Supporting Information

for

A racemic formal total synthesis of clavukerin A using gold(I)-catalyzed cycloisomerization of 3-methoxy-1,6enynes as the key strategy

Jae Youp Cheong and Young Ho Rhee*

Address: Department of Chemistry, POSTECH (Pohang University of Science and

Technology), Hyoja-dong san 31, Nam-gu, Pohang, Kyungbook, Republic of Korea 790-784

Email: Young Ho Rhee* - yhrhee@postech.ac.kr

* Corresponding author

Experimental section for the preparation of compounds 2-12, and ¹H and ¹³C NMR spectra for all new compounds.

1. General Information

All commercially available chemicals were used without further purification. All solvents were dried and distilled according to the standard methods before use. Au[P(C₆F₅)₃]Cl was prepared according to the literature procedure [1] Experiments were performed in flame-dried glassware with rubber septa under a positive pressure of nitrogen. Reactions were monitored by thin-layer chromatography carried out on 0.25 mm E. Merck silica gel plates (60F-254) using UV light as a visualizing agent and acidic *p*-anisaldehyde, PMA/EtOH and heat as the developing agent. Flash chromatography was carried out on Merck 60 silica gel (230-400 mesh). ¹H and ¹³C NMR spectra were recorded with a Bruker (300 MHz) spectrometer. ¹H NMR spectra were referenced to CDCl₃ (7.26 ppm) and reported as follows; chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, m = multiplet, dd = doublet of doublets, td = triplet of doublets, ddd = doublet of doublet of doublets). Chemical shifts of the ¹³C NMR spectra were measured relative to CDCl₃ (77.23 ppm). Mass spectral data were obtained from the Korea Basic Science Institute (Daegu) on a Jeol JMS 700 high resolution mass spectrometer.

2. Representative procedure

Compound 7

The literature procedure [2] was modified. A solution of methyl acetoacetate (5.29 g, 4.92 mL, 45.6 mmol) in THF (8.0 mL) was slowly added at 0 °C to a suspension of sodium hydride (60% in mineral oil, 1.82 g, 45.4 mmol) in THF (30 mL), followed by the addition of DMSO (15 mL). After stirring for 30 min at rt, a solution of 2-(2-bromoethyl)-2-methyl-1,3-dioxolane (8.00 g, 41.0 mmol) in THF (7.0 mL) was added, followed by the addition of DMSO (7.0 mL). The reaction mixture was heated under reflux (80 °C) for 15 h. The reaction mixture was cooled to 0 °C and quenched with water. THF was removed under reduced pressure. The crude product was extracted with diethyl ether (100 mL × 3) and the extracts washed with sat. NH₄Cl solution (100 mL × 2). The organic layers were combined, dried over Na₂SO₄, and concentrated. The residue was purified by flash chromatography on silica gel (eluent hexane:ethyl acetate = 85:15) to give the compound **7** as a colorless oil (5.20 g, 22.6 mmol, 55% yield, 17% of 2-(2-bromoethyl)-2-methyl-1,3-dioxolane was recovered). $R_{\rm f} =$

0.26 (hexane:ethyl acetate = 70:30); ¹H NMR (300 MHz, CDCl₃): δ = 1.30 (s, 3H), 1.59–1.66 (m, 2H), 1.91–2.03 (m, 2H), 2.22 (s, 3H), 3.48 (t, *J* = 7.4 Hz, 1H), 3.72 (s, 3H), 3.87–3.97 (m, 4H); ¹³C NMR (75 MHz, CDCl₃): δ = 22.8, 23.9, 29.1, 36.4, 52.5, 59.4, 64.8, 109.6, 170.3, 203.2; IR: (cm⁻¹) v 2983, 2955, 2885, 1744, 1717, 1436, 1378, 1360, 1219, 1147, 1062; HRMS calcd for C₁₁H₁₉O₅: 231.1232. found: 231.1231.

