Supporting Information

for
 Synthesis of novel 5-alkyl/aryl/heteroaryl substituted diethyl 2H-pyrrole-4,4(3H)-dicarboxylates by aziridine ring expansion of 2-[(aziridin-1-yl)-1-alkyl/ aryl/heteroaryl-methylene]malonic acid diethyl esters
 Satish S. More* ${ }^{* 1}$, T. Krishna Mohan ${ }^{1}$, Y. Sateesh Kumar ${ }^{1}$, U. K. Syam Kumar ${ }^{1}$ and Navin
 B. Patel ${ }^{2}$

Address: ${ }^{1}$ Technology Development centre, Custom Pharmaceutical Services, Dr.
Reddy's Laboratories Ltd., Miyapur, Hyderabad -500 049, India and ${ }^{2}$ Department of Chemistry, Veer Narmad South Gujarat University, Surat, India

Email: Satish S. More* - satishsm@drreddys.com

* Corresponding author

General information, experimental procedures, spectral data of compounds 18f-18j, 19b,19c, 19f-19g, 19i, 20a-20j, 21a-21j, 23, 24, 28, 29, 31, 32, spectra of 20a, 20c, 20d, 20f, 20g, and 20h (${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR, IR, MS).

Table of contents

Abstract

Content Page

1. General information S4
2. General procedures S5
2.1. General procedure for preparation of N-vinylaziridines 20a-20j S5
2.2. General procedure for the iodide ion mediated ring expansion reactions of N-vinylaziridines S5
3. Spectral data of novel diethyl 2-acylmalonates S6
3.1. Spectral data of Diethyl 2-(3-chlorobenzoyl)malonate (18f) S6
3.2. Diethyl 2-(4-fluorobenzoyl)malonate ($\mathbf{1 8 g}$) S6
3.3. Diethyl 2-(3-methoxybenzoyl)malonate (18i) S6
4. Spectral data of known diethyl 2-acylmalonates for which no spectral characterization was reported in literature S7
4.1. Diethyl 2-(4-nitrobenzoyl)malonate (18h) S7
4.2. Diethyl 2-(thiophene-2-carbonyl)malonate (18j) S7
5. Spectral data of novel 2-chloromethylenemalonates S7
5.1. Diethyl 2-(chloro (3-chlorophenyl)methylene)malonate (19f) S7
5.2. Diethyl 2-(chloro(4-fluorophenyl)methylene)malonate (19g) S8
5.3. Diethyl 2-(chloro(3-methoxyphenyl)methylene)malonate (19i) S8
6. Spectral data of known 2-chloromethylenemalonic acid diethyl ester derivatives for which no spectral characterization was reported in literature S8
6.1. Diethyl 2-(1-chloropropylidene)malonate (19b) S8
6.2. Diethyl 2-(1-chlorobutylidene)malonate (19c) S8
7. Spectral data of 2-(aziridin-1-yl-1-alkyl/ aryl/heteroaryl methylene)malonates (20a-20j) S9
7.1. 2-(1-Aziridin-1-yl-ethylidene)malonic acid diethyl ester (20a) S9
7.2. 2-(1-Aziridin-1-yl-propylidene)malonic acid diethyl ester (20b) S9
7.3. 2-(1-Aziridin-1-yl-butylidene)malonic acid diethyl ester (20c) S9
7.4. 2-(1-Aziridin-1-yl-2,2-dimethyl-propylidene)malonic acid diethyl ester (20d) S10
7.5. 2-(Aziridin-1-yl-phenylmethylene)malonic acid diethyl ester (20e) S10
7.6. 2-[Aziridin-1-yl-(3-chlorophenyl)methylene]malonic acid diethyl ester (20f). S10
7.7. 2-[Aziridin-1-yl-(4-fluorophenyl)methylene]malonic acid diethyl ester (20g) S10
7.8. 2-[Aziridin-1-yl-(4-nitrophenyl)methylene]malonic acid diethyl ester (20h) S11
7.9. 2-[Aziridin-1-yl-(3-methoxyphenyl)methylene]malonic acid diethyl ester (20i) S11
7.10. 2-[(Aziridin-1-yl)-(thiophen-2-yl)methylene]malonic acid diethyl ester (20j) S11
8. Spectral data of diethyl 5-alkyl/aryl/heteroaryl substituted 3,4-dihydro-2H- pyrrole-4,4-dicarboxylates (21a-21j) S12
8.1. Diethyl 3,4-dihydro-5-methyl-2H-pyrrole-4,4-dicarboxylate (21a) S12
8.2. Diethyl 3,4-dihydro-5-ethyl-2H-pyrrole-4,4-dicarboxylate (21b) S12
8.3. Diethyl 3,4-dihydro-5-propyl-2H-pyrrole-4,4-dicarboxylate (21c) S12
8.4. Diethyl 3,4-dihydro-5-tert-butyl-2H-pyrrole-4,4-dicarboxylate (21d) S12
8.5. Diethyl 3,4-dihydro-5-phenyl-2H-pyrrole-4,4-dicarboxylate (21e) S13
8.6. Diethyl 5-(3-chlorophenyl)-3,4-dihydro-2H-pyrrole-4,4-dicarboxylate (21f) S13
8.7. Diethyl 3,4-dihydro-5-(4-fluorophenyl)-2H-pyrrole-4,4-dicarboxylate (219) S13
8.8. Diethyl 3,4-dihydro-5-(4-nitrophenyl)-2H-pyrrole-4,4-dicarboxylate (21h) S14
8.9. Diethyl 3,4-dihydro-5-(3-methoxyphenyl)-2H-pyrrole-4,4-dicarboxylate (21i) S14
8.10. Diethyl 3,4-dihydro-5-(thiophen-2-yl)-2H-pyrrole-4,4-dicarboxylate (21j) S14
9. Spectral data of $23,24,28,29,30,31$ and 32 S15
9.1. 5-phenyl-3,4-dihydro-2H-pyrrole (23) S15
9.2. Ethyl 5-phenyl-3,4-dihydro-2H-pyrrole-4-carboxylate (24) S15
9.3. Ethyl 3-(aziridin-1-yl)-2-cyano-3-phenylacrylate (28) S15
9.4. Ethyl 4-cyano-5-phenyl-3,4-dihydro-2H-pyrrole-4-carboxylate (29) S15
9.5. 2-Butylaziridine (30) S16
9.6. Diethyl 2-[(2-butylaziridin-1-yl)phenylmethylene]malonate (31) S16
9.7. Diethyl 2-butyl-3,4-dihydro-5-phenyl-2H-pyrrole-4,4-dicarboxylate (32) S16
10. References S17
11. Spectra of 2-[(aziridin-1-yl)-1-alkyl/aryl/heteroaryl-methylene]malonic acid diethyl esters (N-vinyl aziridines) - 20a, 20c, 20d, 20f-20h S18

