Supporting Information File 1

for

Asymmetric synthesis of quaternary aryl amino acid derivatives in a three-component aryne coupling reaction

Elizabeth P. Jones¹, Peter Jones², Andrew J. P. White¹ and Anthony G. M. Barrett*¹

Address: ¹Department of Chemistry, Imperial College London, London, SW7 2AZ, England and ²Worldwide Medicinal Chemistry, Pfizer Limited, Ramsgate Road, Sandwich, Kent, CT13 9NJ, England

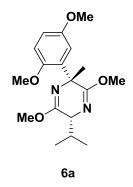
Email: Anthony G. M. Barrett*1 - agm.barrett@imperial.ac.uk

Detailed experimental procedures and analytical data for compounds 6a-j, 7b-c, 8a, 8d, 8e and 9-13

Table of contents

1.	General methods	2
	General procedure for the synthesis of quaternary Schöllkopf adducts	
	Hydrolysis products	

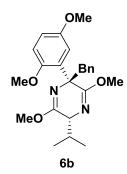
^{*} Corresponding author


1. General methods

All mixtures were carried out in oven-dried glassware under N₂ with solvents and reagents as commercially supplied, unless otherwise stated. THF and CH₂Cl₂ were redistilled from Na-Ph₂CO and CaH₂, respectively. Thin layer chromatography was performed on precoated silica gel F₂₅₄ glass plates with visualization under UV light or by staining with potassium permanganate solution, ninhydrin or Dragendorff's reagent. Flash column chromatography was either performed over silica gel, particle size 40–63 μm, or on prepacked Redisep cartridges (eluants are given in parenthesis). Melting points were determined by using a hot-stage apparatus and are uncorrected. IR spectra were recorded as thin films and the absorption bands are reported in wavenumbers (cm⁻¹). ¹H NMR spectra were recorded at 400 and 500 MHz and referenced to the residual solvent peak at 7.26 ppm (CDCl₃) and are quoted in ppm to two decimal places with coupling constants (*J*) to the nearest 0.1 Hz. ¹³C NMR were recorded at 100 and 125 MHz and referenced to the solvent at 77.0 ppm (CDCl₃) and are quoted in ppm to one decimal place.

2. General procedure for the synthesis of quaternary Schöllkopf adducts

General procedure: sec-Butyllithium (in cyclohexane 1.28 M; 2.15 mL, 2.75 mmol) was added dropwise with stirring to imidate **1** (0.18 mL, 1.00 mmol) and 2-chloro-1,4-dimethoxybenzene (**2a**) (0.21 mL, 1.50 mmol) in THF (5 mL) at -95 °C. The mixture was maintained at -95 °C for 30 min, before being allowed to warm to room temperature overnight. The mixture was recooled to -78 °C when the electrophile (4 equiv) was added and stirring was continued at -78 °C until GCMS analysis indicated that the reaction was complete. The mixture was warmed to room temperature and H_2O (5 mL) was added and the mixture extracted with EtOAc (15 mL \times 3). The combined organic layers were washed with brine (5 mL), dried (MgSO₄), filtered and rotary evaporated.

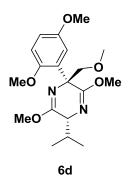

(2R,5R)-2-(2,5-Dimethoxyphenyl)-5-isopropyl-3,6-dimethoxy-2-methyl-2,5-dihydropyrazine (6a)

Imidate **6a** was prepared according to the general procedure, employing MeI (0.25 mL, 4.00 mmoI) as the electrophile at -78 °C for 1 h. Chromatography (EtOAc:hexanes 1:15 to 1:8) gave **6a** (0.307 g, 94:6 dr, 92%) as an off-white solid: mp 32–34 °C (EtOAc/hexanes); $R_{\rm f}$ 0.55 (EtOAc:hexanes 1:4); $[\alpha]_{\rm D}^{25}$ = -88.3 (c 1.2, CHCI₃); IR 1688 (C=N), 1671 (C=N), 1497, 1462, 1224, 1201 cm⁻¹; Major Diastereoisomer: ¹H NMR (400 MHz, CDCI₃) δ 7.03 (d, 1H, J = 2.3 Hz, Ar-H), 6.80 (m, 2H, Ar-H), 3.95 (d, 1H,

J=3.2 Hz, CH-iPr), 3.81 (s, 3H, OMe), 3.64 (s, 6H, 2 × OMe), 3.64 (s, 3H, OMe), 2.47 (dsept, 1H, J=6.8, 3.2 Hz, iPr), 1.64 (s, 3H, CH₃), 1.20 (d, 3H, J=6.9 Hz, iPr), 0.87 (d, 3H, J=6.7 Hz, iPr); ¹³C NMR (125 MHz, CDCl₃) δ 166.5, 162.4, 153.2, 152.3, 133.9, 113.9, 112.6, 111.8, 59.9, 58.8, 56.0, 55.5, 52.7, 52.4, 30.0, 26.1, 19.8, 17.1; HRMS (ESI) calcd. $C_{18}H_{27}N_2O_4$: (M + H)⁺, 335.1971; found: (M + H)⁺, 335.1979.

(2*R*,5*R*)-2-Benzyl-2-(2,5-dimethoxyphenyl)-5-isopropyl-3,6-dimethoxy-2,5-dihydropyrazine (6b)

Imidate **6b** was prepared according to the general procedure, employing PhCH₂Br (0.48 mL, 4.00 mmol) as the electrophile at -78 °C for 6 h. Chromatography (EtOAc:hexanes 1:15 to 1:8) gave **6b** (0.360 g, >98:2 dr, 88%) as a yellow solid: mp 86–88 °C (EtOAc/hexanes); R_f 0.4 (EtOAc:hexanes 1:3); $[\alpha]_D^{25} = 9.6$ (c 0.8, CHCl₃); IR 1692 (C=N), 1668 (C=N), 1497, 1461, 1299, 1230, 1193 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.24 (dd, 3H, J = 5.1, 2.1


Hz, Ar-H), 7.19 (d, 1H, J = 2.7 Hz, Ar-H), 7.07 (m, 2H, Ar-H), 6.85 (m, 2H, Ar-H), 3.84 (s, 3H, OMe), 3.70 (s, 3H, OMe), 3.67 (s, 3H, OMe), 3.66 (s, 3H, OMe), 3.48 (AB, 2H, J = 12.2 Hz, CH₂Ph), 2.11 (d, 1H, J = 3.0 Hz, CH-iPr), 2.08 (m, 1H, iPr), 0.89 (d, 3H, J = 6.7 Hz, iPr), 0.71 (d, 3H, J = 6.6 Hz, iPr); ¹³C NMR (125 MHz, CDCl₃) δ 163.7, 162.3, 153.2, 152.5, 136.3, 134.0, 131.3, 127.5, 126.5, 114.2, 113.1, 112.0, 63.3, 60.1, 56.1, 55.6, 52.6, 52.2, 44.3, 29.8, 19.5, 17.4; HRMS (ESI) calcd. C₂₄H₃₁N₂O₄: (M + H)⁺, 411.2284; found: (M + H)⁺, 411.2272.

