Supporting Information

for

A rapid and efficient synthetic route to terminal arylacetylenes by tetrabutylammonium hydroxide- and methanol-catalyzed cleavage of 4-aryl-2-methyl-3butyn-2-ols

Jie Li and Pengcheng Huang*

Address: Department of Polymer Materials and Composites, School of Materials Science and Engineering, Beihang University, Beijing 100191, China

Email: Jie Li - lijie1159@mse.buaa.edu.cn; Pengcheng Huang* - huangpc@buaa.edu.cn

* Corresponding author

General experimental methods, analytical data, ¹H and ¹³C NMR spectra of compounds 1a–k and 2a–k.

Experimental procedures and characterization data for the products:

General methods

Unless otherwise stated, all starting materials were obtained from commercial suppliers and were used without further purification. 4-Aryl-2-methyl-3-butyn-2-ols were prepared according to the general procedure. Toluene and triethylamine were distilled from CaH₂ prior to use. All reactions were performed under an atmosphere of nitrogen. Melting points were taken on a hot-plate microscope apparatus and are uncorrected. ¹H (300 MHz) and ¹³C (75 MHz) NMR spectra were acquired on a Bruker AV 300 NMR spectrometer.

General procedure for the synthesis of 4-aryl-2-methyl-3-butyn-2-ols

A mixture of aryl bromide (5.0 mmol), 2-methyl-3-butyn-2-ol (1.0 mol per 1 mol bromine atom), copper(I) iodide (38.2 mg, 0.2 mmol), palladium(II) dichlorobistriphenylphosphine (70.2 mg, 0.1 mmol) and triphenylphosphine (104.9 mg, 0.4 mmol) in triethylamine (25 mL) was placed in a Schlenk flask. The mixture was heated at 65 °C for 6 h. After cooling to room temperature, the solvent was removed under reduced pressure. The residue was dissolved in dichloromethane and the organic phase was washed successively with 5% HCl and brine, dried over MgSO₄, and then evaporated. The crude product was purified by column chromatography with petroleum ether–ethyl acetate mixtures as eluent.

General procedure for the synthesis of 2i and 2k using sodium in refluxing toluene

4-Aryl-2-methyl-3-butyn-2-ol (2 mmol) and Na (2 mol per 1 mol 2hydroxypropyl group) were dissolved in toluene (100 mL). The mixture was stirred at 120 °C for 8 h. After cooling to room temperature, the solution was washed successively with 5% HCl and brine, dried over MgSO₄, and concentrated in vacuo. The crude product was then purified by column chromatography to afford the product.

Characterization data of 1a-k and 2a-k

4-(4-(Phenylethynyl)phenyl)-2-methyl-3-butyn-2-ol (1a): eluent, petroleum ether–ethyl acetate = 10/1; yield: 81%; white solid; mp 135.2–135.7 °C; ¹H NMR (CDCl₃) δ 7.46–7.53 (m, 4H), 7.34–7.40 (m, 5H), 1.78 (s, 1H), 1.63 (s, 6H); ¹³C NMR (CDCl₃) δ 31.45, 65.66, 81.87, 88.98, 91.12, 95.51, 122.58, 123.04, 123.19, 128.38, 128.46, 131.44, 131.59, 131.63.

4-(3-Nitrophenyl)-2-methyl-3-butyn-2-ol (1b): CAS NO.: 33432-52-9; eluent, petroleum ether–ethyl acetate = 5/1; yield: 90%; white solid; mp 51.7–52.2 °C; ¹H NMR (CDCl₃) δ 8.28 (t, *J* = 2 Hz, 1H), 8.17 (d, *J* = 8.4 Hz, 1H), 7.73 (d, *J* = 7.6 Hz, 1H), 7.50 (t, *J* = 8 Hz, 1H), 1.83 (s, 1H), 1.65 (s, 6H); ¹³C NMR (CDCl₃) δ 31.29, 65.56, 79.84, 96.46, 122.95, 124.63, 126.47, 129.28, 137.29, 148.18. **4-(3-Bromo-5-nitrophenyl)-2-methyl-3-butyn-2-ol (1c):** eluent, petroleum ether–ethyl acetate = 5/1; yield: 68%; white solid; mp 68.2–68.8 °C; ¹H NMR (CDCl₃) δ 8.28 (t, *J* = 1.8 Hz, 1H), 8.17 (t, *J* = 1.8 Hz, 1H), 7.85 (t, *J* = 1.8 Hz, 1H), 2.32 (s, 1H), 1.63 (s, 6H); ¹³C NMR (CDCl₃) δ 31.20, 65.54, 78.65, 97.95, 122.59, 125.10, 126.14, 126.18, 139.93, 148.58.