Compound 8

A solution of compound 7 (2.65 g, 11.5 mmol) in THF (5.0 mL) was slowly added. to a suspension of sodium hydride (60% in mineral oil, 553 mg, 13.8 mmol) in THF (24 mL) at 0 °C. After stirring for 30 min at rt, propargyl bromide (80% solution in toluene, 1.54 mL, 13.8 mmol) was added. The reaction mixture was stirred for 3 h, cooled to 0 °C and the reaction quenched with water. THF was removed under reduced pressure. The crude product was extracted with diethyl ether (50 mL \times 3) and the extracts washed with sat. NH₄Cl solution (50 mL \times 3). The organic layers were combined, dried over Na₂SO₄, and concentrated. The residue was purified by flash chromatography on silica gel (eluent hexane:ethyl acetate = 90:10) to give the propargylated product as a white solid (2.31 g, 8.61 mmol, 75% yield, m.p. = 62-64 °C). $R_{\rm f} = 0.31$ (hexane:ethyl acetate = 70:30); ¹H NMR (300 MHz, CDCl₃): $\delta = 1.30$ (s, 3H), 1.38 (dd, J = 12.7 Hz, J = 4.3 Hz, 1H), 1.51 (td, J = 12.8 Hz, J = 5.1 Hz, 1H), 1.99 (t, J = 2.6, 1H), 2.03–2.13 (m, 1H), 2.16 (s, 3H), 2.18–2.27 (m, 1H), 2.70–2.71 (m, 1H), 3.73 (s, 3H), 3.90-3.94 (m, 4H); The product (2.62 g, 9.77 mmol) and LiCl (828 mg, 19.5) were dissolved in DMSO (13 mL) and water (0.5 mL). The reaction mixture was heated to 150 °C for 15 h then cooled to 0 °C and the reaction quenched with water. The crude product was extracted with ether (100 mL \times 3) and the extracts washed with water (100 mL \times 3). The organic layers were combined, dried over Na₂SO₄, and concentrated. The residue was purified by flash chromatography on silica gel (eluent hexane:ethyl acetate = 90:10) to give compound 8 as a colorless oil (1.40 g, 6.66 mmol, 68% yield). $R_f = 0.47$ (hexane:ethyl acetate = 70:30); ¹H NMR (300 MHz, CDCl₃): $\delta = 1.29$ (s, 3H), 1.53–1.73 (m, 3H), 1.75–1.87 (m, 1H), 1.98 (t, J = 2.7 Hz, 1H), 2.20 (s, 3H), 2.35 (ddd, J = 16.9 Hz, J = 6.5 Hz, J = 2.7 Hz, 1H), 2.42 (ddd, J = 16.9 Hz, J = 7.4 Hz, J = 2.7 Hz, 1H), 2.66–2.75 (m, 1H), 3.88–3.94 (m, 4H); ¹³C NMR (75) MHz, CDCl₃): δ = 20.3, 23.9, 25.2, 29.7, 36.1, 51.2, 64.8, 64.9, 70.2, 81.7, 109.7, 210.4; IR: (cm^{-1}) v 3281, 2956, 1713, 1378, 1224, 1168, 1060; HRMS calcd for $C_{12}H_{19}O_3(FAB+)$: 211.1334. found: 211.1336.

Compound 9

A solution of vinylmagnesium bromide (1.0 M sol. in THF, 2.4 mL, 2.4 mmol) was slowly added to a solution of compound 8 (340 mg, 1.62 mmol) in THF (8.0 mL) at -78 °C. The reaction mixture was allowed to warm to rt and stirred for 3 h. The reaction mixture was cooled to 0 °C and the reaction quenched with water. THF was removed under reduced pressure. The crude product was extracted with diethyl ether (50 mL \times 3) and the extracts washed with sat. NH₄Cl solution (50 mL \times 3). The organic layers were combined, dried over Na₂SO₄, and concentrated. The residue was purified by flash chromatography on silica gel (eluent hexane:ethyl acetate = 80:20) to give compound 9 as a colorless oil (345 mg, 1.45 mmol, 90% yield, dr = 3:1). $R_f = 0.44$ (hexane:ethyl acetate = 70:30); ¹H NMR (300 MHz, $CDCl_3$): $\delta = 1.27$ (s, 3H), 1.32 (s, 3H), 1.50–1.65 (m, 3H), 1.68–1.76 (m, 1H), 1.81–1.92 (m, 1H), 2.00 (t, J = 2.7 Hz, 1H), 2.11 (s, 1H), 2.26–2.40 (m, 2H), 3.90–3.95 (m, 4H), 5.10 (dd, J= 10.7 Hz, J = 1.3 Hz, 1H), 5.27 (dd, J = 17.2 Hz, J = 1.3 Hz, 1H), 5.92 (dd, J = 17.3 Hz, J = 10.7 Hz, 1H); {distinctive signals for the minor} $\delta = 1.31$ (s, 3H), 2.08 (s, 1H), 5.25 (dd, J =10.7 Hz, J = 1.4 Hz, 1H), 5.88 (dd, J = 17.2 Hz, J = 10.8 Hz, 1H); ¹³C NMR (75 MHz, $CDCl_3$): $\delta = 18.5, 18.6, 22.9, 23.8, 23.9, 25.6, 26.4, 37.7, 37.7, 46.2, 46.9, 64.7, 64.8, 70.3,$ 70.5, 76.0, 76.1, 83.6, 83.9, 110.3, 110.3, 112.6, 113.1, 143.7, 144.6; IR: (cm⁻¹) v 3473, 3295, 2982, 2884, 1378, 1218, 1060; HRMS calcd for C₁₄H₂₃O₃(FAB+): 239.1647. found: 239.1650.