1. General information

All the required acid chlorides were freshly distilled prior to use. Aziridine was synthesized from ethanolamine and purified by fractional distillation. Laboratory grade (LR grade) solvents and reagents were used in the reactions. Reactions were monitored by TLC, using Merck aluminium-backed plates precoated with silica ($0.25 \mathrm{~mm}, 60$, F254). The plates were visualized under UV light and developed using a solution of basic KMnO_{4}. Chromatographic purification of products was carried out by gravity column chromatography on silica gel (60-120 mesh), purchased from SRL. Infrared spectra were recorded on a Perkin-Elmer 1650 Fourier transform spectrometer. NMR spectra were measured in CDCl_{3}, (all with TMS as internal standard) on Varian Gemini 200 MHz FT and 400 MHz FT magnetic resonance spectrometers. Chemical shifts (δ) are reported in ppm, and coupling constants (\mathcal{J}) in Hz . The following abbreviations were used for multiplicities: $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{m}=$ multiplet. MS spectra were recorded on an HP-5989A quadrapole mass spectrometer.
The synthesis of diethyl acyl malonates 18 was carried by the method of Rathke and Cowan [1] and the physical and spectral data were compared with the literature values [1,2]. Compound 18h [3] and 18j [4] have been previously reported, however, since no spectral characterization was given, the spectral data were recorded and results reported below. Compound 18f, 18g, and 18i were novel and were characterized by MS and NMR and IR spectroscopy.
The chlorination of diethyl 2-acylmalonates 18 was carried out by the method of Hormi [5] and the physical and spectral data of 2-(1-alkyl/aryl/heteroaryl-1chloromethylene)malonates 19 were compared with the literature reports [6-8].
Compounds 19f, 19g, and 19i were novel and were characterized by MS, NMR and IR spectroscopy. Compound 19b and 19c have been previously reported [9], however, since no spectral characterization was given, the spectral data were recorded and results reported below.
The synthesis of N-vinylaziridines 20 was carried out on a maximum of 24 mmol and minimum of 15 mmol scale whereas their rearrangement to pyrroline derivatives 21 was carried out on a maximum of 21 mmol and a minimum of 10 mmol scale.
Compound 23 was reported as perchlorate salt [10], but we isolated 23 in the form of a free base. Compound 24, although reported in literature [11], was not completely characterized. We have carried out characterization of 24 by NMR and MS and HRMS and the spectral results of 24 were found to be similar to its methyl ester analogue [12].

The synthesis of ethyl 3-chloro-2-cyano-3-phenylacrylate (27) was carried out by a known procedure via the acylation of ethyl cyanoacetate with benzoyl chloride and subsequent chlorination of ethyl 2-benzoylcyanoacetate with phosphorus oxychloride [13]. The synthesis of 2 -butylaziridine 30 was carried by the general procedure reported in a patent [14] from (\pm) norleucinol instead of (S)-(+)-leucinol.

2. General procedures

2.1. General procedure for preparation of \mathbf{N}-vinylaziridines 20a-20j

The chloro alkenyl malonate derivative (16.1 mmol) and THF (40.0 mL) were placed in a round bottom flask and cooled to $0-10{ }^{\circ} \mathrm{C}$. Aziridine (48.2 mmol) was added slowly over 15 minutes through a syringe to the above mixture. The reaction mixture was then raised to room temperature and stirred for 8-13 h. After disappearance of the starting chloro compound (TLC), the reaction was quenched with water (80 mL). The reaction mixture was extracted twice with 80 mL dichloromethane. The combined extracts were washed twice with $80 \mathrm{~mL} 10 \%$ sodium chloride solution. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under vacuum to afford the N-vinylaziridines. The products were sufficiently pure for the subsequent reactions; however, the crude products were purified by chromatography on silica gel (60-120 mesh) using a mixture of hexanes and ethyl acetate $(90: 10)$ as eluent, and the spectral data recorded for the column purified products, which were used for the next step (for yields see Table 1).

2.2. General procedure for the ring expansion of N-vinylaziridines to synthesize pyrrolines 21a-21j

Anhydrous sodium iodide $(4.5 \mathrm{~g}, 30 \mathrm{mmol})$ was added to a solution of the N vinylaziridine derivative (15 mmol) in acetone (40.0 mL) under a nitrogen atmosphere and the reaction mixture stirred for 12-24 h at room temperature. After disappearance of the N-vinylaziridine (TLC), the reaction mixture was diluted with water (80 mL) and extracted three times with 80 mL DCM. The combined DCM layers were washed twice with 80 mL of 10% sodium chloride solution, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under vacuum to afford the crude pyrroline derivatives which were purified by column chromatography on silica gel (60-120 mesh) with a mixture of hexanes and ethyl acetate (95:5) as eluent to afford the pure pyrrolines 21.

3. Spectral data of novel diethyl acyl malonates

3.1. Diethyl 2-(3-chlorobenzoyl)malonate (18f)

M.F.: $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{ClO}_{5}$, Mol. Wt: 298.72

IR (neat, cm^{-1}): 3651, 3070, 2984, 1754, 1734, 1698, 1571, 1424, 1369, 1301, 1249, 1151, 1095, 1031, 797, 744, 682, 616; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta: 13.4$ and 5.21 (s, $1 \mathrm{H}), 7.88(\mathrm{~s}, 1 \mathrm{H}), 7.769-7.762(\mathrm{~m}, 1 \mathrm{H}), 7.57-7.55(\mathrm{~m}, 1 \mathrm{H}), 4.29-4.0(\mathrm{~m}, 4 \mathrm{H}), 1.25$ and $1.05(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right) \delta: 187$ and 173, 164.39, 136.9, 134.3, 133.3, 130.11, 128.49, 126.48, 125.7 and $61.39,62.52$ and $61.84,14.06$ and 13.88; MS (ESI): $m / z=299.1[\mathrm{M}+\mathrm{H}]^{+}$.

3.2. Diethyl 2-(4-fluorobenzoyl)malonate (18g)

M.F.: $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{FO}_{5}$, Mol. Wt: 282.26 IR (neat, cm^{-1}): 3070, 2990, 2876, 1751, 1733, 1691, 1594, 1508, 1478, 1447, 1413, 1371, 1296, 1230, 1185, 1160, 1034, 1006, 907, 852, 817, 635, 580; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $400 \mathrm{MHz}) \delta: 7.96-7.92(\mathrm{~m}, 2 \mathrm{H}), 7.16(\mathrm{t}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 13.4 \& 5.22(\mathrm{~s}, 1 \mathrm{H}), 4.28(\mathrm{q}, J=$ $7.0 \mathrm{~Hz}, 4 \mathrm{H}), 1.25(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right) \delta: 187.3,168.7,164.6$ \& $163.5,131.7,131.3 \& 131.1,116.3 \& 115.8,62.48 \& 61.88,61.7 \& 61.3,13.9, \mathrm{MS}$ (ESI): $m / z=283.1[\mathrm{M}+\mathrm{H}]^{+}$.

3.3. Diethyl 2-(3-methoxybenzoyl)malonate (18i)

M.F.: $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{O}_{6}$, Mol. Wt: 294.30

IR (neat, cm^{-1}): 3077, 2983, 2839, 1754, 1736, 1693, 1598, 1583, 1487, 1450, 1431, 1369, 1293, 1234, 1178, 1095, 1037, 868, 789, 686; ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) ~ \delta: 13.4$ and $5.26(\mathrm{~s}, 1 \mathrm{H}), 7.47-7.0(\mathrm{~m}, 4 \mathrm{H}), 4.27(\mathrm{q}, J=7.0 \mathrm{~Hz}, 4 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 1.25(\mathrm{t}, 6 \mathrm{H}, 7.2$ $\mathrm{Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta: 171.6,166.6,159.5,130.6,129.4,122.5,120.3$, 114.4, 61.4, 55.3, 41.6, 13.9 MS (ESI): $m / z=295.2[\mathrm{M}+\mathrm{H}]^{+}$.