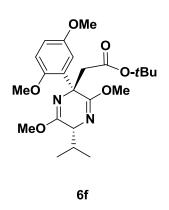
(2R,5R)-2-Allyl-2-(2,5-dimethoxyphenyl)-5-isopropyl-3,6-dimethoxy-2,5-dihydropyrazine (6c)

Imidate **6c** was prepared according to the general procedure, by employing allyl bromide (0.35 mL, 4.00 mmol) as the electrophile at -78 °C for 1 h. Chromatography (EtOAc:hexanes 1:15 to 1:10) gave **6c** (0.305 g, >98:2 dr, 85%) as a colourless oil; $R_{\rm f}$ 0.52 (EtOAc:hexanes 1:3); $[\alpha]_{\rm D}^{25} = -59.5$ (c 1.0, CHCl₃); IR 1689 (C=N), 1670 (C=N), 1498, 1299, 1227, 1140 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.04 (d, 1H, J = 2.7 Hz, Ar-H), 6.81 (m, 2H, Ar-H), 5.73 (m, 1H, CH=CH₂), 5.11 (m, 2H, CH=CH₂), 3.88 (d, 1H,

J=3.5 Hz, CH-iPr), 3.80 (s, 3H, OMe), 3.68 (s, 3H, OMe), 3.67 (s, 3H, OMe), 3.66 (s, 3H, OMe), 2.96 (dd, 1H, J=13.1, 7.1 Hz, CH₂CH=CH₂), 2.91 (dd, 1H, J=13.0, 7.7 Hz, CH₂CH=CH₂), 2.40 (dsept, 1H, J=6.9, 3.7 Hz, iPr), 1.17 (d, 3H, J=6.9 Hz, iPr), 0.86 (d, 3H, J=6.8 Hz, iPr); ¹³C NMR (125 MHz, CDCl₃) δ 163.9, 163.2, 153.2, 152.4, 133.4, 133.3, 119.1, 114.4, 113.1, 112.2, 62.2, 61.2, 56.1, 55.6, 52.7, 52.4, 43.8, 30.5, 19.9, 17.7; HRMS (ESI) calcd. $C_{20}H_{29}N_2O_4$: (M + H)⁺, 361.2127; found: (M + H)⁺, 361.2112.

(2*S*,5*R*)-2-(2,5-Dimethoxyphenyl)-5-isopropyl-3,6-dimethoxy-2-(methoxymethyl)-2,5-dihydropyrazine (6d)

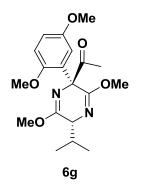
Imidate **6d** was prepared according to the general procedure, by employing MOMCI (0.30 mL, 4.00 mmol) as the electrophile at -78 °C for 1 h. Chromatography (EtOAc:hexanes 1:15 to 1:5) gave **6d** (0.20 g, 95:5 dr, 53%) as an off-white solid: mp 48–50 °C (EtOAc/hexanes); $R_{\rm f}$ 0.29 (EtOAc:hexanes 1:4); $[\alpha]_{\rm D}^{25}$ = -64.2 (c 1.1, CHCl₃); IR 1696 (C=N), 1501, 1464, 1230, 1136 cm⁻¹; Major diastereoisomer: ¹H NMR (400 MHz, CDCl₃) δ 6.81 (m, 3H, Ar-H), 4.11 (d, 1H, J = 8.9 Hz, CH₂OMe), 4.02 (d, 1H, J = 3.3 Hz,


C<u>H</u>-iPr), 3.86 (d, 1H, J = 8.9 Hz, C<u>H</u>₂OMe), 3.78 (s, 3H, OMe), 3.67 (s, 9H, 3 × OMe), 3.38 (s, 3H, CH₂OC<u>H</u>₃), 2.43 (dsept, 1H, J = 6.8, 3.3 Hz, iPr), 1.18 (d, 3H, J = 6.9 Hz, iPr), 0.84 (d, 3H, J = 6.7 Hz, iPr); ¹³C NMR (125 MHz, CDCl₃) δ 164.4, 162.9, 153.2, 152.3, 131.5, 113.9, 113.2, 112.2, 77.8, 63.0, 61.0, 59.8, 56.3, 55.6, 52.7, 52.6, 30.3, 19.8, 17.4; HRMS (ESI) calcd. C₁₉H₂₉N₂O₅: (M + H)⁺, 365.2076; found: (M + H)⁺, 365.2071.

(2*R*,5*R*)-2-(2,5-Dimethoxyphenyl)-5-isopropyl-3,6-dimethoxy-2-(prop-2-ynyl)-2,5-dihydropyrazine (6e)

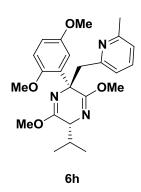
Imidate **6e** was prepared according to the general procedure, by employing propargyl bromide (0.59 g of an 80% wt in toluene solution, 4.00 mmol) as the electrophile at -78 °C for 1 h. Chromatography (EtOAc:hexanes 1:10 to 1:5) gave **6e** (0.285 g, >98:2 dr, 80%) as a white solid: mp 59–60 °C(EtOAc/hexanes); R_f 0.38 (EtOAc:hexanes 1:4); $[\alpha]_D^{25} = -58.8$ (c 1.3, CHCl₃); IR 1692 (C=N), 1667 (C=N), 1500, 1228, 1033 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 6.84 (m, 3H, Ar-H), 4.16 (d, 1H, J = 3.6 Hz,

