Supporting Information

for

Synthesis of a library of tricyclic azepinoisoindolinones

Bettina Miller, Shuli Mao, Kara M. George Rosenker, Joshua G. Pierce and Peter Wipf*

Address: Center for Chemical Methodologies & Library Development (CMLD), Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, PA 15260

Email: Peter Wipf* - pwipf@pitt.edu

* Corresponding author

Experimental procedures and characterization details

of synthesized compounds

General. All glassware was dried in an oven at 140 °C for 2 h prior to use. All air and moisturesensitive reactions were performed using syringe-septum cap techniques under a dry N_2 or Ar atmosphere. Reactions carried out at 0 °C and below employed a cryocool and an isopropanol/ethanol bath. CH₂Cl₂ and toluene were distilled from CaH. All other materials were obtained from commercial sources and used as received unless otherwise stated.

Reaction visualization was accomplished with a 254 nm UV light or by staining with a solution of KMnO₄ (1.5 g of KMnO₄, 10 g of K₂CO₃, and 2.5 mL of 5% aq NaOH in 150 mL H₂O). Flash chromatography was performed using SiO₂ (Silicycle, Silia-P Flash Silica Gel, 40-63 µm) or Florisil[®] (100–200 mesh). Concentrating under reduced pressure refers to the use of a rotary evaporator connected to a membrane vacuum pump or a PIAB Lab Vac H40 to remove solvent. Infrared spectra were determined as neat solids on a Smiths Detection IdentifyIR FT-IR spectrometer. Mass spectra were obtained on a Waters QtoF API US or Thermo Scientific Exactive Orbitrap LC-MS. ¹H and ¹³C NMR spectra were obtained on a Bruker Avance 300 or 500 MHz in CDCl₃ unless otherwise noted. Chemical shifts (δ) were reported in parts per million with the residual solvent peak used as an internal standard δ^{-1} H/ 13 C (solvent); 7.26/77.16 $(CDCl_3)$; and are tabulated as follows: chemical shift, multiplicity (s = singlet, bs = broad singlet, d = doublet, t = triplet, app t = apparent triplet, q = quartet, m = multiplet), number of protons, and coupling constant(s). ¹³C NMR spectra were obtained at 125 MHz using a proton-decoupled pulse sequence and are tabulated by observed peak. CDCl₃ was filtered through dried basic alumina prior to sample preparation. Compounds 1, 2, and 3 were prepared previously [1], but compound **3** had been erroneously assigned as **4** in [1].

Products were analyzed by reverse-phase HPLC (Alltech Prevail C-18, 100×4.6 mm, 1 mL/min, CH₃CN, H₂O and 0.1% TFA) with UV (210, 220 and 254 nm), ELS (nebulizer 45 °C, evaporator

45 °C, N₂ flow 1.25 SLM), and MS detection using a Thermo Finnigan Surveyor LC and LCQ Advantage MS system (ESI positive mode).

Experimental

7,8,9,11a-Tetrahydro-5*H***-azepino[2,1-***a***]isoindol-5-one (4). To a solution of 7** (0.060 g, 0.26 mmol) in toluene (50 mL) at rt under an atmosphere of N₂ was added Grubbs 2nd generation catalyst (0.011 g, 0.013 mmol). The solution was stirred at rt for 15.5 h. The entire reaction mixture was directly applied to a column of Florisil[®] and eluted with 100% hexanes and then 30% EtOAc/hexanes to afford **4** (0.041 g, 77%) as a crude yellow oil: ¹H NMR (CDCl₃, 500 MHz) δ 7.79 (d, 1H, *J* = 7.6 Hz), 7.53 (t, 1H, *J* = 7.5 Hz), 7.47–7.40 (m, 2H), 5.85–5.75 (m, 2H), 5.20 (s, 1H), 4.32 (ddd, 1H, *J* = 13.6, 9.1, 4.2 Hz), 3.35 (ddd, 1H, *J* = 10.6, 6.7, 3.9 Hz), 2.36–2.30 (m, 2H), 2.10–2.01 (m, 1H), 1.95–1.88 (m, 1H); ¹³C NMR (CDCl₃, 125 MHz) δ 168.3, 145.2, 132.2, 131.9, 131.7, 128.2, 127.3, 123.6, 122.0, 60.7, 43.5, 28.4, 26.0; HRMS–ESI (*m/z*): [M + H]⁺ calcd for C₁₃H₁₄NO 200.1070; found, 200.1067.