4. Spectral data of known diethyl 2-acylmalonates for which no spectral characterization was reported before in literature

4.1. Diethyl 2-(4-nitrobenzoyl)malonate (18h)

M.F.: $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{NO}_{7}$, Mol. Wt: 309.27

IR (neat, cm^{-1}): 3112, 2985, 2874, 1754, 1732, 1701, 1649, 1605, 1588, 1529, 1466, 1370, 1348, 1297, 1252, 1147, 1084, 1036, 855, 767, 687; ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta$: 13.4 and $5.5(\mathrm{~s}, \mathrm{~s}, 1 \mathrm{H}), 8.34$ and $8.27(\mathrm{~d}, J=8.8 \mathrm{~Hz}$, and d, $J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 8.08$ and $7.75(\mathrm{~d}, J=7.2 \mathrm{~Hz}$, and $\mathrm{d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.39-4.07(\mathrm{~m}, 4 \mathrm{H}), 1.08-1.38(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ $\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right) \delta: 187.6$ and 164.1, 172.2 and 170.5, 166.5 and 165.2, 150.6 and 149.0, 139.8 and 139.8, 129.5 and 128.7, 124.0 and 123.4, 101.9 and 41.6, 62.7 and 62.1, 61.5 and 61.4, 14.0 and 13.9, $\mathrm{MS}(E S I): m / z=310.1[\mathrm{M}+\mathrm{H}]^{+}$.

4.2. Diethyl 2-(thiophene-2-carbonyl)malonate (18j)

M.F.: $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{5} \mathrm{~S}$, Mol. Wt: 270.30

IR (neat, cm^{-1}): 3460, 3106, 2985, 1735, 1670, 1519, 1446, 1413, 1305, 1245, 1179, $1035,854,736,616 ;{ }^{1} \mathrm{HNMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta: 13.26$ and $5.14(\mathrm{~s}, \mathrm{~s}, 1 \mathrm{H}), 7.69-7.73$ (m, 2H), 7.14 (dd, J=3.8 Hz, J=5.0 Hz, 1H), 4.18-4.32 (m, 4H), 1.24-1.32 (m, 6H); ${ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right) ~ \delta: 181.1,164.2,142.2,135.3,133.1,128.3,62.46$ and 62.40, 13.8; MS (ESI): $m / z=271.1[M+H]^{+}$.

5. Spectral data of novel diethyl 2-chloromethylenemalonates

5.1. Diethyl 2-(chloro(3-chlorophenyl)methylene)malonate (19f)

M.F.: $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{Cl}_{2} \mathrm{O}_{4}$, Mol Wt: 316.03

IR (neat): 3454; 3067, 2983, 1732, 1621, 1567, 1472, 1446, 1390, 1367, 1249, 1208, 1079, 1019, 935, 864, 788, 717, 690; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 7.42-7.29(\mathrm{~m}, 4 \mathrm{H}$ ArH), $4.35(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.09(\mathrm{q}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.36(\mathrm{t}, J=7.6,3 \mathrm{H}), 1.07(\mathrm{t}, J=$ $8.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 163.0,162.3,145.3,138.3,134.1,130.2$, 129.4, 128.1, 127.8, 126.2, 62.1, 14.0; MS (ESI): $m / z=339.0[\mathrm{M}+\mathrm{Na}]^{+}$.

5.2. Diethyl 2-(chloro(4-fluorophenyl)methylene)malonate (19g)

M.F.: $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{ClFO}_{4}$, Mol. Wt: 300.71.

IR (neat): 3452; 3109, 2985, 1732, 1601, 1507, 1368, 1301, 1253, 1227, 1160, 1079, 1015, 908, 841. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 7.45-7.40(\mathrm{~m}, 2 \mathrm{H}), 7.10-7.05(\mathrm{~m}, 2 \mathrm{H})$, $4.35(\mathrm{q}, ~ J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.06(\mathrm{q}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.36(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.08(\mathrm{t}, J=7.2$ $\mathrm{Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 166.1,163.1,162.5 \& 161.1,146.1,132.8$ \& $130.4,127.2,115.5, \& 115.11,61.9 \& 61.7,13.9 \& 13.6 ; \mathrm{MS}(E S I): m / z=301.0[\mathrm{M}+\mathrm{H}]^{+}$.

5.3. Diethyl 2-(chloro(3-methoxyphenyl)methylene)malonate (19i)

M.F.: $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{ClO}_{5}$, Mol. Wt: 312.75

IR (neat): 3453, 3071, 2983, 1732, 1597, 1485, 1465, 1390, 1368, 1290, 1228, 1174, 1164, 1078, 1039, 1023, 949, 921, 865, 788, 761, 695; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ : $7.30-7.27(\mathrm{~d}, ~ J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.01-6.93(\mathrm{~m}, 2 \mathrm{H}), 4.35(\mathrm{q}, ~ J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.07(\mathrm{q}, J=$ $7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.8(\mathrm{~s}, 3 \mathrm{H}), 1.36(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.05(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (50 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 163.2,162.8,159.2,146.9,138.0,129.2,127.1,120.3,116.2,113.3$, 61.9, 61.7, 55.3, 14.0, 13.6; MS (ESI): $m / z=335.1[\mathrm{M}+\mathrm{Na}]^{+}$.

6. Spectral data of known 2-chloromethylenemalonic acid diethyl ester derivatives for which no spectral characterization was reported in literature

6.1. Diethyl 2-(1-chloropropylidene)malonate (19b)

M.F.: $\mathrm{C}_{10} \mathrm{H}_{15} \mathrm{ClO}_{4}$, Mol. Wt: 234.68

IR (neat): 2982, 2940, 1727, 1626, 1461, 1389, 1367, 1286, 1258, 1230, 1044, 1062, $905,866,755,667 ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 4.32(\mathrm{q}, ~ J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.24(\mathrm{q}, J=$ $6.4 \mathrm{~Hz}, 2 \mathrm{H}$), $2.92(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.33(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) 1.29(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$, $1.23(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 164.1,162.0,155.7,125.8,61.6$ and 61.5, 30.4, 13.9, 12.0;MS (ESI): $m / z=235.1[\mathrm{M}+\mathrm{H}]^{+}$.

6.2. Diethyl 2-(1-chlorobutylidene)malonate (19c)

M.F.: $\mathrm{C}_{11} \mathrm{H}_{17} \mathrm{ClO}_{4}$, Mol. Wt: 248.70

IR (neat): 3441, 2967, 2875, 1735, 1625, 1465, 1388, 1367, 1274, 1245, 1223, 1141, $1086,1055,1022,921,865,759,665 ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 4.30(\mathrm{q}, J=7.0 \mathrm{~Hz}$,
$2 \mathrm{H}), 4.22(\mathrm{q}, ~ J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.88-2.92(\mathrm{~m}, 2 \mathrm{H}), 1.69-1.75(\mathrm{~m}, 2 \mathrm{H}), 1.27-1.34(\mathrm{~m}, 6 \mathrm{H})$, $0.98(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 164.2,162.1,154.3,126.6,61.6$, 38.4, 21.0, 13.9; MS (ESI): $m / z=271.1[\mathrm{M}+\mathrm{Na}]^{+}$.

7. Spectral data of 2-(aziridin-1-yl-1-alkyl/aryl/heteroaryl methylene)malonates (20a-20j)

7.1. 2-(1-Aziridin-1-yl-ethylidene)malonic acid diethyl ester (20a)

M.F.: $\mathrm{C}_{11} \mathrm{H}_{17} \mathrm{NO}_{4}$, Mol. Wt: 227.26

IR (neat): 2981, 1704, 1646, 1591, 1446, 1381, 1225, 1182, 1142, 1061, 973, 868, 773;
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta: 4.27(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.19(\mathrm{q}, J=7.06 \mathrm{~Hz}, 2 \mathrm{H}), 2.24(\mathrm{~s}$, $3 \mathrm{H}), 2.17(\mathrm{~s}, 4 \mathrm{H}), 1.26(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.22(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 50\right.$ $\mathrm{MHz}) \delta: 165.9,165.3,109.9,60.6,60.3,28.8,20.0,14.1$; $\mathrm{MS}(E S I): m / z=228.1[\mathrm{M}+$ $\mathrm{H}]^{+}$.