C<u>H</u>-iPr), 3.78 (s, 3H, OMe), 3.72 (s, 6H, 2 × OMe), 3.71 (s, 3H, OMe), 3.21 (dd, 1H, J = 16.1, 2.6 Hz, C<u>H</u>₂C=CH), 3.16 (dd, 1H, J = 16.1, 2.6 Hz, C<u>H</u>₂C=C), 2.39 (dsept, 1H, J = 6.8, 3.6 Hz, iPr), 1.97 (t, 1H, J = 2.6 Hz, C=C<u>H</u>), 1.18 (d, 3H, J = 6.9 Hz, iPr), 0.84 (d, 3H, J = 6.8 Hz, iPr); ¹³C NMR (125 MHz, CDCl₃) δ 164.2, 163.0, 153.2, 152.3, 132.1, 144.5, 113.8, 112.6, 80.7, 70.7, 62.5, 61.3, 56.5, 55.6, 52.8, 52.7, 30.7, 19.9, 17.7; HRMS (ESI) calcd. C₂₀H₂₇N₂O₄: (M + H)⁺, 359.1971; found: (M + H)⁺, 359.1967.


tert-Butyl 2-((2R,5R)-2-(2,5-dimethoxyphenyl)-5-isopropyl-3,6-dimethoxy-2,5-dihydropyrazin-2-yl)acetate (6f)

Imidate **6f** was prepared according to the general procedure, by employing *tert*-butyl bromoacetate (0.59 mL, 4.00 mmol) as the electrophile at -78 °C for 3 h. Chromatography (EtOAc:hexanes 1:10 to 1:5) gave **6f** (0.220 g, >98:2 dr, 51%) as a colourless oil; $R_{\rm f}$ 0.52 (EtOAc:hexanes 1:4); $[\alpha]_{\rm D}^{25}$ = -43.3 (c 0.9, CHCl₃); IR 1728 (C=O),1691 (C=N),1498, 1356, 1230, 1153 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 6.86 (m, 1H, Ar-H), 6.77 (m, 2H, Ar-H), 3.96 (d, 1H, J = 4.6 Hz, C<u>H</u>-iPr), 3.78 (s, 3H, OMe), 3.75 (s, 3H, OMe), 3.72 (s, 6H, 2 × OMe),

3.32 (AB quartet, 2H, J = 14.1 Hz, CH₂Ph), 2.20 (m, 1H, iPr), 1.40 (s, 9H, t-Bu),1.08 (d, 3H, J = 6.8 Hz, iPr), 0.80 (d, 3H, J = 6.8 Hz, iPr); ¹³C NMR (125 MHz, CDCl₃) δ 170.2, 164.1, 162.6, 153.2, 152.4, 132.9, 114.8, 114.7, 113.0, 79.9, 62.2, 61.4, 57.0, 55.6, 52.6, 52.5, 45.1, 31.3, 27.9, 19.9, 18.4; HRMS (ESI) calcd. C₂₃H₃₅N₂O₆: (M + H)⁺, 435.2495; found: (M + H)⁺, 435.2485.

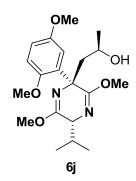

1-((2*R*,5*R*)-2-(2,5-Dimethoxyphenyl)-5-isopropyl-3,6-dimethoxy-2,5-dihydropyrazin-2-yl)ethanone (6g)

Imidate **6g** was prepared according to the general procedure, by employing acetyl chloride (0.29 mL, 4.00 mmol) as the electrophile at -78 °C for 3 h. Chromatography (EtOAc:hexanes 1:5) gave **6g** (0.215 g, 89:11 dr, 59%) as a yellow solid: mp 83–84 °C (EtOAc/hexanes); $R_{\rm f}$ 0.33 (EtOAc:hexanes 1:4); $[\alpha]_{\rm D}^{25}$ = -183.3 (c 0.9, CHCl₃); IR 1679 (C=N), 1630 (C=O), 1487, 1356, 1209, 1176 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.05 (d, 1H, J = 2.9 Hz, Ar-H), 6.87 (m, 2H, Ar-H), 4.80 (d, 1H, J = 10.3 Hz, CH-

iPr), 3.82 (s, 3H, OMe), 3.80 (s, 3H, OMe), 3.79 (s, 3H, OMe), 3.51 (s, 3H, OMe), 2.28 (s, 3H, $C_{\underline{H_3}}$), 2.39 (dsept, 1H, J=10.3, 6.7 Hz, iPr), 1.01 (d, 6H, J=6.7 Hz, iPr); ¹³C NMR (125 MHz, CDCl₃) δ 172.1, 160.5, 153.5, 151.5, 136.0, 126.3, 116.9, 115.7, 113.7, 112.5, 58.3, 57.2, 56.4, 55.8, 53.6, 26.9, 23.3, 19.3, 18.8; HRMS (ESI) calcd. $C_{19}H_{27}N_2O_5$: (M + H)⁺, 363.1920; found: (M + H)⁺, 363.1912.

(2*R*,5*R*)-2-(2,5-Dimethoxyphenyl)-5-isopropyl-3,6-dimethoxy-2-((6-methylpyridin-2-yl)methyl)-2,5-dihydropyrazine (6h)

Imidate **6h** was prepared according to the general procedure, by employing 2-(bromomethyl)-6-methylpyridine (0.74 g, 4.00 mmol) in THF (5 mL) as the electrophile at -78 °C for 5 h. Chromatography (EtOAc:hexanes 1:5 to 1:1) gave **6h** (0.300 g, >98:2 dr, 71%) as a yellow oil; $R_{\rm f}$ 0.17 (EtOAc:hexanes 1:4); $[\alpha]_{\rm D}^{25} = 3.4$ (c 1.0, CHCl₃); IR 1692 (C=N),1668 (C=N),1497, 1356, 1227, 1031 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.43 (t, 1H, J = 7.6 Hz, Ar-H), 7.18 (d, 1H, J = 2.7 Hz, Ar-H), 7.01 (d, 1H, J =