4-(3-(Phenylethynyl)phenyl)-2-methyl-3-butyn-2-ol (1d): eluent, petroleum ether–ethyl acetate = 6/1; yield: 63%; white solid; mp 67–67.5 °C; ¹H NMR (CDCl₃) δ 7.62 (s, 1H), 7.46–7.53 (m, 3H), 7.30–7.39 (m, 5H), 1.72 (s, 1H), 1.64 (s, 6H); ¹³C NMR (CDCl₃) δ 31.46, 65.62, 81.39, 88.48, 90.01, 94.39, 123.02, 123.11, 123.58, 128.39, 128.46, 131.31, 131.65, 134.71.

4-(4-Octyloxyphenyl)-2-methyl-3-butyn-2-ol (1e): CAS NO.: 125151-57-7; eluent, petroleum ether–ethyl acetate = 10/1; yield: 75%; white solid; mp 63.1–63.2 °C; ¹H MNR (CDCl₃) δ 7.33 (d, *J* = 9 Hz, 2H), 6.80 (d, *J* = 8.7 Hz, 2H), 3.93 (t, *J* = 6.9 Hz, 2H), 2.12 (s, 1H), 1.72–1.81 (m, 2H), 1.60 (s, 6H), 1.29–1.46 (m, br, 10H), 0.89 (t, *J* = 6.9 Hz, 3H); ¹³C NMR (CDCl₃) δ 14.05, 22.63, 26.00, 29.18, 29.19, 29.32, 31.59, 31.79, 65.65, 68.08, 82.13, 92.32, 114.44, 114.59, 133.04, 159.20.

4-Phenyl-2-methyl-3-butyn-2-ol (1f): CAS NO.: 1719-19-3; eluent, petroleum ether–ethyl acetate = 10/1; yield: 82%; white solid; mp 52.4–53 °C; ¹H MNR (CDCl₃) δ 7.40–7.43 (m, 2H), 7.28–7.30 (m, 3H), 2.07 (s, 1H), 1.62

(s, 6H); ¹³C NMR (CDCl₃) δ 31.50, 65.62, 82.25, 93.82, 122.78, 128.24, 131.65.

4-(4-Bromophenyl)-2-methyl-3-butyn-2-ol (1g): CAS NO.: 76347-62-1; eluent, petroleum ether–ethyl acetate = 6/1; yield: 62%; white solid; mp 59.5– 61 °C; ¹H MNR (CDCl₃) δ 7.42 (d, *J* = 8.1 Hz, 2H), 7.26 (d, *J* = 8.4 Hz, 2H), 2.03 (s, 1H), 1.61 (s, 6H); ¹³C NMR (CDCl₃) δ 31.40, 65.62, 81.16, 94.97, 121.74, 122.49, 131.52, 133.09.

1,3-Bis{3-(3-methyl-3-hydroxy-butynyl)-5-[2-(2-ethoxyethoxy)ethoxy] phenylethynyl}benzene (1h): golden yellow oil; ¹H NMR (CDCl₃) δ 7.64 (s, 1H), 7.44 (d, *J* = 7.5 Hz, 2H), 7.30 (t, *J* = 7.5 Hz, 1H), 7.18 (s, 2H), 7.00 (s, 2H), 6.93 (s, 2H), 4.08–4.13 (m, 4H), 3.84 (t, *J* = 4.6 Hz, 4H), 3.70 (t, *J* = 4.6 Hz, 4H), 3.59 (t, *J* = 4.6 Hz, 4H), 3.52 (q, *J* = 6.9 Hz, 4H), 2.02 (s, 2H), 1.59 (s, 12H), 1.17–1.22 (m, 6H); ¹³C NMR (CDCl₃) δ 15.14, 31.43, 65.52, 66.70, 67.81, 69.59, 69.86, 70.97, 81.25, 88.77, 89.15, 94.32, 117.95, 118.21, 123.38, 124.08, 124.14, 127.65, 128.54, 131.50, 134.68, 158.46.

1-Ethynyl-3,5-bis[(2-hydroxyprop-2-yl)ethynyl]benzene (1i): white solid; mp 129.7–130.3 °C (lit. [1] 95–97 °C); ¹H MNR (CDCl₃) δ 7.42–7.44 (m, 3H), 3.06 (s, 1H), 1.82 (s, 2H), 1.56 (s, 12H); ¹³C NMR (CDCl₃) δ 31.36, 65.54, 78.30, 80.43, 81.89, 95.10, 122.72, 123.44, 134.63, 134.82.