7.2. 2-(1-Aziridin-1-yl-propylidene)malonic acid diethyl ester (20b)

M.F.: $\mathrm{C}_{12} \mathrm{H}_{19} \mathrm{NO}_{4}$, Mol. Wt: 241.28

IR (neat, cm^{-1}): 3405, 2981, 2939, 1707, 1587, 1464, 1383, 1367, 1260, 1221, 1179, 1142, 1095, 1065, 1034, 941, 814, 676; ${ }^{1} \mathrm{H}$ NMR (CDCl3, 400 MHz) ס: 4.26 (q, J=7.2 $\mathrm{Hz}, 2 \mathrm{H}), 4.20(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.56(\mathrm{dd}, J=6.0,7.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.18(\mathrm{~s}, 4 \mathrm{H}), 1.2-1.4(\mathrm{~m}$, $9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (CDCl3, 50 MHz) $\delta: 169.7,165.9,109.1,60.6,60.4,28.3,26.8,14.2,14.1$, 12.9; $\mathrm{MS}(\mathrm{ESI}): m / z=242.2[\mathrm{M}+\mathrm{H}]^{+}$.

7.3. 2-(1-Aziridin-1-yl-butylidene)malonic acid diethyl ester (20c)

M.F.: $\mathrm{C}_{13} \mathrm{H}_{21} \mathrm{NO}_{4}$, Mol. Wt: 255.31

IR (neat, cm^{-1}): 3070, 2978, 2874, 1705, 1586, 1464, 1378, 1241, 1218, 1178, 1141, 1096, 1063, 1039, 985, 868, 811, 756, 667; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta: 4.28(\mathrm{q}, J=$ $7.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.20(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.58-2.54(\mathrm{~m}, 2 \mathrm{H}), 2.18(\mathrm{~s}, 4 \mathrm{H}), 1.69-1.65(\mathrm{~m}, 2 \mathrm{H})$, $1.30(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.27(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.989(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (CDCl3, 50 MHz) $\delta: 168.4,166.0,165.8,109.6,60.5,60.4,35.2,28.5,21.9,14.17$, 14.11, 14.0; MS (ESI): $m / z=256.2[M+H]^{+}, 278.2[M+N a]^{+}$.

7.4. 2-(1-Aziridin-1-yl-2,2-dimethylpropylidene)malonic acid diethyl ester (20d)

M.F.: $\mathrm{C}_{14} \mathrm{H}_{23} \mathrm{NO}_{4}$, Mol. Wt: 269.34

IR (neat, cm^{-1}): 3069, 2979, 2874, 1712, 1557, 1471, 1399, 1365, 1260, 1224, 1198, 1145, 1095, 1059, 957, 869, 818, 772, 692; $\left.{ }^{1} \mathrm{H} \mathrm{NMR} \mathrm{(CDCl} 3,400 \mathrm{MHz}\right) \delta: 4.21(\mathrm{q}, \mathrm{J}=$ $7.0 \mathrm{~Hz}, 4 \mathrm{H}), 2.18(\mathrm{~s}, 4 \mathrm{H}), 1.34(\mathrm{~s}, 9 \mathrm{H}), 1.27(\mathrm{t}, J=7.2 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (CDCl3, 50 MHz$)$ ס: 173.8, 166.6, 111.1, 60.6, 38.5, 30.6, 29.7, 13.9; MS (ESI): m/z=270[M+H] 292.2 $[\mathrm{M}+\mathrm{Na}]^{+}$.

7.5. 2-(Aziridin-1-yl-phenylmethylene)malonic acid diethyl ester (20e)

M.F.: $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{NO}_{4}$, Mol. Wt: 289.34

IR (neat, cm^{-1}): 3061, 2981, 2902, 1708, 1570, 1489, 1469, 1444, 1369, 1280, 1240, $1205,1143,1089,1053,939,920,860,759,700,624 ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta:$ 7.41-7.32 (m, 5H), 4.32-4.26 (m, 2H), 3.95-3.90(m, 2H), $2.21(\mathrm{~s}, 4 \mathrm{H}), 1.33(\mathrm{t}, \mathrm{J}=7.2$ $\mathrm{Hz}, 3 \mathrm{H}) 0.94(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta: 165.9,165.7,164.13$, 137.3, 128.8, 127.9, 127.2, 110.7, 60.6 and 60.58, 31.1, 14.1,13.5 MS (ESI): $m / z=290.2$ $[\mathrm{M}+\mathrm{H}]^{+}, 312.2[\mathrm{M}+\mathrm{Na}]^{+}$.

7.6. 2-[Aziridin-1-yl-(3-chlorophenyl)methylene]malonic acid diethyl ester (20f)

M.F.: $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{CINO}_{4}$, Mol. Wt: 323.77

IR (neat, cm^{-1}): 3423, 3067, 2981, 1715, 1602, 1581, 1473, 1413, 1370, 1284, 1240, 1207, 1145, 1091, 1055, 891, 864, 804, 784; ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta: 7.36-7.21$ (m, $4 \mathrm{H}, \mathrm{ArH}), 4.29(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.98(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.21(\mathrm{~s}, 4 \mathrm{H}), 1.32(\mathrm{t}, J=3.8$ $\mathrm{Hz}, 3 \mathrm{H}$), 1.01 (t, $J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right) \delta: 165.5,164.1,163.5$, $138.9,134.0,129.4,129.0,127.5,125.6,116.1,111.3,60.8,31.0,30.1,14.2,13.68$; MS (ESI): $m / z=346.1[\mathrm{M}+\mathrm{Na}]^{+}$.

7.7. 2-[Aziridin-1-yl-(4-fluorophenyl)methylene]malonic acid diethyl ester ($\mathbf{2 0 g}$)

M.F.: $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{FNO}_{4}$, Mol. Wt: 307.32

IR (neat, cm^{-1}): 3073, 2938, 2874, 1715, 1605, 1579, 1507, 1474, 1370, 1277, 1207, 1145, 1089, 1054, 934, 864, 841, 789; ${ }^{1} \mathrm{H}$ NMR (CDCl3, 400 MHz) ס: 7.36-7.32 (m, 2H), $7.06-7.03(\mathrm{~m}, 2 \mathrm{H}), 4.30(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.97(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.20(\mathrm{~s}, 4 \mathrm{H}), 1.33(\mathrm{t}$, $J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.01(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (CDCl3, 50 MHz$) \delta: 165.8,165.4$ \& 164.3, 160.4, 133.3, 129.5 \& 129.4, 115.4 \& 114.9, 111.1, 60.8, 31.1, 14.2, 13.7; MS (ESI): $m / z=308.2[M+H]^{+}$.