Compound 5

A solution of **9** (500 mg, 2.10 mmol) in DMF (2.0 mL) was slowly added to a suspension of sodium hydride (60% in mineral oil, 126 mg, 3.17 mmol) in DMF (3.2 mL) at 0 °C. After stirring for 30 min at this temperature, iodomethane (0.33 mL, 750 mg, 5.3 mmol) was added. The reaction mixture was stirred for 3 h at 0 °C and the reaction quenched with water. The crude mixture was extracted with ether (50 mL × 3). The organic layers were combined, dried over Na₂SO₄, and concentrated. The residue was purified by flash chromatography on silica gel (eluent hexane:ethyl acetate = 95:5) to give compound **5** as a colorless oil (470 mg, 1.86 mmol, 88% yield, dr = 3:1). $R_f = 0.61$ (hexane:ethyl acetate = 80:20); ¹H NMR (300 MHz,

CDCl₃): $\delta = 1.20$ (s, 3H), 1.31 (s, 3H), 1.36–1.79 (m, 4H), 1.88–1.98 (m, 2H), 2.16–2.50 (m, 2H), 3.12 (s, 3H), 3.87–3.95 (m, 4H), 5.14 (dd, J = 17.4 Hz, J = 1.2 Hz, 1H), 5.27 (dd, J = 10.8 Hz, J = 1.2 Hz, 1H), 5.65 (dd, J = 17.4 Hz, J = 10.8 Hz, 1H); {distinctive signals for the minor diastereomer} $\delta = 1.23$ (s, 3H), 1.33 (s, 3H), 3.12 (s, 3H), 5.16 (dd, J = 17.4 Hz, J = 1.2 Hz, 1H), 5.26 (dd, J = 10.8 Hz, J = 1.2 Hz, 1H), 5.72 (dd, J = 17.7 Hz, J = 10.8 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃): $\delta = 16.4$, 17.4, 18.2, 18.9, 23.8, 23.8, 23.9, 24.5, 37.9, 38.0, 46.2, 46.3, 50.1, 64.7, 64.8, 69.4, 69.6, 80.1, 84.1, 84.4, 110.3, 110.4, 116.8, 141.2, 141.7; IR: (cm⁻¹) v 3292, 2982, 1456, 1377, 1218, 1159, 1106, 1063; HRMS calcd for C₁₅H₂₅O₃(FAB+): 253.1804. found: 253.1802.

Compound 4

A solution of Au[P(C₆F₅)₃]Cl (5.6 mg, 0.0080 mmol) in dry CH₂Cl₂ (1 mL) was added to a solution of AgSbF₆ (2.7 mg, 0.0079 mmol) in dry CH₂Cl₂ (1 mL). The solution was stirred for 10 min. The resulting solution was filtered though a pad of Celite and concentrated. The residue was dried under high vacuum for 2 h and then cooled to -15 °C. A solution of compound 5 (100 mg, 0.40 mmol) in dry CH₂Cl₂ (8.0 mL, pre-cooled to -15 °C) was added to this residue. The resulting green solution was stirred for 2 min. Triethylamine (1 mL) was added and the solution stirred for a further 5 min. The resulting solution was filtered through a pad of silica and concentrated. The crude oil was dissolved in CH₂Cl₂ (8.0 mL). Silica gel (150 mg) was added and the reaction mixture was stirred for 15 h. CH₂Cl₂ was removed under reduced pressure. The crude oil was purified by flash chromatography on silica gel (eluent hexane:ethyl acetate = 90:10) to give compound 4 as a colorless oil (89 mg, 0.37 mmol, 93%) yield). $R_{\rm f} = 0.28$ (hexane:ethyl acetate = 80:20); ¹H NMR (300 MHz, CDCl₃): $\delta = 1.30$ (s, 3H), 1.43-1.73 (m, 3H), 1.74 (s, 3H), 1.76-1.80 (m, 1H), 2.14-2.49 (m, 5H), 3.90-3.95 (m, 4H), 5.59–5.64 (m, 1H); ¹³C NMR (75 MHz, CDCl₃): δ = 22.6, 24.0, 25.1, 27.5, 36.4, 41.3, 44.0, 45.8, 64.8, 64.8, 110.0, 124.5, 140.9, 213.1; IR: (cm⁻¹) v 2956, 2880, 1706, 1450, 1377, 1223, 1067; HRMS calcd for C₁₄H₂₃O₃(FAB+): 239.1647. found: 239.1651.