1,3,5-Tris[(2-hydroxyprop-2-yl)ethynyl]benzene (1j): eluent, petroleum ether–ethyl acetate = 1/1; yield: 89%; white solid; mp 169–170 °C (lit. [1] 170–

172 °C); ¹H MNR (CDCl₃) δ 7.40 (s, 3H), 1.59 (s, 21H); ¹³C NMR (CDCl₃) δ 31.37, 65.54, 80.55, 94.93, 123.34, 134.23.

3-Cascade:benzene[3-1,3,5]:5-ethynyl-1,3-bis-[(2-hydroxyprop-2-

yl)ethynyl]benzene (1k): white solid; mp >300 °C (decompose); ¹H MNR (DMSO-*d*₆) δ 7.83 (s, 3H), 7.54 (d, *J* = 1.5 Hz, 6H), 7.40 (s, 3H), 5.53 (s, 6H), 1.47 (s, 36H); ¹³C NMR (DMSO-*d*₆) δ 31.39, 63.61, 78.48, 88.59, 89.09, 97.88, 122.91, 123.25, 123.91, 133.33, 134.04, 134.45.

1-Ethynyl-4-(phenylethynyl)benzene (2a): CAS NO.: 92866-00-7; eluent, petroleum ether; yield: 97.6%; white solid; mp 91.6–92.1 °C; ¹H MNR (CDCl₃) δ 7.48–7.54 (m, 6H), 7.35–7.36 (m, 3H), 3.17 (s, 1H); ¹³C NMR (CDCl₃) δ 78.86, 83.30, 88.84, 91.40, 121.90, 122.99, 123.83, 128.40, 128.54, 131.48, 131.66, 132.08.

1-Ethynyl-3-nitrobenzene (2b): CAS NO.: 3034-94-4; eluent, petroleum ether; yield: 88.2%; yellow oil; ¹H MNR (CDCl₃) δ 8.27 (t, *J* = 1.8 Hz, 1H), 8.14 (d, *J* = 8.3 Hz, 1H), 7.72 (d, *J* = 7.7 Hz, 1H), 7.45 (t, *J* = 8 Hz, 1H), 3.15 (s, 1H); ¹³C NMR (CDCl₃) δ 79.90, 81.10, 123.57, 123.95, 126.99, 129.39, 137.77, 148.20.

1-Ethynyl-3-bromo-5-nitrobenzene (2c): eluent, petroleum ether–ethyl acetate= 20/1; yield: 85.1%; yellow solid; mp 77.4–77.9 °C; ¹H MNR (CDCl₃) δ 8.35 (s, 1H), 8.26 (s, 1H), 7.92 (s, 1H), 3.28 (s, 1H); ¹³C NMR (CDCl₃) δ 79.81, 81.37, 122.70, 125.43, 125.62, 126.86, 140.39, 148.61.

1-Ethynyl-3-(phenylethynyl)benzene (2d): eluent, petroleum ether; yield: 88.9%; colorless oil; ¹H MNR (CDCl₃) δ 7.68 (s, 1H), 7.45–7.54 (m, 4H), 7.30– 7.37 (m, 4H), 3.11 (s, 1H); ¹³C NMR (CDCl₃) δ 77.79, 82.82, 88.35, 90.25, 122.53, 122.99, 123.72, 128.41, 128.44, 128.51, 131.69, 131.80, 131.86, 135.13.

1-Ethynyl-4-octyloxybenzene (2e): CAS NO.: 79887-19-7; eluent, petroleum ether; yield: 95.3%; colorless oil; ¹H MNR (CDCl₃) δ 7.43 (d, *J* = 8.6 Hz, 2H), 6.84 (d, *J* = 8.6 Hz, 2H), 3.97 (t, *J* = 6.5 Hz, 2H), 3.01 (s, 1H), 1.76–1.83 (m, 2H), 1.30–1.47 (m, br, 10H), 0.90 (t, *J* = 6.2 Hz, 3H); ¹³C NMR (CDCl₃) δ 14.07, 22.64, 26.01, 29.17, 29.22, 29.33, 31.80, 68.09, 75.63, 83.79, 113.94, 114.49, 133.56, 159.59.