(1aRS,9bRS,10aSR)-2,3,10,10a-Tetrahydro-1aH-oxireno[2',3':4,5]azepino[2,1-a]isoindol-

5(9bH)-one (5). To a microwave vial charged with **3** [1] (20 mg, 0.10 mmol) under an atmosphere of Ar was added benzene (2 mL). The colorless solution was treated with NaHCO₃ (0.04 g, 0.5 mmol), followed by *m*-CPBA (0.12 g, 70–75% purity, 0.50 mmol) to give a white suspension. The suspension was stirred at rt for 13.5 h. The jelly-like white mixture was diluted with CH₂Cl₂ and quenched with sat. aq NaHCO₃. The layers were separated and the aqueous layer was twice extracted with CH₂Cl₂. The combined organic layers were dried (MgSO₄) and concentrated in vacuo. The crude residue was purified by chromatography on SiO₂

(hexanes/EtOAc, 3:1 to 2:1 to 1:1) to provide **5** (12.3 mg, 57%) as a white solid: Mp 186.5–187.1 °C; IR (neat) 2922, 1685 cm⁻¹; ¹H NMR (CDCl₃, 300 MHz) δ 7.82 (d, 1H, *J* = 7.5 Hz), 7.57–7.52 (m, 1H), 7.48–7.40 (m, 2H), 4.54 (dd, 1H, *J* = 11.9, 2.6 Hz), 4.32 (dt, 1H, *J* = 14.1, 3.9 Hz), 3.36–3.31 (m, 2H), 3.13 (ddd, 1H, *J* = 12.3, 12.0, 1.8 Hz), 2.96–2.87 (m, 1H), 2.50–2.40 (m, 1H), 2.16 (ddd, 1H, *J* = 15.0, 12.3, 3.3 Hz), 1.83 (dd, 1H, *J* = 15.3, 11.7 Hz); ¹³C NMR (CDCl₃, 75 MHz) δ 167.8, 145.3, 131.9, 131.5, 128.2, 123.9, 121.7, 57.7, 55.1, 54.0, 36.4, 34.1, 27.8; HRMS–ESI (*m*/*z*): [M + Na]⁺ calcd for C₁₃H₁₃NO₂Na, 238.0846; found, 238.0866.

(1aSR,10bRS,10cSR)-10b-Hydroxy-3,4,10b,10c-tetrahydro-1aH-

oxireno[2',3':3,4]azepino[2,1-*a*]isoindol-6(2*H*)-one (6). To a solution of 7 (0.050 g, 0.22 mmol) in toluene (40 mL) at rt under an atmosphere of N₂ was added Grubbs 2^{nd} generation catalyst (0.009 g, 0.01 mmol). The solution was stirred at rt for 14 h. The reaction mixture was concentrated under reduced pressure to provide **4** as a crude residue. The residue was taken on to the next step without further purification.

To a flask containing crude **4** in CH₂Cl₂ (4.0 mL) at rt open to air was added NaHCO₃ (0.185 g, 2.20 mmol) and *m*-CPBA (0.542 g, 2.20 mmol). The reaction mixture was stirred at rt open to air for 33 h, diluted with CH₂Cl₂ and washed with sat. aq NaHCO₃ and sat. aq Na₂CO₃. The aqueous layers were then extracted with CH₂Cl₂. The combined organic layers were washed with brine, dried (MgSO₄), and concentrated under reduced pressure to provide **6** (0.057 g, 11% from **7**) as a colorless residue and a ca. 5:1 mixture of diastereomers by LC–MS/NMR analysis; major diastereomer: ¹H NMR (CDCl₃, 500 MHz) δ 7.68–7.64 (m, 2H), 7.60 (t, 1H, *J* = 7.5 Hz), 7.49–7.45 (m, 1H), 3.86 (d, 1H, *J* = 14.5 Hz), 3.54 (d, 1H, *J* = 4.2 Hz), 3.46–3.41 (m, 1H), 3.37–3.31 (m, 2H), 2.84–2.77 (m, 1H), 2.49–2.41 (m, 1H), 2.18–2.09 (m, 1H), 1.69–1.61 (m, 1H);

¹³C NMR (CDCl₃, 125 MHz) δ 166.9, 145.9, 132.7, 131.0, 130.3, 123.7, 121.8, 89.6, 59.2, 57.8, 37.9, 28.0, 24.2; HRMS–ESI (*m*/*z*): [M + H]⁺ calcd for C₁₃H₁₄NO, 232.0968; found, 232.0966.