7.6, Ar-H), 6.84 (m, 3H, Ar-H), 3.82 (s, 3H, OMe), 3.70 (s, 3H, OMe), 3.67 (s, 3H, OMe), 3.66 (s, 3H, OMe), 3.64 (AB quartet, 2H, J = 12.0 Hz, CH_2Ph), 2.51 (s, 3H, CH_3), 2.17 (d, 1H, J = 3.2 Hz, $C\underline{H}$ -iPr), 2.13 (m, 1H, iPr), 0.93 (d, 3H, J = 6.8 Hz, iPr), 0.73 (d, 3H, J = 6.7 Hz, iPr); ¹³C NMR (125 MHz, $CDCI_3$) δ 163.3, 162.5, 157.4, 156.6, 153.3, 152.5, 135.5, 133.8, 122.4, 120.6, 114.1, 113.3, 112.5, 63.2, 60.0, 56.2, 55.6, 52.6, 52.4, 46.5, 29.8, 24.4, 19.6, 17.4; HRMS (ESI) calcd. $C_{24}H_{32}N_3O_4$: (M + H)⁺, 426.2393; found: (M + H)⁺, 426.2372.

((2*S*,5*R*)-2-(2,5-Dimethoxyphenyl)-5-isopropyl-3,6-dimethoxy-2,5-dihydropyrazin-2-yl)(phenyl)methyl benzoate (6i)

Imidate **6i** was prepared according to the general procedure, by employing PhCHO (0.41 mL, 4.00 mmol) as the electrophile at -78 °C for 12 h. The residue was then taken up in CH₂Cl₂ (5 mL) and benzoyl chloride (0.23 mL, 2 mmol) and dimethylamin-pyridine (0.61 g, 5 mmol) was added, before the mixture was stirred at room temperature overnight. The mixture was quenched with H₂O (5 mL) and extracted with EtOAc (2 x 5 mL), before being dried (MgSO₄), filtered and rotary

evaporated. Chromatography (PhMe) gave 6i (0.366 g, >98:2 dr, 69%) as a colourless oil and a 1:1 mixture of diastereoisomers at OBz; R_f 0.51(PhMe); $[\alpha]_D^{25}$ = -103.8 (c 1.0, CHCl₃); IR 1722 (C=O), 1691(C=N), 1498, 1273, 1238, 1229 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 8.02 (d, 2H, J = 7.3 Hz, Ar-H), 7.94 (d, 2H, J = 7.4 Hz, Ar-H), 7.51 (m, 2H, Ar-H), 7.38 (m, 4H, Ar-H), 7.36 (s, 1H, CHOBz), 7.33 (s, 1H, CHOBz), 7.27 (m, 6H, Ar-H), 7.19 (m, 4H, Ar-H), 6.95 (d, 1H, J = 3.0 Hz, Ar-H), 6.92 (d. 1H, J = 2.5 Hz, Ar-H), 6.80 (m, 4H, Ar-H), 3.91 (s. 3H, OMe), 3.88 (s. 3H, OMe). 3.81 (d, 1H, J = 3.8 Hz, CHiPr), 3.71 (s, 3H, OMe), 3.70 (s, 6H, 2 × OMe), 3.68 (s, 3H, OMe), 3.67 (s, 3H, OMe), 3.66 (s, 3H, OMe), 2.58 (d, 1H, J = 3.4 Hz, CHiPr), 2.17 (m, 1H, iPr), 2.06 (m, 1H, iPr), 0.94 (d, 3H, J = 6.9 Hz, iPr), 0.91(d, 3H, J = 6.8Hz, iPr), 0.71(d, 3H, J = 6.7 Hz, iPr), -0.14 (d, 3H, J = 6.8 Hz, iPr); ¹³C NMR (125) MHz, CDCl₃) δ 166.0, 165.9, 164.4, 164.3, 160.9, 159.6, 153.3, 153.0, 152.6, 152.6, 137.8, 137.7, 137.4, 132.7, 132.7, 130.8, 130.7, 129.8, 128.7, 129.1, 128.6, 128.3, 128.0, 127.8, 127.8, 127.4, 125.3, 116.2, 114.5, 114.0, 113.7, 113.4, 113.3, 78.4, 77.1, 68.1, 66.7, 60.4, 59.6, 56.9, 56.4, 55.6, 55.5, 52.8, 52.6, 52.4, 52.3, 30.4, 29.8, 21.5, 19.5, 17.4, 15.5. HRMS (ESI) calcd. $C_{31}H_{35}N_2O_6$: (M + H)⁺, 531.2495; found: (M + H)⁺, 531.2485.

(R)-1-((2R,5R)-2-(2,5-Dimethoxyphenyl)-5-isopropyl-3,6-dimethoxy-2,5-dihydropyrazin-2-yl)propan-2-ol (6j)

Imidate **6j** was prepared according to the general procedure, by employing (R)-propylene oxide (0.28 mL, 4.00 mmol) and BF₃·OEt₂ (0.49 mL, 4.00 mmol) as the electrophile at -78 °C for 1 h. Chromatography (EtOAc:hexanes 1:5 to 1:1) gave **6j** (0.186 g, >98:2 dr, 50%) as a yellow oil; R_f 0.21 (EtOAc:hexanes 1:3);

[α]_D²⁵ = -61 °C (c 0.7, CHCl₃); IR 3433 (OH), 1689 (C=N), 1670 (C=N),1498, 1229, 1050 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 6.84 (m, 2H, Ar-H), 6.77 (dd, 1H, J = 8.9, 3.0 Hz, Ar-H), 4.07 (br s, 1H, OH), 7.23 (d, 1H, J = 3.9 Hz, CHiPr), 3.80 (m, 1H, CHOH), 3.80 (s, 3H, OMe), 3.77 (s, 3H, OMe), 3.77 (s, 3H, OMe), 3.76 (s, 3H, OMe), 2.41 (m, 2H, CH₂), 1.62 (m, 1H, iPr); ¹³C NMR (125 MHz, CDCl₃) δ 167.5, 165.0, 153.2, 151.2, 134.5, 114.6, 113.9, 112.8, 66.1, 64.4, 63.1, 56.6, 55.7, 53.0, 52.8, 47.5, 31.5, 23.6, 20.1, 19.4; HRMS (ESI) calcd. C₂₀H₃₁N₂O₅: (M + H)⁺, 379.2233; found: (M + H)⁺, 379.2217.