Ethynylbenzene (2f): CAS NO.: 536-74-3; eluent, petroleum ether; yield: 88%; colorless oil; ¹H MNR (CDCl₃) δ 7.48–7.50 (m, 2H), 7.30–7.32 (m, 3H), 3.06 (s, 1H); ¹³C NMR (CDCl₃) δ 77.48, 83.69, 122.18, 128.33, 128.81, 132.17.

4-Bromophenylacetylene (2g): CAS NO.: 766-96-1; eluent, petroleum ether; yield: 73.6%; white solid; mp 64.1–65 °C; ¹H MNR (CDCl₃) δ 7.46 (d, *J* = 8.4 Hz, 2H), 7.36 (d, *J* = 8.4 Hz, 2H), 3.13 (s, 1H); ¹³C NMR (CDCl₃) δ 78.33, 82.60, 121.06, 123.25, 131.61, 133.56.

1,3-Bis{[3-ethynyl-5-[2-(2-ethoxyethoxy)ethoxy]phenyl]ethynyl}benzene (2h): eluent, petroleum ether–ethyl acetate= 4/1; yield: 74.4%; pale yellow

viscous oil; ¹H NMR (CDCl₃) δ 7.61 (s, 1H), 7.41 (d, *J* = 7.8 Hz, 2H), 7.26– 7.19 (m, 3H), 7.00–6.96 (m, 4H), 4.08 (t, *J* = 4.5 Hz, 4H), 3.80 (t, *J* = 4.8 Hz, 4H), 3.65 (t, *J* = 4.8 Hz, 4H), 3.55 (t, *J* = 4.8 Hz, 4H), 3.47 (q, *J* = 6.9 Hz, 4H), 3.01 (s, 2H), 1.15 (t, *J* = 6.9 Hz, 6H); ¹³C NMR (CDCl₃) δ 15.16, 66.71, 67.81, 69.58, 69.87, 70.98, 77.68, 82.67, 88.89, 89.02, 118.40, 118.75, 123.32, 123.42, 124.25, 128.03, 128.57, 131.58, 134.70, 158.48.

1,3,5-Triethynylbenzene (2i): CAS NO.: 7567-63-7; eluent, petroleum ether; white solid; mp 106–107.2 °C; ¹H MNR (CDCl₃) δ 7.57 (s, 3H), 3.10 (s, 3H); ¹³C NMR (CDCl₃) δ 78.67, 81.63, 122.96, 135.65.

1,3,5-Tris[2-(3,5-diethynylphenyl)ethynyl]benzene (2k): eluent, THF. The product was further purified by precipitation of a THF solution into 20 volumes of methanol to give **2k** as a white fluffy solid. Yield: 82.6%; ¹H NMR (DMSO- d_6): δ 7.62-7.84 (m, 12H), 4.39(s, 6H); ¹³C NMR (DMSO- d_6) δ 81.31, 82.68, 88.76, 88.85, 123.00, 123.10, 134.49, 134.60, 134.91.

References

Rodríguez, J. G.; Esquivias, J. *Tetrahedron Lett.* 2003, 44, 4831–4834.
 doi:10.1016/S0040-4039%2803%2901137-7

Figure S1: ¹H and ¹³C NMR spectra of **1a**.

Figure S2: ¹H and ¹³C NMR spectra of 1b.

Figure S3: ¹H and ¹³C NMR spectra of 1c.

Figure S4: ¹H and ¹³C NMR spectra of 1d.

Figure S5: ¹H and ¹³C NMR spectra of **1e**.

Figure S6: ¹H and ¹³C NMR spectra of 1f.

Figure S7: ¹H and ¹³C NMR spectra of **1g**.

Figure S8: ¹H and ¹³C NMR spectra of 1h.

Figure S9: ¹H and ¹³C NMR spectra of **1i**.

Figure S10: ¹H and ¹³C NMR spectra of 1j.

Figure S11: ¹H and ¹³C NMR spectra of 1k.

.174

Figure S12: ¹H and ¹³C NMR spectra of 2a.

Figure S13: ¹H and ¹³C NMR spectra of 2b.

Figure S14: ¹H and ¹³C NMR spectra of **2c**.

Figure S15: ¹H and ¹³C NMR spectra of 2d.

Figure S16: ¹H and ¹³C NMR spectra of 2e.

Figure S17: ¹H and ¹³C NMR spectra of 2f.

Figure S18: ¹H and ¹³C NMR spectra of 2g.

Figure S19: ¹H and ¹³C NMR spectra of 2h.

Figure S20: ¹H and ¹³C NMR spectra of 2i.

Figure S21: ¹H and ¹³C NMR spectra of 2k.