2-(Pent-4-envl)-3-vinylisoindolin-1-one (7). To a flask containing AlCl₃ (3.73 g, 27.9 mmol) in CH₂Cl₂ (16 mL) cooled to 0 °C under an atmosphere of Ar was added vinyl magnesium bromide (1.0 M in THF, 83.6 mL, 8.39 mmol) dropwise over 20 min. The solution was stirred at 0 °C for 4 h. A solution of 1 [1] (3.00 g, 9.95 mmol) in CH₂Cl₂ (9.0 mL) was added in one portion. The reaction mixture was allowed to stir at 0 °C for 1 h and then warmed to rt and stirred for 3 h. The reaction mixture was cooled to 0 °C and carefully quenched with 1 M HCl, warmed to rt, and extracted with CH₂Cl₂. The combined organic extracts were washed with brine, dried (MgSO₄), and concentrated under reduced pressure to provide a brown residue. The residue was purified by chromatography on SiO₂ (100% hexanes, 5% EtOAc/hexanes, 10% EtOAc/hexanes) to provide 7 (1.80 g, 80%) as an orange oil: IR (ATR, neat): 3074, 2923, 1685, 1639, 1614, 1596, 1467, 1437, 1400, 1312, 1275, 1094 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz) δ 7.83 (d, 1H, J = 7.5 Hz), 7.52 (t, 1H, J = 7.5 Hz), 7.46 (t, 1H, J = 7.5 Hz), 7.34 (d, 1H, J = 7.4 Hz) 5.82 (dddd, 1H, J = 16.9, 13.2, 13.2, 14.510.2, 6.6 Hz), 5.65–5.56 (m, 1H), 5.52–5.42 (m, 2H), 5.04 (d, 1H, J = 17.2 Hz), 4.97 (d, 1H, J = 10.2 Hz), 4.87 (d, 1H, J = 8.2 Hz), 3.87 (ddd, 1H, J = 14.5, 7.6, 7.6 Hz), 3.22 (ddd, 1H, J = 14.0, 8.6, 5.5 Hz), 2.14–2.05 (m, 2H), 1.80–1.65 (m, 2H); ¹³C NMR (CDCl₃, 125 MHz) δ 168.2, 144.2, 137.8, 135.3, 132.2, 131.6, 128.6, 123.6, 123.1, 120.9, 115.2, 64.3, 40.1, 31.2, 27.7; HRMS-ESI (m/z): $[M + H]^+$ calcd for C₁₅H₁₈NO, 228.1383; found, 228.1380.

General protocol for amine opening of epoxide (5:9*SR*,10*SR*,11a*RS*)-9-((2chlorophenyl)amino)-10-hydroxy-7,8,9,10,11,11a-hexahydro-5*H*-azepino[2,1-*a*]isoindol-5-

