Supporting Information

for

Tertiary alcohol preferred: Hydroxylation of trans-3-

methyl-L-proline with proline hydroxylases

Christian Klein and Wolfgang Hüttel*

Address: Institute of Pharmaceutical Sciences, Department of Pharmaceutical and Medicinal Chemistry, Albert-Ludwigs-Universität Freiburg, Albertstr. 25, 79104 Freiburg, Germany

Email: Wolfgang Hüttel - wolfgang.huettel@pharmazie.uni-freiburg.de

* Corresponding author

Email: Wolfgang Hüttel - wolfgang.huettel@pharmazie.uni-freiburg.de

* Corresponding author

Experimental section, analytical data (NMR and MS)

Table of contents

1.	Experimental procedures	S2
2.	NMR-spectra of enzymatic conversions product	S4
3.	MS ² spectrum of (3 <i>R</i>)-3-hydroxy-3-methyl-L-proline	S10

1) Experimental procedures

a) In vitro conversions

The enzymes *cis*-P3H_II and *cis*-P4H were produced in *E. coli* and purified as described before [S1]. The hydroxylation activities were measured in a reaction mixture containing Mes buffer (50 mM, pH 6.5), L-proline or *trans*-3-methyl-L-proline (4 mM), α -ketoglutarate (10 mM), ferrous sulfate (0.5 mM), L-ascorbate (1.5 mM) and enzyme preparation in a final volume of 1 mL. To compare enzymatic activities, identical amounts of the same enzyme preparation were used for the conversion of *trans*-3-methyl-L-proline and L-proline in parallel. Reactions with *cis*P3H_II were carried out at 37 °C and with *cis*-P4H at 25 °C for 16 h. Product formation was measured fluorometrically by HPLC at 254 nm excitation wavelength and at 316 nm emission wavelength after Fmoc-derivatization as previously described [S1]. Gradient program 2 [S1] was used with a LiChrosorb RP-18 (5 μ , 250 × 4.0 mm) or a LiChrosorb100 RP-18 EC (5 μ column, 250 × 4.0 mm) purchased form CS (Chromatographie-Service), Langerwehe, Germany. All retention times were verified with reference compounds.

b) In vivo production of (3R)-3-hydroxy-3-methyl-L-proline

100 mL of an amino-acid-free high-cell-density medium (Table S1) was used for cultivation of proline hydroxylase producing strains under aerobic conditions as described before for in vivo hydroxylation of L-pipecolic acid [S1]. At $OD_{600} = 3-4$ IPTG was added to achieve a final concentration of 0.2 mM. Subsequently, 26 mg of *trans*-3-methyl-L-proline (2 mM) and 14 mg FeSO₄·7H₂O (0.5 mM) were added. The cells were incubated for 72–120 h at 28 °C until conversions were complete. The reactions were monitored by HPLC. Ion-exchange chromatography was used for

isolation of (3*R*)-3-hydroxy-3-methyl-L-proline under the same conditions as described for hydroxyprolines [S1].

