Supporting Information

for

Synthesis and oxidation of some azole-containing thioethers

Andrei S. Potapov^{*1}, Nina P. Chernova¹, Vladimir D. Ogorodnikov², Tatiana V. Petrenko² and Andrei I. Khlebnikov^{*1}

Address: ¹Department of Chemistry, Altai State Technical University, 46 Lenin Ave., 656038 Barnaul, Russia and ²Institute of Petroleum Chemistry, Siberian Branch of Russian Academy of Sciences, 3 Akademicheskii Ave., 634055 Tomsk, Russia

Email: Andrei I. Khlebnikov - aikhl@chem.org.ru; Andrei S. Potapov - asp99@yandex.ru * Corresponding author

Experimental procedures, spectroscopic and analytical data for compounds 1, 3–5.

1-(2-Hydroxyethyl)-3,5-dimethylpyrazole (**1**). A suspension of 3,5-dimethylpyrazole (4.80 g, 50 mmol) and finely powdered KOH (8.40 g, 150 mmol) in DMSO (15 mL) was vigorously stirred at 80 °C for 1 h. After that, the mixture was allowed to cool to room temperature and 2-chloroethanol (4.03 g, 3.32 mL, 50 mmol) in DMSO (10 mL) was added dropwise during 1 h with stirring and cooling the reaction flask in a water bath. After the addition was complete, heating at 80 °C and stirring was resumed and continued for 20 h. Then the reaction mixture was poured into water (200 mL) and extracted with chloroform (7 × 15 mL). The extract was washed with water, dried over calcium chloride and the solvent was evaporated in vacuo. Product **1** can be purified by crystallization from iPrOH or by vacuum distillation. Yield 88%, colorless

crystals, mp 76–77 °C (lit. mp 75–76 °C [1]), bp 125–127 °C (2.6 kPa). ¹H NMR (CDCl₃) δ 2.15, 2.19 s (6H, CH₃), 3.89 (t, J = 5.1 Hz, 2H, PzCH₂CH₂OH), 4.00 (t, J = 5.1 Hz, 2H, PzCH₂CH₂OH), 5.75 s (1H, H4 (Pz)).

1,5-Bis(3,5-dimethylpyrazol-1-yl)-3-thiapentane (3). A solution of 1-(2-tosyloxyethyl)-3,5dimethylpyrazole (**2**) [2] (6.59 g, 22.4 mmol), Na₂S·9H₂O (freshly recrystallized from water, 2.68 g, 11.2 mmol) and NaOH (0.18 g, 4.48 mmol) in water (10 mL) was refluxed for 6 h. After the mixture was cooled in a refrigerator a precipitate formed, which was filtered, washed with water and dried. Product **3** was recrystallized from iPrOH. Yield 72%, colorless crystals, mp 82– 83 °C (lit. mp 80–81 °C [3]); IR (cm⁻¹): 1550, 1459, 1302 (Pz), 800 (C–S); ¹H NMR (CDCl₃) δ 2.17, 2.21 (s, 12H, CH₃), 2.79 (t, *J* = 7 Hz, 4H, PzCH₂CH₂S), 4.05 (t, *J* = 7 Hz, 4H, PzCH₂CH₂S), 5.75 (s, 2H, H4 (Pz)); ¹³C NMR (CDCl₃) δ 11.1 (5-CH₃), 13.4 (3-CH₃), 32.1 (PzCH₂CH₂S), 48.4 (PzCH₂CH₂S), 104.9 (C4 (Pz)), 139.1 (C5 (Pz)), 147.7 (C3 (Pz)); Anal. calcd for C₁₄H₂₂N₄S: C, 60.40; H, 7.96; N, 20.12; S, 11.52; found: C, 60.73; H, 8.08; N, 20.44; S, 11.05.