one $(9{4})$. To a 2–5 mL vial charged with a solution of 5 (15.3 mg, 0.0710 mmol) in CH₃CN (0.71 mL) under an atmosphere of Ar was added ZnI₂ (45.0 mg, 0.142 mmol). 2-Chloroaniline (80.0 µL, 0.76 mmol) was added dropwise and the resulting yellow solution was placed into a preheated oil bath at 80 °C and stirred for 14.5 h. The solution was cooled to rt and the solvents were removed in vacuo. The crude product was purified by chromatography on SiO₂ (100% CH₂Cl₂, CH₂Cl₂/MeOH, 40:1 to 20:1 to 10:1) to afford **9**{4} (17.6 mg, 72%) as a yellow oil and **10**{4} (4.1 mg, 17%) as a yellow oil. **9**{4}: ¹H NMR (300 MHz, CDCl₃) δ 7.86 (dd, 1H, J = 7.5, 0.9 Hz), 7.64–7.56 (m, 1H), 7.54–7.45 (m, 2H), 7.31 (dd, 1H, J = 8.1, 1.5 Hz), 7.19–7.11 (m, 1H), 6.85 (dd, 1H, J = 8.4, 1.2 Hz), 6.72 (dt, 1H, J = 7.8, 1.5 Hz), 4.86 (t, 1H, J = 5.1 Hz), 4.25 (ddd, 1H, J = 14.7, 6.0, 3.3 Hz), 4.07 (d, 1H, J = 9.6 Hz), 3.68-3.55 (m, 1H), 3.50-3.40 (m, 1H),3.26 (ddd, 1H, J = 14.4, 10.5, 2.1 Hz), 3.04 (s, 1H), 2.52 (ddd, 1H, J = 15.0, 7.5, 5.1 Hz), 2.39 (ddd, 1H, J = 15.0, 5.1, 2.4 Hz), 2.25 (dddd, 1H, J = 14.7, 6.0, 3.6, 2.1 Hz), 1.88 (dtd, 1H, J = 13.5, 10.5, 3.3 Hz); ¹³C NMR (75 MHz, CDCl₃) δ 168.6, 145.8, 143.3, 132.7, 132.0, 129.7, 128.7, 128.1, 123.7, 122.4, 121.1, 119.3, 113.5, 69.9, 61.2, 56.7, 38.7, 37.2, 30.2. (9RS,10RS,11aRS)-10-((2-Chlorophenyl)amino)-9-hydroxy-7,8,9,10,11,11a-hexahydro-5Hazepino[2,1-*a*]isoindol-5-one (10{4}): ¹H NMR (300 MHz, CDCl₃) δ 7.83 (d, 1H, J = 6.9 Hz), 7.53–7.43 (m, 2H), 7.36–7.22 (m, 3H), 6.97 (dd, 1H, J = 8.1, 1.2 Hz), 6.79 (td, 1H, J = 7.8, 1.5 Hz), 4.67 (d, 1H, J = 9.6 Hz), 4.10 (bs, 1H), 3.88–3.84 (m, 2H), 3.76–3.71 (m, 2H), 3.04– 2.98 (m, 1H), 2.65–2.60 (m, 1H), 2.43–2.33 (m, 1H), 2.19–2.12 (m, 1H), 1.51–1.39 (m, 1H).

(9SR,10SR,11aRS)-10-Hydroxy-9-(phenylamino)-7,8,9,10,11,11a-hexahydro-5H-

azepino[2,1-*a*]isoindol-5-one (9{*1*}). According to the general protocol, epoxide 5 (15.0 mg, 0.070 mmol), ZnI_2 (1 mg, 0.003 mmol) and aniline (7.0 µL, 0.070 mmol) were heated at 90 °C in

CH₃CN (0.5 mL) for 76 h. The crude product was purified by chromatography on SiO₂ (CH₂Cl₂/MeOH 40:1) to afford **9**{*I*} (12.0 mg, 56%) as a yellow oil: IR (film) 3371, 2914, 1660 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 7.82 (d, 1H, *J* = 7.5 Hz), 7.62–7.43 (m, 3H), 7.21 (d, 1H, *J* = 7.5 Hz), 7.18 (d, 1H, *J* = 7.5 Hz), 6.80 (t, 1H, *J* = 7.3 Hz), 6.71 (d, 2H, *J* = 7.5 Hz), 4.81 (t, 1H, *J* = 5.0 Hz), 4.24 (ddd, 1H, *J* = 15.0, 5.5, 3.1 Hz), 3.55–3.42 (m, 1H), 3.34–3.12 (m, 4H), 2.50–2.37 (m, 2H), 2.28–2.18 (m, 1H), 1.86–1.69 (m, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 168.4, 147.0, 145.5, 132.5, 131.8, 129.5, 128.4, 123.3, 122.2, 119.5, 115.0, 69.4, 61.9, 56.7, 38.6, 36.6, 30.4; ESIMS *m*/*z* (% rel. intensity): 309 ([M + H]⁺, 100), 331 ([M + Na]⁺, 40), 198 (40); HRMS–ESI (*m*/*z*): [M + H]⁺ calcd for C₁₉H₂₁N₂O₂, 309.1603; found, 309.1613.