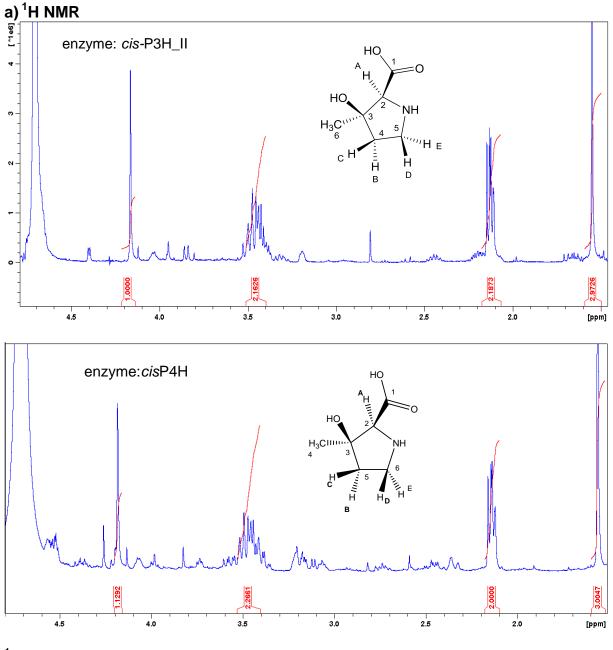
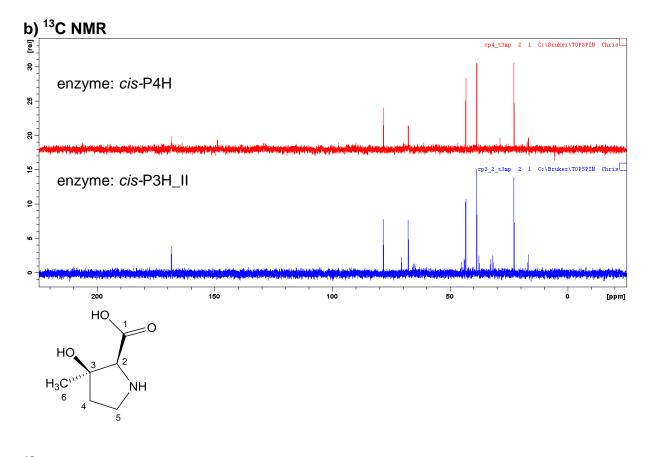
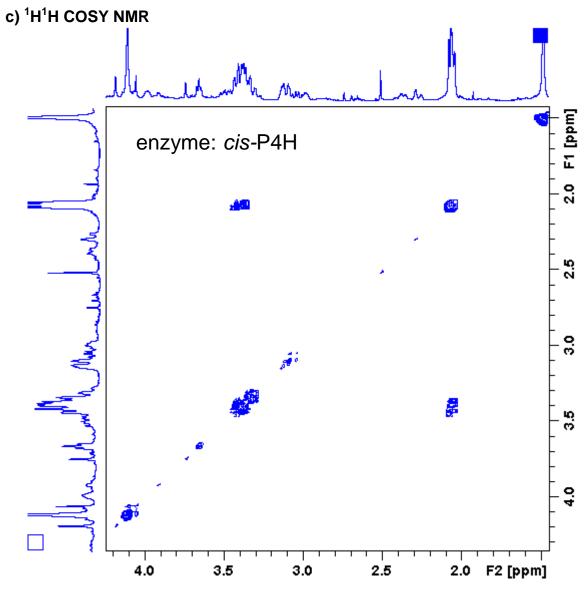

KH ₂ PO ₄	16.6 g/L		
NH ₄ NaHPO ₄	4.0 g/L		
citric acid	2.1 g/L		
$Fe_2(SO_4)_3$	0.075 g/L		
boric acid	3.8 mg/L		
MnCl ₂ ·4H ₂ O	18.8 mg/L		
EDTA-2H ₂ O	10.5 mg/L		
CuCl ₂ ·2H ₂ O	1.9 mg/L		
Na ₂ MoO ₄ ·2H ₂ O	3.1 mg/L		
CoCl ₂ ·6H ₂ O	3.1 mg/L		
ZnSO4-2H ₂ O	10.0 mg/L		
After autoclaving, addition of:			
glycerol	1% (v/v)		
MgSO ₄ ·2H ₂ O	1.5 g/L		
Adjust pH with 25% (v/v) NH_3 to	6.8		

