 (dd, J = 10.6, 7.8 Hz, 1H, H₄), 3.16 (dd, J = 10.6, 1.5 Hz, 1H, H₄), 3.04 (dddd, J = 8.1, 7.8, 3.6, 1.5 Hz, 1H, H₃), 2.90 (dd, J = 10.1, 3.6 Hz, 1H, H₂), 2.73 (dd, J = 10.1, 8.1 Hz, 1H, H₂), 2.46 (s, 3H, H₁).

 13 C NMR (CDCl₃, 100.6 MHz) δ 174.2 (C_A), 139.9 (C_C), 131.1 (C₆), 128.7 (C₉), 127.9 (C₁₀), 125.6 (C₈), 118.5 (C₇), 75.7 (C_B), 50.2 (C₄), 45.9 (C₅), 45.9 (C₂), 44.7 (C₃), 44.5 (C₁).

IR (v, cm⁻¹): 1683, 1491, 1445, 1275.

HRMS: calculated for C₁₅H₁₉N₃O 257.1528, found 257.1531.