(9RS,10RS,11aRS)-9-Hydroxy-10-(phenylamino)-7,8,9,10,11,11a-hexahydro-5H-

azepino[2,1-*a*]**isoindol-5-one** (**10**{*1*}). According to the general protocol, **5** (15.0 mg, 0.070 mmol), Co(ClO₄)₂·6H₂O (1.2 mg, 0.007 mmol) and aniline (14.0 µL, 0.167 mmol) were stirred at rt for 90 h and then heated to 90 °C in CH₃CN (0.5 mL) for 48 h. The crude product was purified by chromatography on SiO₂ (CH₂Cl₂/MeOH 20:1) to afford **10**{*1*} (4.0 mg, 19%) as a yellow oil: ¹H NMR (300 MHz, CDCl₃) δ 7.82 (d, 2H, *J* = 6.9 Hz), 7.53–7.39 (m, 2H), 7.37–7.24 (m, 3H), 6.87 (t, 1H, *J* = 7.4 Hz), 6.78 (d, 1H, *J* = 7.8 Hz), 4.64 (d, 1H, *J* = 10.2 Hz), 3.93–3.82 (m, 2H), 3.69–3.55 (m, 2H), 3.34 (bs, 1H), 3.20 (bs, 1H), 2.67 (d, 1H, *J* = 14.1 Hz), 2.47–2.35 (m, 1H), 2.22–2.07 (m, 1H), 1.39–1.22 (m, 1H).

(9SR,10SR,11aRS)-10-Hydroxy-9-(naphthalen-1-ylamino)-7,8,9,10,11,11a-hexahydro-5H-

azepino[2,1-*a*]isoindol-5-one (9{2}). According to the general protocol, 5 (20.0 mg, 0.093 mmol), ZnI_2 (31.4 mg, 0.098 mmol) and 1-naphthylamine (80.5 mg, 0.557 mmol) were heated at 90 °C in CH₃CN (0.5 mL) for 125 h. The crude product was purified by

chromatography on SiO₂ (CH₂Cl₂/MeOH 40:1 to 20:1) to afford **9**{*2*} (27.0 mg, 81%) as a brown oil and **10**{*2*} (5.0 mg, 15%) as a red-brown oil. **9**{*2*}: IR (film) 3362, 2926, 1658 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 7.86–7.73 (m, 3H), 7.61–7.28 (m, 7H), 6.78 (dd, 1H, *J* = 5.8, 2.9 Hz), 4.83 (t, 1H, *J* = 5.1 Hz), 4.26 (ddd, 1H, *J* = 15.0, 6.0, 3.0 Hz), 4.16 (bs, 1H), 3.83–3.71 (m, 1H), 3.54 (td, 2 H, *J* = 7.5, 2.1 Hz), 3.30 (ddd, 1H, *J* = 15.0, 10.7, 2.2 Hz), 2.59–2.37 (m, 2H), 2.36–2.26 (m, 1H), 1.95–1.78 (m, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 168.4, 145.6, 142.1, 134.4, 132.3, 131.7, 128.7, 128.4, 126.2, 125.9, 125.2, 124.2, 123.3, 122.2, 119.9, 119.1, 107.0, 69.6, 60.8, 56.5, 38.6, 37.2, 29.7; ESIMS *m*/*z* (% rel. intensity): 359 ([M + H]⁺, 100), 216 (8), 198 (35), 158 (5), 146 (15); HRMS–ESI (*m*/*z*): [M + H]⁺ calcd for C₂₃H₂₃N₂O₂, 359.1760; found, 359.1747. (**9RS,10RS,11aRS)-9-Hydroxy-10-(naphthalen-1-ylamino)-7,8,9,10,11,11a-hexahydro-5H**-

azepino[2,1-*a*]isoindol-5-one (10{2}): ¹H NMR (300 MHz, CDCl₃) δ 7.87–7.78 (m, 2H), 7.74 (dd, 1H, *J* = 8.1, 1.2 Hz), 7.51–7.35 (m, 6H), 7.32–7.27 (m, 1H), 6.90 (dd, 1H, *J* = 6.9, 1.5 Hz), 4.69 (d, 1H, *J* = 6.9 Hz), 4.14 (bs, 1H), 3.93–3.76 (m, 4H), 3.28 (bs, 1H), 2.78 (dt, 1H, *J* = 14.4, 2.4 Hz), 2.48–2.37 (m, 1H), 2.26–2.11 (m, 1H), 1.43 (dt, 1H, *J* = 14.4, 10.5 Hz); ¹³C NMR (75 MHz, CDCl₃) δ 168.4, 145.2, 141.7, 134.6, 131.8, 131.5, 128.9, 128.4, 126.3, 126.1, 125.4, 124.4, 123.4, 122.0, 119.8, 107.4, 75.6, 61.7, 58.1, 39.4, 36.7, 31.5; ESIMS *m*/*z* (% rel. intensity): 381 ([M + Na]⁺, 100), 359 [M + H]⁺, 70), 198 (15); HRMS–ESI (*m*/*z*): [M + H]⁺ calcd for C₂₃H₂₃N₂O₂, 359.1760; found, 359.1737.