7.8. 2-[Aziridin-1-yl-(4-nitrophenyl)methylene]malonic acid diethyl ester (20h)

M.F.: $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{6}$, Mol. Wt: 334.32

IR (neat, cm^{-1}): 3077, 2983, 2873, 1714, 1604, 1581, 1523, 1347, 1279, 1241, 1208, $1145,1090,1055,857,745,700 ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta: 8.26(\mathrm{dt}, \mathrm{J}=2.0 \mathrm{~Hz}, \mathrm{~J}=$ $8.8 \mathrm{~Hz}, 2 \mathrm{H}$), $7.52(\mathrm{dt}, J=2.0 \mathrm{~Hz}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.34(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.99(\mathrm{q}, J=7.0$ $\mathrm{Hz}, 2 \mathrm{H}), 2.20(\mathrm{~s}, 3 \mathrm{H}), 1.36(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.03(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}){ }^{13} \mathrm{C} \mathrm{NMR}(\mathrm{CDCl} 3$, 50 MHz) $\delta: 164.8,164.4,162.4,147.9,143.5,128.7,123.4,111.8,61.2,61.0,30.6,29.7$, 14.2, 13.8, MS (ESI): $m / z=335.1[M+1], 357.1[M+N a]^{+}$.

7.9. 2-[Aziridin-1-yl-(3-methoxyphenyl)methylene]malonic acid diethyl ester (20i)

M.F.: $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{NO}_{5}$, Mol. Wt: 319.35

IR (neat, cm^{-1}): 3072, 2981, 2938, 2837, 1714, 1574, 1465, 1370, 1290, 1177, 1143, 1093, 1053, 869, 787, 692; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) ~ \delta: ~ 7.28-7.24(\mathrm{~m}, 1 \mathrm{H}), 6.92-6.89$ (m, 3H), 4.30 (q, J = 7.2 Hz, 2H), 3.96 (q, J = $7.2 \mathrm{~Hz}, 2 \mathrm{H}$), 3.79 (s, 3H), 2.22 (s, 3H), 1.33 ($\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}$), $0.98(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}(\mathrm{CDCl} 3,100 \mathrm{MHz}) \delta: 166.0,165.4$, 164.0, 159.2, 138.6, 129.1, 119.6, 114.88, 112.5, 110.8, 60.7, 60.6, 60.1, 55.2, 31.3, 14.1, 13.6; MS (ESI): $m / z=320.2[M+H]^{+}$.

7.10. 2-[(Aziridin-1-yl)-(thiophen-2-yl)methylene]malonic acid diethyl ester (20j)

M.F.: $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{NO}_{4} \mathrm{~S}$, Mol. Wt: 295.35

IR (neat, cm^{-1}): 3637, 3103, 2981, 2610, 1710, 1574, 1370, 1278, 1221, 1144, 1052, 859, 713 ; ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta: 7.42(\mathrm{dd}, J=1.2, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.20(\mathrm{dd}, J=$ $1.0, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.98(\mathrm{dd}, J=3.6,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.28(\mathrm{q}, J=7.2 \mathrm{~Hz} 2 \mathrm{H}), 4.07(\mathrm{q}, J=$ $7.0 \mathrm{~Hz}, 2 \mathrm{H}$), $2.29(\mathrm{~s}, 4 \mathrm{H}), 1.31(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.10(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right) \delta: 166.3,163.4,158.3,137.8,128.3,127.9,126.4,111.3,61.1,60.6$, 32.4, 14.1, 13.7; MS (ESI): $m / z=296.1[M+H]^{+}, 318.1[M+N a]^{+}$.

8. Spectral data of diethyl 5-alkyl/aryl/heteroaryl substituted 3,4-dihydro-2H-pyrrole-4,4-dicarboxylates (21a-21j)

8.1. Diethyl 3,4-dihydro-5-methyl-2H-pyrrole-4,4-dicarboxylate (21a)

M.F.: $\mathrm{C}_{11} \mathrm{H}_{17} \mathrm{NO}_{4}$, Mol. Wt: 227.26

IR (neat): 2982, 2936, 2874, 1731, 1651, 1595, 1446, 1367, 1263, 1178, 1093, 1060, 1023, 973, 927, 861, 796; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta: 4.25(\mathrm{q}, J=7.0 \mathrm{~Hz}, 4 \mathrm{H}), 3.87-$ $3.83(\mathrm{~m}, 2 \mathrm{H}), 2.56(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.20(\mathrm{~s}, 3 \mathrm{H}), 1.29(\mathrm{t}, J=7.0 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right) \delta: 168.4,168.0,71.3,61.9,58.8,33.7,18.0,13.9 ; \mathrm{MS}(\mathrm{ESI}): m / z=228$ $[\mathrm{M}+\mathrm{H}]^{+}, 246[\mathrm{M}+\mathrm{Na}]^{+}$; HRMS calculated for $\left[\mathrm{C}_{11} \mathrm{H}_{17} \mathrm{NO}_{4}+\mathrm{H}\right]^{+}: 228.36$, found 228.1231.

8.2. Diethyl 3,4-dihydro-5-ethyl-2H-pyrrole-4,4-dicarboxylate (21b)

M.F.: $\mathrm{C1}_{2} \mathrm{H}_{19} \mathrm{NO}_{4}$, Mol. Wt: 241.28

IR (neat, cm^{-1}): 3407, 2981, 2940, 1731, 1646, 1678, 1463, 1447, 1367, 1267, 1179, 1098, 991, 861, 666; ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) ~ \delta: 4.22$ (q, $J=7.2 \mathrm{~Hz}, 4 \mathrm{H}$), 3.88 (t, $J=$ $2.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.57-2.48(\mathrm{~m}, 4 \mathrm{H}), 1.28(\mathrm{t}, J=6.8 \mathrm{~Hz}, 6 \mathrm{H}), 1.20(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right) ~ \delta: 172.3,168.6,71.4,61.9,58.8,33.9,24.7,13.9,10.7 ; \mathrm{MS}$ (ESI): $m / z=242\left[\mathrm{M}+\mathrm{H}^{+} ;\right.$HRMS calculated for $\left[\mathrm{C}_{12} \mathrm{H}_{19} \mathrm{NO}_{4}+\mathrm{H}\right]^{+}: 242.1392$, found 242.1388.

8.3. Diethyl 3,4-dihydro-5-propyl-2H-pyrrole-4,4-dicarboxylate (21c)

M.F.: $\mathrm{C}_{13} \mathrm{H}_{21} \mathrm{NO}_{4}$, Mol. Wt: 255.31

IR (neat, cm^{-1}): 3393, 3303, 3079, 2966, 2875, 1731, 1648, 1545, 1445, 1370, 1218, 1179, 1157, 1096, 1026, 861, 756, 666; ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta: 4.24(\mathrm{q}, ~ J=7.2$ $\mathrm{Hz}, 4 \mathrm{H}), 3.91-3.86(\mathrm{~m}, 2 \mathrm{H}), 2.54(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.48-2.43(\mathrm{~m}, 2 \mathrm{H}), 1.71(\mathrm{q}, J=7.4$ $\mathrm{Hz}, 2 \mathrm{H}), 1.29(\mathrm{t}, J=7.2 \mathrm{~Hz}, 6 \mathrm{H}), 0.96(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta$: $171.1,168.6,71.5,61.7,58.9,35.1,33.6,33.3,28.4,19.6,13.9,13.8,13.7, \mathrm{MS}$ (ESI): $m / z=256[M+H]^{+} ;$HRMS calculated for $\left[\mathrm{C}_{13} \mathrm{H}_{21} \mathrm{NO}_{4}+\mathrm{H}\right]^{+}: 256.1549$, found 256.1551.