(2R,5R)-2-Benzyl-5-isopropyl-3,6-dimethoxy-2-(3-(trifluoromethyl)phenyl)-2,5-dihydropyrazine (7b)

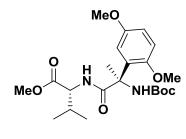
CF₃
Bn
OMe

7b

n-Butyllithium (in hexanes 1.4 M; 2.14 mL, 3.00 mmol) was added dropwise to imidate **1** (0.18 mL, 1.00 mmol) and 1-chloro-2-(trifluoromethyl)benzene (**2b**) (0.23 mL, 1.75 mmol) in THF (5 mL) at −78 °C. The mixture was maintained at −78 °C for 30 min, before being allowed to warm to room temperature overnight. The mixture was recooled to −78 °C, benzyl bromide (0.48 mL, 4.00 mmol) was added, and the mixture was stirred at −78 °C for 6 h. The mixture was warmed to room temperature and H_2O (5 mL)

was added and the mixture extracted with EtOAc (15 mL \times 3). The combined organic layers were washed with brine (5 mL), dried (MgSO₄), filtered and rotary evaporated. The residue was chromatographed (EtOAc:hexanes 1:20) to give **7b** (0.220 g, >98:2 dr, 67%) as a yellow solid. mp 31–33 °C (EtOAc/hexanes); $R_{\rm f}$ 0.71 (EtOAc:hexanes 1:3); $[\alpha]_{\rm D}^{25} = -46.6$ (c 1.5, CHCl₃); IR 1689 (C=N), 1436, 1328, 1117 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.88 (m, 2H, Ar-H), 7.52 (m, 2H, Ar-H), 7.25 (m, 3H, Ar-H), 7.13 (m, 2H, Ar-H), 3.83 (s, 3H, OMe), 3.75 (d, 1H, J = 2.7 Hz, CH-iPr), 3.72 (s, 3H, OMe), 3.15 (AB quartet, 2H, J = 8.1 Hz, CH₂Ph), 2.12 (m, 1H, iPr), 0.91 (d, 3H, J = 6.9 Hz, iPr), 0.54 (d, 3H, J = 6.8 Hz, iPr); ¹³C NMR (125 MHz, CDCl₃) δ 163.8, 161.0, 158.8, 145.2, 136.5, 130.5, 130.4, 128.2, 127.7, 126.6, 125.8 (q, $J_{\rm C-F}$ = 245 Hz), 124.0, 123.8, 64.8, 60.4, 52.5, 52.3, 46.9, 31.1, 19.3, 17.0; ¹⁹F NMR (200 MHz, CDCl₃) δ -62.8; HRMS (ESI) calcd. C₂₃H₂₆F₃N₂O₂: (M + H)⁺, 419.1946; found: (M + H)⁺, 419.1942.

(2*R*,5*R*)-2-Allyl-5-isopropyl-3,6-dimethoxy-2-(3-methoxyphenyl)-2,5-dihydropyrazine (7c)


7с

sec-BuLi (in cyclohexane 1.1 M; 2.73 mL, 3.00 mmol) was added dropwise to imidate 1 (0.18 mL, 1.00 mmol) and 3-chloroanisole 2c (0.21 mL, 1.75 mmol) in THF (5 mL) at -95 °C. The mixture was maintained at -95 °C for 30 min, before being allowed to warm to room temperature overnight. The mixture was recooled to -78 °C before allyl bromide (0.35 mL, 4.00 mmol) was added, and the mixture was stirred at -78 °C for 6 h. The mixture was warmed to room temperature and H₂O (5 mL) was added and the mixture

extracted with EtOAc (15 mL × 3). The combined organic layers were washed with brine (5 mL), dried (MgSO₄), filtered and rotary evaporated. The residue was chromatographed (CH₂Cl₂:hexanes 1:1) to give **7c** (0.240 g, >98:2 dr,76%) as a colourless oil; R_f 0.69 (EtOAc:hexanes 1:3); $[\alpha]_D^{25} = -101.6$ (c 0.9, CHCl₃); IR 1689 (C=N), 1602, 1434, 1236, 1142 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.25 (t, 1H, J = 8.0 Hz, Ar-H), 7.15 (dd, 1H, J = 7.9, 0.9 Hz, Ar-H), 7.11 (t, 1H, J = 2.0 Hz, Ar-H), 6.81 (dd, 1H, J = 8.1, 2.0 Hz, Ar-H), 5.64 (m, 1H, CH=CH₂), 5.09 (m, 2H, CH=CH₂), 3.96 (d, 1H, J = 4.1 Hz, CH-iPr), 3.82 (s, 3H, OMe), 3.81 (s, 3H, OMe), 3.71 (s, 3H, OMe), 3.03 (dd, 1H, J = 13.2, 7.4 Hz, CH₂CH=CH₂), 2.64 (dd, 1H, J = 13.1, 7.1 Hz, CH₂CH=CH₂), 2.17 (m, 1H, iPr), 1.03 (d, 3H, J = 6.9 Hz, iPr), 0.66 (d, 3H, J = 6.8 Hz, iPr); ¹³C NMR (125 MHz, CDCl₃) δ 163.5, 162.8, 159.1, 145.7, 133.7, 128.7, 119.1, 118.4, 113.0, 111.9, 64.1, 61.2, 55.1, 52.5, 52.5, 46.0, 31.7, 19.6, 17.7; HRMS (ESI) calcd. C₁₉H₂₇N₂O₃: (M + H)⁺, 331.2022; found: (M + H)⁺, 331.2015.