(9SR,10SR,11aRS)-9-(2-Fluorophenylamino)-10-hydroxy-7,8,9,10,11,11a-hexahydro-5H-

azepino[2,1-*a*]isoindol-5-one (9{3}). According to the general protocol, 5 (20 mg, 0.093 mmol), ZnI₂ (30 mg, 0.093 mmol) and 2-fluoroaniline (45 μ L, 0.46 mmol) were heated at 90 °C in CH₃CN (0.7 mL) for 92 h. The crude product was purified by HPLC (MeCN/H₂O gradient) to

afford **9**{**3**} (7.2 mg, 24%) as a colorless solid and **10**{**3**} (2.9 mg, 10%) as a colorless solid. **9**{**3**}: ¹H NMR (300 MHz, CDCl₃) δ 7.86 (d, 1H, *J* = 7.5 Hz), 7.65–7.47 (m, 3H), 7.07–6.98 (m, 2H), 6.87 (td, 1H, *J* = 8.3, 1.4 Hz), 6.78–6.72 (m, 1H), 4.83 (t, 1H, *J* = 5.0 Hz), 4.28 (ddd, 1H, *J* = 12.0, 5.5, 3.2 Hz), 3.64–3.46 (m, 2H), 3.33 (td, 1H, *J* = 7.3, 3.0 Hz), 3.32 (ddd, 1H, *J* = 15.0, 11.2, 2.1 Hz), 3.05 (bs, 1H), 2.59–2.41 (m, 2H), 2.29–2.16 (m, 1H), 1.92–1.77 (m, 1H). (**9RS,10RS,11aRS)-10-((2-Fluorophenyl)amino)-9-hydroxy-7,8,9,10,11,11a-hexahydro-5***H***-azepino**[**2,1-***a*]**isoindol-5-one** (**10**{**3**}): ¹H NMR (300 MHz, CDCl₃) δ 7.82 (d, 1H, *J* = 6.6 Hz), 7.54–7.41 (m, 2H), 7.33 (d, 1H, *J* = 7.2 Hz), 7.14–6.95 (m, 3H), 6.85–6.76 (m, 1H), 4.64 (d, 1H, *J* = 10.5 Hz), 3.91–3.80 (m, 2H), 3.72–3.58 (m, 3H), 3.14 (bs, 1H), 2.68–2.58 (m, 1H), 2.45– 2.35 (m, 1H), 2.22–2.07 (m, 1H), 1.45–1.32 (m, 1H).

(9SR,10SR,11aRS)-9-([1,1'-Biphenyl]-2-ylamino)-10-hydroxy-7,8,9,10,11,11a-hexahydro-

5*H*-azepino[2,1-*a*]isoindol-5-one (9{5}). According to the general protocol, 5 (17 mg, 0.079 mmol), ZnI₂ (50 mg, 0.16 mmol) and 2-aminobiphenyl (96 mg, 0.55 mmol) were heated at 90 °C in CH₃CN (0.7 mL) for 28 h. The crude product was purified by chromatography on SiO₂ (CH₂Cl₂/MeOH 40:1 to 20:1) to obtain 9{5} (13.3 mg, 44%) as a dark brown oil and 10{5} (9.9 mg, 33%) as a black oil. 9{5}: ¹H NMR (300 MHz, CDCl₃) δ 7.79 (d, 1H, J = 7.5 Hz), 7.59– 7.24 (m, 9H), 7.11 (dd, 1H, J = 7.5, 1.5 Hz), 6.94–6.83 (m, 2H), 4.76 (t, 1H, J = 5.0 Hz), 4.18 (ddd, 1H, J = 12.0, 5.4, 3.3 Hz), 3.62–3.44 (m, 2H), 3.18–2.98 (m, 3H), 2.49–2.33 (m, 2H), 2.20–2.10 (m, 1H), 1.65–1.57 (m, 1H). (9RS,10RS,11aRS)-10-([1,1'-Biphenyl]-2-ylamino)-9-hydroxy-7,8,9,10,11,11a-hexahydro-5*H*-azepino[2,1-*a*]isoindol-5-one (10{5}): ¹H NMR (300 MHz, MeOD) δ 7.72 (d, 1H, J = 7.5 Hz), 7.60–7.20 (m, 11H), 7.04–6.96 (m, 2H), 6.73 (td,