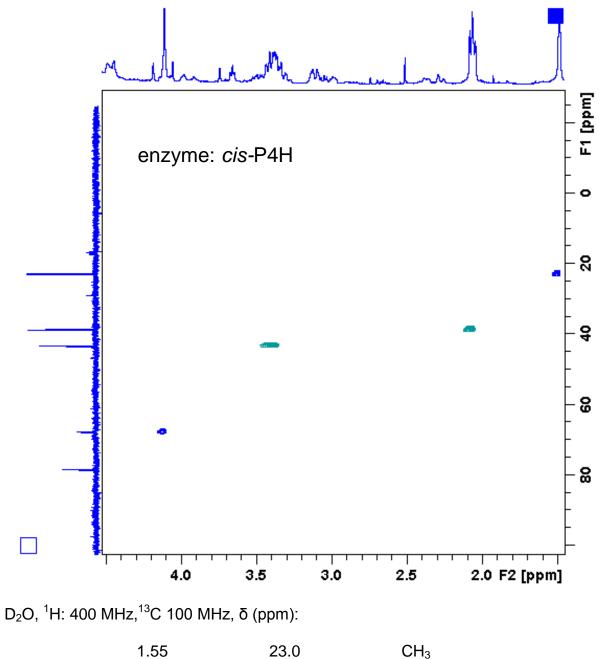
 Table S1: High-cell-density medium [S2].


2) NMR spectra of enzymatic conversions product

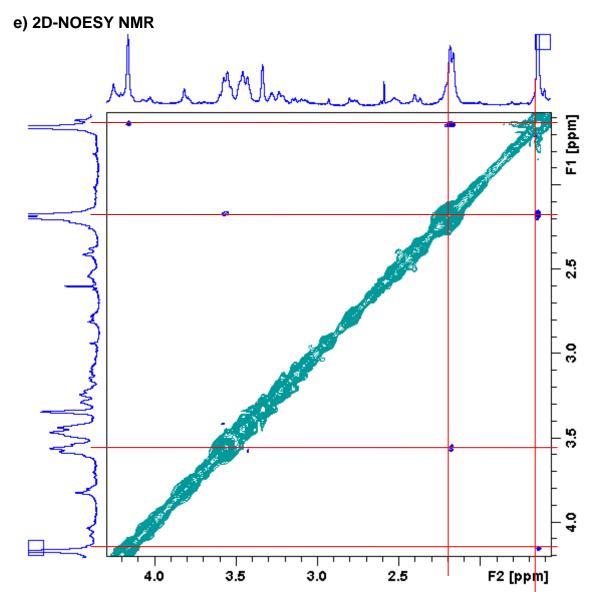
(3R)-3-Hydroxy-3-methyl-L-proline = (2S,3R)-3-hydroxy-3-methylpyrrolidine-2carboxylic acid


¹H NMR, ¹³C NMR and ¹H¹H-COSY NMR, ¹H¹³C HSQC NMR, 1D and 2D-NOESY NMR spectra were recorded at 400 MHz (¹H) and 100 MHz (¹³C) on a Bruker Avance DRX 400 (Buker Biospin GmbH, Rheinstetten, Germany) in D₂O or CD₃OD. Chemical shifts refer to H₂O (δ ¹H = 4.80 ppm) or methanol (δ ¹H = 3.34 ppm).

¹H NMR (400 MHz, D₂O) δ = 1.55 (s, 3H, CH₃), 2.13 (dd, J = 8.89 Hz, J = 6.10 Hz, 2H, CH₂-C, CH₂-B), 3.46 (m, 2H, CH₂-D, CH₂-E), 4.16 (s, 1H, CH-A).

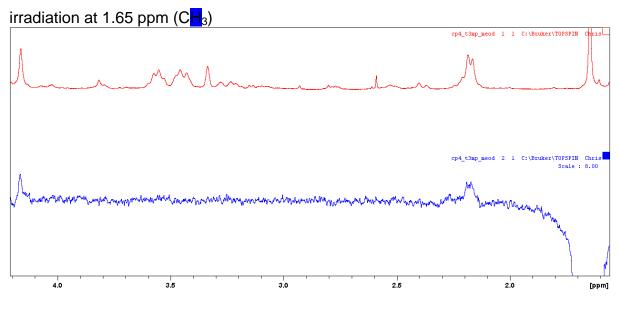


¹³C NMR (100 MHz, D_2O) δ = 23.0 (C-6), 38.6 (C-4), 43.3 (C-5), 67.9 (C-2), 78.5 (C-3), 168.4 (C-1).