8.4. Diethyl 3,4-dihydro-5-tert-butyl-2H-pyrrole-4,4-dicarboxylate (21d)

M.F.: $\mathrm{C}_{14} \mathrm{H}_{23} \mathrm{NO}_{4}$, Mol. Wt: 269.34

IR (neat, cm^{-1}): 3445.84, 2981.42, 2871.32, 1731.88, 1622.02, 1481.34, 1463.83, 1393.26, 1365.44, 1304.88, 1260.48, 1177.68, 1084.71, 1025.92, 999.27, 963.15, 864.89 and $772.29 .{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta: 4.24(\mathrm{q}, J=7.2 \mathrm{~Hz}, 4 \mathrm{H}), 3.85(\mathrm{t}, J=6.6$
$\mathrm{Hz}, 2 \mathrm{H}), 2.59(\mathrm{t}, J=6.82 \mathrm{H}), 1.30(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.28(\mathrm{t}, J=6.8 \mathrm{~Hz}, 6 \mathrm{H}), 1.25(\mathrm{~s}$, $9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right) \delta: 178.5,169.3,70.0,61.7,58.1,37.9,37.7,29.6,13.8 ;$ MS (ESI): m/z = $270[\mathrm{M}+\mathrm{H}]^{+}$; HRMS calculated for $\left[\mathrm{C}_{14} \mathrm{H}_{23} \mathrm{NO}_{4}+\mathrm{H}\right]^{+}: 270.1705$, found 270.1703.

8.5. Diethyl 3,4-dihydro-5-phenyl-2H-pyrrole-4,4-dicarboxylate (21e)

M.F.: $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{NO}_{4}$, Mol. Wt: 289.33

IR (neat, cm^{-1}): 3419, 2981, 1732, 1446, 1261, 1178, 1085, 1018, 759, 694; ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ ס: 7.87-7.85 (m, 2H), 7.39-7.32 (m, 3H), 4.23-4.15 (m, 4H), 4.10 (t, J $=6.82 \mathrm{H}), 2.77(\mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.16(\mathrm{t}, J=7.0 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right) \delta:$ $169.0,167.9,133.1,130.1,128.6,127.8,70.0,62.0,59.1,37.0,13.7 ; \mathrm{MS}(E S I): m / z=$ $290[\mathrm{M}+\mathrm{H}]^{+}$; HRMS calculated for $\left[\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{NO}_{4}+\mathrm{H}\right]^{+}:$290.1392, found 290.1396.

8.6. Diethyl 5-(3-chlorophenyl)-3,4-dihydro-2H-pyrrole-4,4-dicarboxylate (21f)

 Mol. Wt: $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{ClNO}_{4}$, Mol. Wt: 323.77IR (neat, cm^{-1}): 3325, 3066, 2981, 1730, 1645, 1541, 1473, 1369, 1265, 1178, 1024, 858, 806, 752, 682; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta: 7.9(\mathrm{t}, 1 \mathrm{H}, J=1.8), 7.75(\mathrm{dt}, J=1.6, J$ $=7.6,1 \mathrm{H}), 7.38-7.36(\mathrm{~m}, 1 \mathrm{H}), 7.28(\mathrm{~m}, 1 \mathrm{H}), 4.22(\mathrm{~m}, 4 \mathrm{H}), 4.1(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.77(\mathrm{t}$, $J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.20(\mathrm{t}, J=7.2 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right) \delta: 168.7,166.8$, 146.3, 134.9, 133.9, 130.1, 129.0, 128.8, 126.8, 166.1, 70.1, 62.2, 59.1, 36.9, 30.1, 21.4, 13.8; MS (ESI): $m / z=324 / 326[M+H]^{+}$; HRMS calculated for $\left[\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{CINO}_{4}+\mathrm{H}\right]^{+}$: 324.1003, found 324.0992 .

8.7. Diethyl 3,4-dihydro-5-(4-fluorophenyl)-2H-pyrrole-4,4-dicarboxylate (21g)

M.F.: $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{FNO}_{4}$, Mol. Wt: 307.32

IR (neat, cm^{-1}): 3450, 3073, 2983, 2869, 1732, 1602, 1590, 1510, 1446, 1390, 1367,
 $7.07-7.01(\mathrm{~m}, \mathrm{~Hz}, 2 \mathrm{H}), 4.24-4.17(\mathrm{~m}, 4 \mathrm{H}), 4.09(\mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.77(\mathrm{t}, J=6.8 \mathrm{~Hz}$, $2 \mathrm{H}), 1.18(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta: 169.3,167.1 \& 166.3,162.1$, 130.3 \& 130.2, 129.2 \& 129.1, 115.6 \&115.2, $61.7,50.0,38.0,28.0,13.9 ; \mathrm{MS}(E S I): ~ m / z=$ $308\left[\mathrm{M}+\mathrm{H}^{+}\right.$; HRMS calculated for $\left[\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{FNO}_{4}+\mathrm{H}^{+}\right.$: 308.1298, found 308.1305.

8.8. Diethyl 3,4-dihydro-5-(4-nitrophenyl)-2H-pyrrole-4,4-dicarboxylate (21h)

M.F.: $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{6}$, Mol. Wt: 334.32

IR (neat, cm^{-1}): 3437, 3075, 2983, 2866, 1753, 1597, 1517, 1342, 1318, 1262, 1176, 1081, 1024, 854, 742, 690; ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta: 8.22$ (d, $\left.J=8.8 \mathrm{~Hz}, 2 \mathrm{H}\right), 8.07$ (d, $J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.25-4.21(\mathrm{~m}, 6 \mathrm{H}), 2.80(\mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.20(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 6 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 50 \mathrm{MHz}$) $\delta: 168.6,166.3,148.62,139.1,129.7,123.0,70.2,62.4,59.6$, 36.8, 13.9; MS (ESI): $m / z=335[M+H]^{+}$; HRMS calculated for $\left[\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{6}+\mathrm{H}\right]^{+}$ 335.1243, found 335.1251 .

8.9. Diethyl 3,4-dihydro-5-(3-methoxyphenyl)-2H-pyrrole-4,4-dicarboxylate (21i)

M.F.: $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{NO}_{5}$, Mol. Wt: 319.35

IR (neat, cm^{-1}): 3448, 3076, 2981, 2939, 2837, 1729, 1600, 1579, 1488, 1464, 1366, 1320, 1262, 1178, 1085, 1020, 863, 789, 693; ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) ~ \delta: ~ 7.48(\mathrm{~s}, 1 \mathrm{H})$, $7.39(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.25(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.96(\mathrm{dd}, J=2.2 \mathrm{~Hz}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, 4.29-4.23 (m, 4H), $4.10(\mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 2.77(\mathrm{t}, \mathrm{J}=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.18(\mathrm{t}$, $J=7.2 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta: 169.3,167.2,159.6,135.6,129.4,118.5$, 117.7, 112.0, 61.6, 55.3, 50.0, 38.0, 28.1, 13.9; MS (ESI): $m / z=320[M+H]^{+}$; HRMS calculated for $\left[\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{NO}_{5}+\mathrm{H}^{+} 320.1498\right.$, found 320.1491 .
8.10. Diethyl 3,4-dihydro-5-(thiophen-2-yl)-2H-pyrrole-4,4-dicarboxylate (21j)
M.F.: $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{NO}_{4} \mathrm{~S}$, Mol. Wt: 295.35

IR (neat, cm^{-1}): 3453, 3105, 2982, 1731, 1601, 1429, 1316, 1262, 1180, 1085, 1005, 848,$754 ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\mathrm{\delta}: 7.45$ (dd, , $J=1.0 \mathrm{~Hz}, J=4.2 \mathrm{~Hz}, 1 \mathrm{H}$), 7.38 (dd, $J=1.0 \mathrm{~Hz}, J=3.8 \mathrm{~Hz} 1 \mathrm{H}), 7.01(\mathrm{dd}, J=3.6 \mathrm{~Hz}, 5.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.28-4.16(\mathrm{~m}, 4 \mathrm{H}), 4.19(\mathrm{t}$, $J=3.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.77(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.21(\mathrm{t}, J=7.0 \mathrm{~Hz}, 6 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR (50 MHz , CDCl_{3}) ס: 168.6, 162.2, 137.4, 130.2, 129.1, 127.2, 70.4, 62.1, 59.2, 36.5, 13.8; MS (ESI): $m / z=296[M+H]^{+}$; HRMS calculated for $\left[\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{NO}_{4} \mathrm{~S}+\mathrm{H}\right]^{+} 296.0957$, found 296.0963.