1H, *J* = 7.2, 1.2 Hz), 3.84–3.72 (m, 3H), 3.63–3.56 (m, 2H), 2.72 (dt, 1H, *J* = 14.7, 2.7 Hz), 2.28–2.07 (m, 2H), 1.43 (dt, 1H, *J* = 15, 10.1 Hz).

(9SR,10SR,11aRS)-9-((3-Bromophenyl)amino)-10-hydroxy-7,8,9,10,11,11a-hexahydro-5Hazepino[2,1-a]isoindol-5-one (9{6}). According to the general protocol, 5 (16 mg, 0.074 mmol), ZnI₂ (47 mg, 0.15 mmol) and 3-bromoaniline (0.08 mL, 0.74 mmol) were heated at 80 °C in CH₃CN (0.71 mL) for 22 h and 45 min. The crude product was purified by chromatography on SiO₂ (CH₂Cl₂/MeOH 40:1 to 20:1) to afford 9{6} (20 mg, 69%) as a brown oil and 10{6} (5 mg, 17%) as a vellow oil. 9{6}: IR (neat) 3358, 2920, 1662, 1593 cm⁻¹: ¹H NMR (300 MHz, CDCl₃) δ 7.83 (d, 1H, J = 7.8 Hz), 7.62–7.57 (m, 1H), 7.52–7.46 (m, 2H), 7.04 (t, 1H, J = 7.9 Hz), 6.93– 6.87 (m, 2H), 6.62 (dd, 1H, J = 7.9, 2.2 Hz), 4.83 (t, 1H, J = 5.1 Hz), 4.24 (ddd, 1H, J = 15.0, 6.0, 3.3 Hz), 3.51–3.40 (m, 2H), 3.36–3.22 (m, 2H), 2.87 (bs, 1H), 2.54–2.36 (m, 2H), 2.29–2.18 (m, 1H), 1.88–1.75 (m, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 168.7, 148.7, 145.7, 132.7, 132.1, 131.0, 128.7, 123.7, 123.6, 122.4, 122.3, 117.5, 113.8, 69.7, 61.5, 56.7, 38.7, 37.1, 30.3; ESIMS m/z (% rel. intensity): 342 ([M]⁺, 14), 215 (29), 166 (100), 145 (61), 69 (55); HRMS-ESI (m/z): $[M + Na]^+$ calcd for C₁₉H₁₉BrN₂O₂Na, 409.0528; found, 409.0492. (9RS,10RS,11aRS)-10-((3-Bromophenyl)amino)-9-hydroxy-7,8,9,10,11,11a-hexahydro-5H-azepino[2,1-a]isoindol-5one (10{6}): Characteristic peaks: ¹H NMR (300 MHz, CDCl₃) δ 7.86 (d, 1H, J = 6.6 Hz), 7.59– 7.42 (m, 2H), 7.34 (d, 1H, J = 7.5 Hz), 7.09 (t, 1H, J = 7.9 Hz), 6.99–6.96 (m, 1H), 6.92 (bs, 1H), 6.69–6.66 (m, 1H), 4.68 (d, 1H, J = 9.3 Hz), 3.88–3.84 (m, 2H), 3.66–3.61 (m, 2H), 2.68– 2.63 (m, 1H), 2.42–2.37 (m, 1H), 2.18–2.09 (m, 1H).