1,8-Bis(3,5-dimethylpyrazol-1-yl)-3,6-dithiaoctane (**4**). A solution of 1,2-dibromopropane diisothiuronium salt [4] (3.46 g, 10 mmol) and KOH (5.6 g, 100 mmol) in water (15 mL) were refluxed for 5 h. Then, tosylate **2** (5.88 g, 20 mmol) was added, and refluxing and vigorous stirring were continued for 8 h. After the mixture was cooled to room temperature a precipitate formed, which was filtered and washed with water. Yield 73%, colorless crystals, mp 85–87 °C (iPrOH), lit. mp 78 °C [2]; IR (cm⁻¹): 1549, 1461, 1315 (Pz), 787 (C–S); ¹H NMR (CDCl₃) δ 2.18, 2.24 (s, 12H, CH₃), 2.52 (s, 4H, SCH₂CH₂S), 2.91 (t, *J* = 6.6 Hz, 4H, PzCH₂CH₂S), 4.10 (t, *J* = 6.6 Hz, 4H, PzCH₂CH₂S), 5.76 (s, 2H, H4 (Pz)); ¹³C NMR (CDCl₃) δ 11.0 (5-CH₃), 13.3 (3-CH₃), 32.0 (SCH₂CH₂S and PzCH₂CH₂S), 48.5 (PzCH₂CH₂S), 104.9 (C4 (Pz)), 139.1 (C5 (Pz)), 147.7 (C3 (Pz)); Anal. calcd for C₁₆H₂₆N₄S₂: C, 56.77; H, 7.74; N, 16.55; S, 18.94; found: C, 56.31; H, 7.65; N, 16.56; S, 18.48.

1,3-Bis(1,2,3-benzotriazol-1-yl)-2-thiapropane (5). A biphasic mixture of 1-chloromethylbenzotriazole [5] (7.82 g, 46.7 mmol), Na₂S·9H₂O (6.73 g, 28.0 mmol, freshly

recrystallized from water), KOH (2.62 g, 46.7 mmol), and tetrabutylammonium bromide (0.254 g, 2 mol %) in acetonitrile (45 mL) and water (15 mL) was vigorously stirred and refluxed for 12 h. After the reaction mixture was poured into water (150 mL) a precipitate formed, which was filtered, washed with water, dried and recrystallized from acetonitrile. Yield 89%, colorless crystals, mp 182–184 °C (MeCN), lit. mp 179 °C [6]; IR (cm⁻¹): 1612, 1453 (Bta), 750 (C–S); ¹H NMR (DMSO-*d*₆) δ 6.04 (s, 2H, CH₂), 7.44 (t, *J* = 7 Hz, 2H, H5 (Bta)), 7.56 (t, *J* = 7 Hz, 2H, H6 (Bta)), 7.94 (d, *J* = 7.5 Hz, 2H, H4 (Bta)), 8.06 (d, *J* = 7.5 Hz, 2H, H7 (Bta)); ¹³C NMR (CDCl₃) δ 47.5 (CH₂), 110.9 (C7 (Bta)), 119.2 (C4 (Bta)), 124.3 (C5 (Bta)), 127.5 (C6 (Bta)), 131.8 (C8 (Bta)), 145.2 (C9 (Bta)); Anal. calcd for C₁₄H₁₂N₆S: C, 56.74; H, 4.08; N, 28.36.

References

- 1. Kashima, C.; Tsukamoto, Y.; Higashide, K.; Nakazono, H. J. Heterocycl. Chem. 2000, 37, 983–990. doi:10.1002/jhet.5570370449
- Haanstra, W. G.; Driessen, W. L.; Reedijk, J.; Turpeinen, U.; Hämäläinen, R. J. Chem. Soc., Dalton Trans. 1989, 2309–2314. doi:10.1039/DT9890002309
- García-Antón, J.; Pons, J.; Solans, X.; Font-Bardia, M.; Ros, J. Eur. J. Inorg. Chem. 2003, 2003, 3952–3957. doi:<u>10.1002/ejic.200300235</u>
- 4. Speziale, J. A. Org. Synth. 1950, 30, 35–37.
- Burckhalter, J. H.; Stephens, V. C.; Hall, L. A. R. J. Am. Chem. Soc. 1952, 74, 3868– 3870. doi: <u>10.1021/ja01135a044</u>
- Katritzky, A. R.; Ghiviriga, I.; Oniciu, D. C.; Soti, F. J. Heterocycl. Chem. 1996, 33, 1927–1934. doi:<u>10.1002/jhet.5570330661</u>