3. Hydrolysis products

(*R*)-Methyl 2-((*R*)-2-(*tert*-butoxycarbonylamino)-2-(2,5-dimethoxyphenyl)propanamido)-3-methylbutanoate (8a)

8a

0.5 M HCl (1.9 mL, 0.93 mmol) was added to imidate **6a** (0.138 g, 0.41 mmol) in THF (3 mL), and the resulting mixture was stirred at room temperature for 36 h. Saturated aqueous Na_2CO_3 solution was added dropwise until pH 9. The mixture was poured into H_2O (5 mL), and extracted with EtOAc (3 × 5 mL). The combined organic layers were washed with brine (5 mL), dried (MgSO₄),

filtered and rotary evaporated. The residue was redissolved in CH₂Cl₂ (3 mL), and disopropylethylamine (0.16 mL, 0.90 mmol) and di-*t*-butyl dicarbonate (0.19 g, 0.86 mmol) were added sequentially. The mixture was stirred at room temperature for 48 h, after which the mixture was rotary evaporated. The residue was chromatographed (CH₂Cl₂:MeOH (NH₃) 30:1) to give **8a** (0.134 g, 75%, 96:4 dr) as a yellow gum; R_f 0.74 (CH₂Cl₂:MeOH 10:1); $[\alpha]_D^{25} = -12.2$ (c 0.8, CHCl₃); IR 3429 (NH), 1731 (C=O),1688 (C=O), 1464, 1223, 1168, 1143 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.11 (d, 1H, J = 2.3 Hz, Ar-H), 6.85 (m, 2H, Ar-H), 6.28 (br s, 2H, 2 × NH), 4.52 (dd, 1H, J = 8.7, 5.1 Hz, CH-iPr), 3.82 (s, 3H, OMe), 3.72 (s, 3H, OMe), 3.67 (s, 3H, OMe), 2.11 (m, 1H, iPr), 1.96 (s, 3H, CH₃), 1.35 (s, 9H, boc), 0.92 (d, 3H, J = 6.8 Hz, iPr), 0.82 (d, 3H, J = 6.9 Hz, iPr); ¹³C NMR (125 MHz, CDCl₃) δ 174.3, 172.0, 154.2, 153.1, 151.0, 129.6, 115.6, 113.2, 112.2, 79.1, 60.4, 57.2, 55.8, 55.6, 52.0, 31.4, 28.3, 24.3, 19.0, 17.6; HRMS (CI) calcd. $C_{22}H_{34}N_2O_7Na$: (M + Na)⁺, 461.2264; found: (M + Na)⁺, 461.2204.

(*R*)-Methyl 2-((*S*)-2-(*tert*-butoxycarbonylamino)-2-(2,5-dimethoxyphenyl)-3-methoxypropanamido)-3-methylbutanoate (8d)

8d

0.5 M HCl (0.62 mL, 0.31 mmol) was added to imidate **6d** (0.050 g, 0.14 mmol) in THF (1 mL), and the resulting mixture was stirred at room temperature for 36 h. Saturated aqueous Na_2CO_3 solution was added dropwise until pH 9. The mixture was poured into H_2O (5 mL), and extracted with EtOAc (3 × 5 mL). The combined organic layers were washed with brine (5 mL), dried (MqSO₄),

filtered and rotary evaporated. The residue was redissolved in CH₂Cl₂ (2 mL), and disopropylethylamine (0.050 mL, 0.31 mmol) and di-*t*-butyl dicarbonate (0.064 g, 0.29 mmol) were added sequentially. The mixture was stirred at room temperature for 48 h, after which the mixture was rotary evaporated. The residue was chromatographed (CH₂Cl₂:MeOH (NH₃) 50:1) to give **8d** (0.040 g, 61%, 95:5 dr) as a colourless oil. R_f 0.19 (CH₂Cl₂:MeOH 20:1); $[\alpha]_D^{25} = -1.3$ (c 1.05, CHCl₃); IR 3412 (NH), 1743 (C=O), 1716 (C=O),1682 (C=O), 1496, 1467, 1229, 1169, 1052 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.05 (d, 1H, J = 2.52 Hz, Ar-H), 6.83 (m, 2H, Ar-H), 6.33 (br s, 1H, NH), 4.56 (dd, 1H, J = 8.8, 5.0 Hz, CHiPr), 4.39 (d, 1H, J = 9.3 Hz, CH₂OMe), 3.92 (br s, 1H, CH₂OMe), 3.80 (s, 3H, OMe), 3.72 (s, 3H, OMe), 3.66 (s, 3H, OMe), 3.42 (s, 3H, OMe), 2.13 (m, 1H, iPr), 1.37 (s, 9H, boc), 0.93 (d, 3H, J = 6.8 Hz, iPr), 0.84 (d, 3H, J = 6.9 Hz, iPr); ¹³C NMR (125 MHz, CDCl₃) δ 172.0, 171.4, 154.4,

153.1, 151.4, 126.7, 116.0, 113.5, 112.2, 79.2, 73.5, 63.3, 59.0, 57.6, 55.9, 55.5, 51.9, 31.3, 28.3, 18.9, 17.5; HRMS (ESI) calcd. $C_{23}H_{36}N_2O_8Na$: $(M + Na)^+$, 491.2369; found: $(M + Na)^+$, 491.2351.

(*R*)-Methyl 2-((*R*)-2-(*tert*-butoxycarbonylamino)-2-(2,5-dimethoxyphenyl)pent-4-ynamido)-3-methylbutanoate (8e)

0.5 M HCl (0.40 mL, 0.20 mmol) was added to imidate **6e** (0.032 g, 0.089 mmol) in THF (1 mL), and the resulting mixture was stirred at room temperature for 36 h. Saturated aqueous Na_2CO_3 solution was added dropwise until pH 9. The mixture was poured into H_2O (5 mL), and extracted with EtOAc (3 × 5 mL). The combined organic layers were washed with brine (5 mL), dried (MgSO₄),