9. Spectral data of 23, 24, 28, 29, 31 and 32

9.1. 5-phenyl-3,4-dihydro-2H-pyrrole (23)

M.F.: $\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{~N}, \mathrm{Mol}$ Wt: 145.09

IR (neat, cm^{-1}): 3390, 3057, 2960, 2860, 1616, 1573, 1494, 1446, 1340, 1311, 1178, 1076, 1047, 1026, 988, 966, 921; ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) ~ \delta: ~ 7.85-7.82(\mathrm{~m}, 2 \mathrm{H})$, 7.42-7.36 (m, 3H), 4.07-4.03 (m, 2H), 2.96-2.91 (m, 2H), 2.06-1.98 (m, 2H); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta: 173.1,134.5,130.1,128.2,127.4,61.3,34.8,22.5 ; \mathrm{MS}(\mathrm{ESI}): \mathrm{m} / \mathrm{z}=$ $146.1\left[\mathrm{M}+\mathrm{H}^{+}\right.$; HRMS calculated for $\left[\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{~N}+\mathrm{H}^{+}\right.$: 146.0970 , found 146.0972 .

9.2. Ethyl 5-phenyl-3,4-dihydro-2H-pyrrole-4-carboxylate (24)

M.F.: $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{NO}_{2}$, Mol. Wt: 217.26

IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right): 2980,1730,1617,1446,1368,1327,1254,1219,1157,1044 ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta: 7.87-7.85(\mathrm{dd}, J=1.8 \mathrm{~Hz}, J=2 \mathrm{H}), 7.42-7.38(\mathrm{~m}, 3 \mathrm{H}), 4.20-4.06$ (m, 5H), 2.38-2.32 (m, 2H), $1.14(\mathrm{t}, \mathrm{J}=7.0) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta: 171.9,169.1$, 133.1, 130.3, 128.2, 127.6, 60.85, 60.81, 53.3, 29.47, 29.42, 29.1,29.05, 13.8, 13.7; MS (ESI): $m / z=218.2\left[\mathrm{M}+\mathrm{H}^{+}\right.$; HRMS calculated for $\left[\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{NO}_{2}+\mathrm{H}\right]^{+}: 218.1181$, found 218.1180.

9.3. Ethyl 3-(aziridin-1-yl)-2-cyano-3-phenylacrylate (28)

M.F.: $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{2}$, Mol. Wt: 242.27

IR (neat, cm^{-1}): 3019, 2401, 2215, 1712, 1581, 1538, 1488, 1473, 1403, 1283, 1249, 1216, 1174, 1135, 1108, 1062, 1038, 1018, 850; ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta: 7.56-7.2$ $(\mathrm{m}, 5 \mathrm{H}), 4.29$ and $4.09(\mathrm{q}, J=7.0 \mathrm{~Hz}$ and $\mathrm{q}, \mathrm{J}=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.48$ and $2.44(\mathrm{~s}, \mathrm{~s}, 4 \mathrm{H})$, 1.37 and $1.17(\mathrm{t}, J=7.0 \mathrm{~Hz}$ and $\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta: 176.8$ and 176.0, 162.68, 136.1 and 135.8, 130.67 and 130.0, 128.6 and 128.1, 127.4 and $127.1,117.88$ and $117.24,87.8,87.6,61.0$ and $60.9,32.7$ and $30.0,14.2$ and 13.9; MS (ESI): $m / z=243.1[\mathrm{M}+\mathrm{H}]^{+}$.

9.4. Ethyl 4-cyano-5-phenyl-3,4-dihydro-2H-pyrrole-4-carboxylate (29)

M.F.: $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{2}$, Mol. Wt: 242.27

IR (neat, cm^{-1}): 2983, 2937, 2869, 2244, 2210, 1742, 1667, 1626, 1577, 1496, 1368, 1320, 1252, 1195, 1097, 1073, 1008, 854, 779, 693; ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) ~ \delta: ~ 7.93$ (d, J=7.6 Hz, 2H), 7.52-7.42 (m, 3H), 4.35-4.22 (m, 4H), 2.82-2.78 (m, 2H), 1.25-1.21
$(\mathrm{m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta: 166.6,163.4,131.3,129.0,128.6,127.8,116.9$, 63.4, 60.4, 56.3, 37.9, 13.6; MS (ESI): $m / z=243.2[\mathrm{M}+\mathrm{H}]^{+}$; HRMS calculated for $\left[\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{2}+\mathrm{H}\right]^{+}: 243.1134$, found 243.1133.

9.5. 2-Butylaziridine (30)

IR (neat, cm^{-1}): 2922, 2851, 1595, 1464, 1219, 772 ; $\left.{ }^{1} \mathrm{H} \mathrm{NMR} \mathrm{(CDCl}_{3}, 400 \mathrm{MHz}\right) ~ \delta: 1.94-~$ $1.91(\mathrm{~m}, 1 \mathrm{H}), 1.75(\mathrm{~d}, J=5.6 \mathrm{~Hz}), 1.48-1.32(\mathrm{~m}, 7 \mathrm{H}), 0.91(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}){ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta: 34.0,30.3,29.6,25.0,22.4,13.9 ; \mathrm{MS}(E S I): m / z=100.1[\mathrm{M}+\mathrm{H}]^{+}$, $199.1[2 \mathrm{M}+\mathrm{H}]^{+}$.

9.6. Diethyl 2-[(2-butylaziridin-1-yl)phenylmethylene]malonate (31)

M.F.: $\mathrm{C}_{20} \mathrm{H}_{27} \mathrm{NO}_{4}$, Mol. Wt: 345.43

IR (neat, cm^{-1}): 3020, 2961, 2933, 2400, 1709, 1605, 1584, 1570, 1491, 1445, 1412, 1369, 1337, 1276, 1215, 1155, 1080, 1026, 928, 851 ; $\left.{ }^{1} \mathrm{H} \mathrm{NMR} \mathrm{(} \mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta$:
7.36-7.29 (m, 5H), 4.33-4.24 (m, 2H), 3.88-3.94 (m, 2H), 2.28-2.27 (d, J=3.2 Hz, 1H), 2.20-2.15 (m, 2H), 1.62-1.57 (m, 2H), 1.33 (t, J=7.2 Hz, 3H), 1.19-1.08 (m, 4H), 0.93
 164.5, 137.5, 128.7, 127.9, 127.5, 110.2, 60.6 and 60.5, 41.6, 37.8, 32.0, 28.3, 22.2, 14.2, 13.8, 13.6; MS (ESI): $m / z=346.2[M+H]^{+}$.