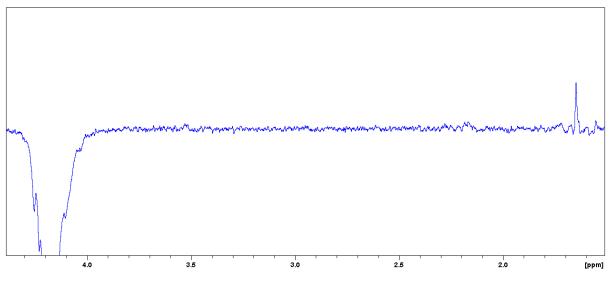
D₂O, 400 MHz, δ (ppm):

1.55	_
2.13	3.46
4.16	_


1.00	20.0	0113
2.13	38.6	CH_2
3.46	43.3	CH_2
4.16	67.9	СН

CD₃OD, (400 MHz)

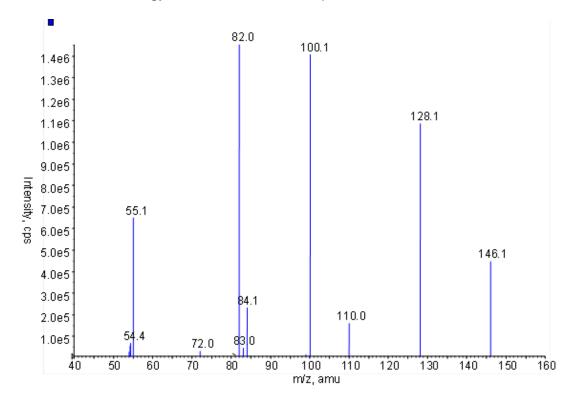
- 1.65 ppm \rightarrow 2.18 ppm; 4.16 ppm
- 2.18 ppm \rightarrow 1.6 ppm; 3.56 ppm


f) 1D-NOESY NMR

CD₃OD, (400 MHz)

1.65 ppm → 2.18 ppm; 4.16 ppm

irradiation at 4.16 (CH-A)



CD₃OD, (400 MHz)

4.16 ppm \rightarrow 1.65 ppm

3) Mass spectrometry

MS- and MS² -analyses were performed with a API2000 Mass Spectrometer equipped with a turbospray ion source (Applied Biosystems, Carlsbad, CA, USA). Parameter: Product ion (MS²): Ion source gas 1: 30 psi, ion source gas 2: 30 psi, collision gas: 6 psi, curtain gas: 10 psi, ionspray voltage: 5500 V, temperature: 400 °C, declustering potential: 50 V, focusing potential: 300 V, entrance potential: 10 V, collision energy: 25, collision cell exit potential: 3.

Tandem mass spectrometry: MS² of molecule peak 146 [M + 1]⁺

 $MS^{2} m/z (\%) 146 (31) [M + 1]^{+}, 128 (75) [C_{6}H_{9}NO_{2} + 1]^{+}, 110 (11) [C_{6}H_{7}NO + 1]^{+}, 100 (97) [C_{5}H_{9}NO + 1]^{+}, 84 (16) [C_{4}H_{5}NO + 1]^{+}, 82 (100) [C_{5}H_{7}N + 1]^{+}, 55 (45) C_{6}H_{11}NO_{3} MW: 145.16 \text{ g} \cdot \text{mol}^{-1}$

References

- S1 Klein, C.; Hüttel, W. Adv. Synth. Catal. 2011, 353, 1375–1383.
 doi:10.1002/adsc.201000863
- S2 Horn, U.; Strittmatter, W.; Krebber, A.; Knüpfer, U.; Kujau, M.; Wenderoth, R.;
 Müller, K.; Matzku, S.; Plückthun, A.; Riesenberg, D. *Appl. Microbiol. Biotechnol.* 1996, 46, 524–532. doi:10.1007/s002530050855