filtered and rotary evaporated. The residue was redissolved in CH₂Cl₂ (1.5 mL), and di*iso*propylethylamine (0.034 mL, 0.20 mmol) and di-*t*-butyl dicarbonate (0.041 g, 0.19 mmol) were added sequentially. The mixture was stirred at room temperature for 48 h, after which the mixture was rotary evaporated. The residue was purified by flash column chromatography (CH₂Cl₂:MeOH (NH₃) 50:1) to give **8e** (0.032 g, 72%, >98:2 dr) as a colourless oil. R_f 0.24 (CH₂Cl₂:MeOH 20:1); $[\alpha]_D^{25} = -12.4$ (c 0.7, CHCl₃); IR 3405 (NH), 1740 (C=O), 1712 (C=O),1682 (C=O), 1496, 1468, 1226 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.13 (s, 1H, Ar-H), 7.00 (br s, 1H, NH), 6.86 (m, 2H, Ar-H), 6.48 (br s, 1H, NH), 4.55 (dd, 1H, J = 8.3, 4.9 Hz, CHiPr), 3.80 (s, 3H, OMe), 3.77 (s, 3H, OMe), 3.67 (s, 3H, OMe), 3.60 (br d, 1H, J = 15.7 Hz, CH₂C=CH), 3.40 (br d, 1H, J = 14.8 Hz, CH₂C=CH), 2.15 (m, 1H, iPr), 2.08 (s, 1H, C=CH), 1.42 (s, 9H, boc), 0.95 (d, 3H, J = 6.9 Hz, iPr), 0.87 (d, 3H, J = 6.9 Hz, iPr); ¹³C NMR (125 MHz, CDCl₃) δ 171.9, 171.3, 154.1, 153.2, 150.8, 127.1, 115.4, 114.1, 112.5, 79.9, 79.5, 72.0, 62.9, 57.7, 55.9, 55.6, 51.9, 31.4, 28.3, 26.2, 19.0, 17.5; HRMS (ESI) calcd. C₂₄H₃₄N₂O₇Na: (M + Na)⁺, 485.2264; found: (M + Na)⁺, 485.2246.

(*R*)-Methyl 2-((*R*)-2-amino-2-(3-methoxyphenyl)pent-4-enamido)-3-methylbutanoate (9)

0.5 M HCl (0.69 mL, 0.34 mmol) was added to imidate **7c** (0.051 g, 0.15 mmol) in THF (1.5 mL), and the resulting mixture was stirred at room temperature for 36 h. Saturated

aqueous Na₂CO₃ solution was added dropwise until pH 9. The mixture was poured into H₂O (5 mL), and extracted with EtOAc (3 × 5 mL). The combined organic layers were washed with brine (5 mL), dried (MgSO₄), filtered and rotary evaporated. The residue was chromatographed (EtOAc:hexanes 1:5) to give **9** (0.020 g, 40%) as a colourless oil. $R_{\rm f}$ 0.54 (EtOAc:hexanes 1:1); $[\alpha]_{\rm D}^{25}$ = 3.3 (c 1.6, CHCl₃); IR 3367 (NH), 1742 (C=O), 1675 (C=O), 1493, 1438, 1259 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 8.10 (d, 1H, J = 9.0 Hz, NH), 7.29 (m, 1H, Ar-H), 7.19 (dd, 2H, J = 7.8, 1.0 Hz, Ar-H), 6.84 (m, 1H, Ar-H), 5.70 (m, 1H, CH=CH₂), 5.22 (m, 2H, CH₂CH=CH₂), 4.45 (dd, 1H, J = 9.1, 4.9 Hz, CHiPr), 3.83 (s, 3H, OMe), 3.77 (s, 3H, OMe), 3.20 (dd, 1H, J = 13.5, 6.3 Hz, CH=CH₂), 2.71 (dd, 1H, J = 13.4, 8.3 Hz, CH=CH₂), 2.15 (m, 1H, iPr), 1.80 (br s, 2H, NH₂), 0.83 (d, 3H, J 6.9 Hz, iPr), 0.80 (d, 3H, J = 6.9 Hz, iPr); ¹³C NMR (125 MHz, CDCl₃) δ 174.2, 172.5, 159.7, 144.5, 133.6, 129.4, 120.1, 117.8, 112.8, 111.6, 62.3, 57.0, 55.2, 52.0, 44.9, 31.2, 18.9, 17.5; HRMS (ESI) calcd. C₁₈H₂₇N₂O₄: (M + H)⁺, 335.1971; found: (M + H)⁺, 335.1960.

(R)-Methyl 2-amino-2-(3-methoxyphenyl)pent-4-enoate (7c)

Imidate **7c** (0.024 g, 0.073 mmol) was stirred in 6 M H_2SO_4 (1 mL) at room temperature for 3 days. Saturated aqueous Na_2CO_3 solution was added dropwise until pH 9. The mixture was poured into H_2O (5 mL), and extracted with CH_2CI_2 (3 × 5 mL). The combined organic layers were washed with brine (5 mL), dried (MqSO₄), filtered and rotary evaporated. The

residue was chromatographed (EtOAc:hexanes 1:3) to give **10** (0.010 g, 58%, 90% ee) as a colourless oil. $R_{\rm f}$ 0.65 (EtOAc:hexanes 1:1); $\left[\alpha\right]_{\rm D}^{25}$ = 12.1 (c 1.4, CHCl₃); IR 2963 (NH), 1731 (C=O), 1493, 1438, 1259 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.30 (m, 1H, Ar-H), 7.14 (m, 2H, Ar-H), 6.89 (dd, 1H, J = 7.8, 2.3 Hz, Ar-H), 5.72 (m, 1H, CH=CH₂), 5.21 (m, 2H, CH₂CH=CH₂), 3.85 (s, 3H, OMe), 3.76 (s, 3H, OMe), 3.00 (dd, 1H, J = 13.6, 6.7 Hz, C=CH₂), 2.69 (dd, 1H, J = 13.7, 7.8 Hz, C=CH₂), 1.91 (br s, 2H, NH₂); ¹³C NMR (125 MHz, CDCl₃) δ 175.5, 159.7, 144.4, 132.9, 129.4, 120.0, 117.7, 112.7, 111.5, 63.1, 55.3, 52.6, 44.6; HRMS (ESI) calcd. C₁₃H₁₈NO₃: (M + H)⁺, 236.1287; found: (M + H)⁺, 236.1285. The enantiomeric excess was determined by HPLC. [CHIRALPACK[®] IC, 254 nm, hexane:isopropanol = 60:40, 1.0 mL/min]: 3.773 min (major), 15.399 min (minor).