9.7. Diethyl 2-butyl-3,4-dihydro-5-phenyl-2H-pyrrole-4,4-dicarboxylate (32)

M.F.: $\mathrm{C}_{20} \mathrm{H}_{27} \mathrm{NO}_{4}$, Mol. Wt: 345.43

IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right)$: 2932, 1730, 1606.3, 1446, 1367, 1258, 1219, 1184, 1126, 1096, 1061; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta: 7.87-7.84(\mathrm{~m}, 2 \mathrm{H}), 7.39-7.31(\mathrm{~m}, 3 \mathrm{H}), 4.24-4.13(\mathrm{~m}, 5 \mathrm{H})$, 2.96-2.91 (dd, $J=6.8 \mathrm{~Hz}, J=13.6 \mathrm{~Hz}, 1 \mathrm{H}) ; 2.32-2.26(\mathrm{dd}, J=7.8 \mathrm{~Hz}, J=13.0 \mathrm{~Hz}, 1 \mathrm{H})$, $1.89-1.84(\mathrm{~m}, 1 \mathrm{H}), 1.56-1.37(\mathrm{~m}, 5 \mathrm{H}), 1.19(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.13(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$, $0.94(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta: 169.7,168.8,166.3,133.3,130.0$, $128.7,127.8,70.9,70.6,62.0,61.9,42.4,35.6,28.9,22.7,14.0,13.8,13.7$; MS (ESI): $m / z=346.2\left[\mathrm{M}+\mathrm{H}^{+}\right.$; HRMS calculated for $\left[\mathrm{C}_{20} \mathrm{H}_{27} \mathrm{NO}_{4}+\mathrm{H}\right]^{+}: 346.2018$, found 346.2006.

10. References

1. Rathke, M. W.; Cowan P. J. J. Org. Chem. 1985, 50, 2622.
doi:10.1021/jo00215a003
2. Jung, J. C.; Watkins, E. B.; Avery, M. A. Synth.Commun. 2002, 24, 3767 - 3778 doi: 10.1081/SCC-120015395
3. Bankowska, Z.; Zadrozna, I.; Bochenska, J. Polish Journal of Chemistry; 1980, 54, 461-467.
4. Brown, E. J. D.; Harley-Mason, J. J. Chem. Soc. [Section] C: Organic 1966, 13901394.
5. Hormi, O. Org. Synth. 1993, coll. vol. 8, 247-250.
6. Viehe, H. G. Angewandte Chemie. 1971, 83, 616-617. doi: 10.1002/ange. 19710831606
7. Hormi, Osmo E. O. Synth.Commun. 1986, 16, 997-1002
8. Rappoport, Z.; Topol, A. J. Chem. Soc., Perkin Transactions 2: Physical Organic Chemistry (1972-1999); 1975, 863 - 874.
9. Goorge, A. D.; Mary, D.; Mary C. C. Pyrazolo-‘3,4-B! Compounds And Their Use As Phosphodiesterase Type 4 (PDE4) Inhibitors. WO Patent 2005/090348, September 29, 2005.
10. Stavinoha, J. L.; Mariano, P. S. J. Am. Chem. Soc. 1981, 103, 3136-3148.
11. Kumar, K. A.; Rai, L., K. M.; Umesha, K. B. Tetrahedron 2001, 57, 6993-6996, doi:10.1016/S0040-4020(01)00612-3
12. Tsuge, O.; Kanemasa, S.; Matsuda, K. J. Org. Chem. 1986, 51, 1997-2004
13. Jalander, L. F. Synth. Commun. 1993, 23, 2293-2302.
14. Kolb, H. C.; Kanamarlapudi, R. C.; Richardson, P. F.; Khan, G. Large Scale Synthesis Of Optically Pure Aziridines. US Patent 0153771 A1, August 14, 2003.
15. Spectra of 2-[(aziridin-1-yl)-1-alkyl/aryl/heteroarylmethylene]malonic acid diethyl esters (N-vinyl aziridines)

- 20a, 20c, 20d, 20f-20h
${ }^{1} \mathrm{H}$ NMR spectrum of 20a

${ }^{13} \mathrm{C}$ NMR spectrum of 20a

Mass spectrum of 20a

IR spectrum of 20a

[^0]
${ }^{1} \mathrm{H}$ NMR spectrum of 20 c

${ }^{13} \mathrm{C}$ NMR spectrum of 20 c

AR.No: GE1008/027
Analyst: Seshy
Date:14th October 2008.

Analytical Research, Discovery Research, DRL
Analytical Research, Discovery Research, DRL Instrument : Gemini 2000 (Varian 200MHz) Date \& Time: Tue pct 14 10:47:16 GNT 2008 Recorded By : Shruthi.D

Mass spectrum of 20c

CPS,MIYAPUR

Data Filename	$081001016 . \mathrm{d}$
Sample Type	Sample
Instrument Name	Instrument 1
Acq Method DA Method	
	DA.m

Mass Analysis Report
Sample Name TKM-03109
Position
User Name
IRM Calibration Status
Comment

Vial 53

User Spectra

--- End Of Report ---

IR spectrum of 20c

$$
\begin{aligned}
& \text { Analyst: APARNA }
\end{aligned}
$$

aroorlbolsamlil6

${ }^{1} \mathrm{H}$ NMR spectrum of 20 d

${ }^{13} \mathrm{C}$ NMR spectrum of 20d

2-(1-Aziridin-1-yl-2,2 dimethyl-propylidene malonic acid diethyl ester
$\underset{\text { TKC-108 }}{\text { TKM }-03710}$ IN COCL 3
AR.No: GE $1008 / 050$ Analyst: Seshu
Date:22nd 0ctober 2008

Analytical Research, Discovery Research, DRL
Instrument : Gemini 2000 (Varian 200MHz)
Date a Time : Wed Oct 22 10:55:01 GMT 2008/ (8 SN , O

Mass spectrum of 20d

CPS,MIYAPUR

Data Filename	081022007.d
Sample Type	Sample
Instrument Name	Instrument 1
Acq Method	
DA Method	DA.m

Mass Analysis Report

Sample Name

Position
User Name
IRM Calibration Status
Comment

User Spectra

--- End Of Report ---

IR spectrum of 20d

Analyst: SHYAM
$\mathrm{SIGN}:-\frac{10}{210}$

${ }^{1} \mathrm{H}$ NMR spectrum of $20 f$

 and ivitesing ins 2008.

${ }^{13} \mathrm{C}$ NMR spectrum of $20 f$

TKM-02308 in COCL 3
TC-108
AR.No: GE $0808 / 069$
Analyst: Shruthi

Mass spectrum of 20f

CPS,MIYAPUR

Data Filename	$080821046 . d$
Sample Type	Sample
Instrument Name	Instrument 1
Acq Method DA Method	DA.m

Mass Analysis Report

Sample Name
Position
User Name
IRM Calibration Status
Comment

TKM-02308
Vial 70

User Spectra

--- End Of Report -..

IR spectrum of 20f

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{2 0 g}$

```
\begin{subarray}{c}{TMM-050 in COCL3}\\{HOC-108}\end{subarray}
AR No:ME0209/455
```


${ }^{13} \mathrm{C}$ NMR spectrum of 20 g

Mass spectrum of $\mathbf{2 0 g}$

--.. End Of Report ---

IR spectrum of $\mathbf{2 0 g}$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{2 0 h}$

AR. Mo. ME:20991158

${ }^{13} \mathrm{C}$ NMR spectrum of $20 h$

Mass spectrum of 20h

CPS,MIYAPUR
Mass Analysis Report

Data Filename	090218004. d
Sample Type	Sample
Instrument Name	Instrument 1
Acq Method DA Method DA.m.	

Sample Name	TKM-054
Position	Vial 4
User Name	
IRM Calibration Status	
Comment	

User Spectra

IR spectrum of 20h

[^0]: date created: wed mar 09 15:09:06 2011