Compound 2

Compound **4** (686 mg, 2.30 mmol) was dissolved in a mixture of acetone:water (2/1, 3.3 mL). *p*-TsOH (10 mg) was added. The reaction mixture was stirred for 15 h at rt and the acetone removed under reduced pressure. The crude oil was extracted with diethyl ether (30 mL × 2) and the extracts were washed with sat. NaHCO₃ solution. The organic layers were combined, dried over anhydrous Na₂SO₄ and concentrated. The crude mixture was diluted with MeOH (100 mL). Potassium hydroxide (1.29 g, 23.0 mmol) was added, and the resulting solution was heated with stirring at 60 °C for 15 h. MeOH was removed under reduced pressure. The crude oil was extracted with diethyl ether (50 mL × 2), the extracts were washed with sat. NH₄Cl solution (50 mL × 2), dried over anhydrous Na₂SO₄ and concentrated. The residual oil was purified by flash chromatography on silica gel (eluent hexane:ethyl acetate = 95:5) to give compound **2** as a yellow oil (337 mg, 1.91 mmol, 83% yield). *R*_f = 0.60 (hexane:ethyl acetate = 80:20); ¹H NMR (300 MHz, CDCl₃): δ = 1.74 (s, 3H), 1.76–1.82 (m, 1H), 2.05 (s, 3H), 2.13 – 2.20 (m, 1H), 2.24 – 2.42 (m, 5H), 2.73–2.79 (m, 1H), 3.70–3.80 (m, 1H), 5.55–5.65 (m, 1H); This spectral data was consistent with the literature values [3]

Compound 3

The literature procedure [4] was modified. Compound **4** (20 mg, 0.084 mmol) and rhodium/alumina (3.5 mg, 0.0017 mmol) in ethyl acetate (0.42 mL) were stirred for 3 h at 0 °C under a hydrogen atmosphere (balloon). The reaction mixture was filtered through a pad of Celite and concentrated. The residue was purified by flash chromatography on silica gel (eluent hexane:ethyl acetate = 90:10) to give compound 3 as a colorless oil (19 mg, 0.079 mmol, 94% yield, cis:trans = 13:1). $R_f = 0.31$ (hexane:ethyl acetate = 70:30); The spectral data of the major compound was consistent with the literature data [4]; ¹H NMR (300 MHz, CDCl₃): $\delta = 0.87$ (d, J = 7.2 Hz, 3H, for cis-isomer), 0.99 (d, J = 6.6 Hz, 3H, for trans-isomer), 1.22–1.28 (m, 1H), 1.30 (s, 3H), 1.38–1.75 (m, 7H), 1.77–1.86 (m, 1H), 1.94–2.00 (m, 1H), 2.31–2.53 (m, 4H), 3.89–3.95 (m, 4H); ¹³C NMR (75 MHz, CDCl₃): $\delta = 14.7$, 20.8, 23.9, 27.2, 35.8, 36.9, 37.3, 39.3, 44.0, 46.3, 64.8, 110.2, 214.6.

References:

- 1. Shin, S. Bull. Kor. Chem. Soc. 2005, 26, 1925.
- 2. Rosowsky, A.; Mota, C. E.; Wright, J. E.; Freisheim, J. H.; Heusner, J. J.; McCormack, J.
- J.; Queener, S. F. J. Med. Chem. 1993, 36, 3103.
- 3. Sampath, V.; Lund, E. C.; Knudsen, M. J.; Olmstead, M. M.; Schore, N. E. J. Org. Chem. 1987, 52, 3595.
- 4. Kim, S. K.; Pak, C. S. J. Org. Chem. 1991, 56, 6829.

cjy-3-7ketone 1 1 v yhr 20090712

- I