(*R*)-Methyl 2-(*tert*-butoxycarbonylamino)-2-(2,5-dimethoxyphenyl)propanoate (11)

Imidate **6a** (0.10 g, 0.30 mmol) was stirred in 6 M H_2SO_4 (1 mL) at room temperature for 3 days. Saturated aqueous Na_2CO_3 solution was added dropwise until pH 9. The mixture was poured into H_2O (5 mL), and extracted with CH_2CI_2 (3 × 5 mL). The combined organic layers were washed with brine (5 mL), dried (MgSO₄), filtered and rotary evaporated. The

residue was redissolved in CH_2Cl_2 (2 mL), and sequentially diisopropylethylamine (0.11 mL, 0.66 mmol) and di-*t*-butyl dicarbonate (0.14 g, 0.63 mmol) were added. The mixture was stirred at room temperature for 48 h, after which the mixture was rotary evaporated. The residue was chromatographed (EtOAc:hexanes 1:5) to give **11** (0.057 g, 56%, 90% ee) as a colourless oil. R_f 0.54 (EtOAc:hexanes 1:3); $[\alpha]_D^{25} = -36.8$ (c 0.6, $CHCl_3$); IR 3435 (NH), 1741 (C=O), 1717 (C=O), 1495, 1272 cm⁻¹; H NMR (400 MHz, $CDCl_3$) δ 7.06 (s, 1H, Ar-H), 6.80 (br s, 2H, Ar-H), 6.14 (s, 1H, NH), 3.80 (s, 3H, OMe), 3.74 (s, 3H, OMe), 3.71 (s, 3H, OMe), 1.97 (s, 3H, CH_3), 1.33 (s, 9H, boc); ^{13}C NMR (125 MHz, $CDCl_3$) δ 174.9, 154.0, 153.2, 150.7, 130.6, 115.4, 112.6, 112.2, 79.2, 59.4, 56.2, 55.6, 52.8, 28.3, 22.6; HRMS (ESI) calcd. $C_{17}H_{25}NO_6Na$: (M + Na)⁺, 362.1580; found: (M + Na)⁺, 362.1563. The enantiomeric excess was determined by HPLC. [CHIRALPACK® IC, 254 nm, hexane:isopropanol = 90:10, 1.0 mL/min]: 8.533 min (major), 10.813 min (minor).

(3R,5R)-3-Amino-3-(2,5-dimethoxyphenyl)-5-methyldihydrofuran-2(3H)-one (12)

0.5 M HCl (0.23 mL, 0.11 mmol) was added to imidate **6j** (0.020 g, 0.050 mmol) in THF (0.5 mL), and the resulting mixture was stirred at room temperature for 48 h. Saturated aqueous Na_2CO_3 solution was added dropwise until pH 9. The mixture was poured into H_2O (5 mL), and extracted with EtOAc (3 x 5 mL). The combined organic layers were washed with brine (5

mL). The combined organic layers were washed with brine (5 mL), dried (MgSO₄), filtered and rotary evaporated. The residue was chromatographed (CH₂Cl₂:MeOH (NH₃) 40:1) to give **12** (0.010 g, 80%, 96% ee) as a colourless oil. R_f 0.48 (CH₂Cl₂:MeOH (NH₃) 20:1); [α]_D²⁵ = -13.6 (c 1.4, CHCl₃); IR 2932 (NH), 1760 (C=O), 1494, 1229 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.01 (d, 1H, J = 2.9 Hz, Ar-H), 6.89 (d, 1H, J = 8.8 Hz, Ar-H), 6.83 (dd, 1H, J = 8.9, 2.9 Hz, Ar-H), 4.52 (m, 1H, CHCH₃), 3.86 (s, 3H, OMe), 3.80 (s, 3H, OMe), 2.90 (dd, 1H, J = 13.2,

6.4 Hz, C_{H_2}), 2.04 (dd, 1H, J = 13.1, 8.4 Hz, C_{H_2}), 1.84 (br s, 2H, NH₂), 1.49 (d, 3H, J 6.2 Hz, C_{H_3}); ¹³C NMR (125 MHz, CDCl₃) δ 179.5, 153.7, 150.4, 131.6, 113.3, 113.0, 112.5, 62.3, 60.4, 55.9, 55.8, 46.3, 14.2; HRMS (ESI) calcd. $C_{13}H_{18}NO_4$: (M + H)⁺, 252.1236; found: (M + H)⁺, 252.1231. The enantiomeric excess was determined by HPLC. [CHIRALPACK[®] IC, 254 nm, hexane:isopropanol = 60:40, 1.0 mL/min]: 11.146 min (major), 16.452 min (minor).

1-((2*R*,5*S*)-2-(2,5-Dimethoxyphenyl)-5-isopropyl-3,6-dimethoxy-2,5-dihydropyrazin-2-yl)ethanone (13)

0.5 M HCl (0.55 mL, 0.27 mmol) was added to imidate **6g** (0.044 g, 0.12 mmol) in THF (2 mL), and the resulting mixture was stirred at room temperature for 36 h. Saturated aqueous Na_2CO_3 solution was added dropwise until pH 9. The mixture was poured into H_2O (5 mL), and extracted with EtOAc (3 × 5 mL). The combined organic layers were washed with brine (5 mL), dried (MgSO₄), filtered and rotary evaporated. The residue

was chromatographed (EtOAc:hexanes 1:8) to give **13** (0.042 g, 95%, 88:12 dr) as a yellow oil. R_f 0.55 (EtOAc:hexanes 1:4); $[\alpha]_D^{25} = 13.7(c \ 1.0, CHCl_3)$; IR 1747 (C=O), 1681 (C=N), 1503, 1416, 1223, 1050 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.15 (d, 1H, J = 3.0 Hz, Ar-H), 6.87 (d, 1H, J = 8.9 Hz, Ar-H), 6.82 (dd, 1H, J = 8.9, 3.0 Hz, Ar-H), 4.30 (d, 1H, J = 10.5 Hz, CH-iPr), 3.82 (s, 3H, OMe), 3.79 (s, 3H, OMe), 3.77 (s, 3H, OMe), 3.63 (s, 3H, OMe), 2.74 (m, 1H, iPr), 2.40 (s, 3H, CH₃), 1.16 (d, 3H, J = 6.5 Hz, iPr), 0.82 (d, 3H, J = 6.8 Hz, iPr); ¹³C NMR (125 MHz, CDCl₃) δ 169.7, 153.7, 151.2, 143.9, 137.4, 124.6, 116.3, 115.6, 113.9, 112.9, 62.4, 60.9, 56.6, 55.8, 52.4, 28.9, 20.9, 19.6, 19.0, 14.7; MS (ESI) calcd. $C_{19}H_{27}N_2O_5$: (M + H)⁺, 363; found: (M + H)⁺, 363.