(9SR,10SR,11aRS)-10-Hydroxy-9-((3-(trifluoromethyl)phenyl)amino)-7,8,9,10,11,11a-

hexahydro-5*H*-azepino[2,1-*a*]isoindol-5-one (9{7}). According to the general protocol, 5 (21.2 mg, 0.098 mmol), ZnI₂ (62.9 mg, 0.197 mmol) and 3-aminobenzotrifluoride (0.12 mL, 0.98 mmol) were heated at 90 °C in CH₃CN (1 mL) for 4 h. The crude product was purified by chromatography on SiO₂ (CH₂Cl₂/MeOH 40:1 to 20:1) to afford 9{7} (15.3 mg, 41%) as an off-white solid and 10{7} (4.5 mg, 12%) as an off-white solid. 9{7}: Mp 178.0–178.5 °C; IR (neat) 3336, 2926, 1659, 1612 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 7.77 (d, 1H, *J* = 7.5 Hz), 7.60–7.55 (m, 1H), 7.51–7.42 (m, 2H), 7.30–7.25 (m, 1H), 7.02 (d, 1H, *J* = 7.8 Hz), 6.93 (s, 1H), 6.86 (d, 1H, *J* = 8.1 Hz), 4.85 (t, 1H, *J* = 5.0 Hz), 4.21 (ddd, 1H, *J* = 15.0, 6.5, 3.1 Hz), 3.82 (d, 1H, *J* = 9.3 Hz), 3.65–3.57 (m, 1H), 3.39 (t, 1H, *J* = 7.3 Hz), 3.27 (ddd, 1H, *J* = 15.0, 10.4, 2.3 Hz), 3.08 (s, 1H), 2.56–2.47 (m, 1H), 2.42–2.35 (m, 1H), 2.31–2.24 (m, 1H), 1.91–1.78 (m, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 168.7, 147.7, 145.8, 132.6, 132.0, 130.1, 128.7, 128.0 (q, *J* = 279.8 Hz), 123.5, 122.4, 117.8, 115.7 (q, *J* = 3.8 Hz), 110.8 (q, *J* = 3.8 Hz), 69.6, 61.0, 56.6, 38.6, 37.1, 29.7; ESIMS *m*/*z* (% rel. intensity): 376 ([M]⁺, 48), 332 (45), 200 (100), 145 (47); HRMS–ESI (*m*/*z*): [M]⁺ calcd for C₂₀H₁₉F₃N₂O₂, 376.1399; found, 376.1401. (*9RS*,10*RS*,11*aRS*)-9-

Hydroxy-10-((3-(trifluoromethyl)phenyl)amino)-7,8,9,10,11,11a-hexahydro-5H-

azepino[2,1-*a*]isoindol-5-one (10{7}): Mp 206.9–207.8 °C; IR (neat) 3362, 2922, 1664, 1612 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 7.82 (dd, 1H, *J* = 6.4, 1.4 Hz), 7.52–7.42 (m, 2H), 7.36–7.31 (m, 2H), 7.08 (d, 1H, *J* = 7.5 Hz), 6.93–6.88 (m, 2H), 4.69 (d, 1H, *J* = 9.9 Hz), 3.86–3.82 (m, 2H), 3.68–3.65 (m, 3H), 2.98 (s, 1H), 2.66 (dt, 1H, *J* = 14.7, 2.1 Hz), 2.38 (dt, 1H, *J* = 11.1, 3.9 Hz), 2.21–2.09 (m, 1H), 1.42 (dt, 1H, *J* = 14.4, 9.9 Hz); ¹³C NMR (75 MHz, CDCl₃) δ 168.6, 147.3, 145.3, 132.4, 132.0, 131.8, 130.3, 128.8, 124.3 (q, *J* = 271.5 Hz), 123.7, 122.1,

116.0 (q, *J* = 3.8 Hz), 111.0 (q, *J* = 3.8 Hz), 75.7, 61.8, 58.1, 39.5, 37.0, 31.5; ESIMS *m*/*z* (% rel. intensity): 376 ([M]⁺, 40), 357 (27), 200 (20), 189 (100), 146 (84).

(9SR,10SR,11aRS)-10-Hydroxy-9-((4-methoxyphenyl)amino)-7,8,9,10,11,11a-hexahydro-

5H-azepino[2,1-a]isoindol-5-one (9{8}). According to the general protocol, 5 (19.3 mg, 0.093 mmol), ZnI₂ (57.2 mg, 0.179 mmol) and *p*-anisidine (82.9 mg, 0.717 mmol) were heated at 90 °C in CH₃CN (0.7 mL) for 20 h. The crude product was purified by chromatography on SiO₂ (CH₂Cl₂/MeOH 60:1 to 30:1) to obtain 9{8} (17.6 mg, 58%) as a dark brown oil and 10{8} (8.0 mg, 26%) as a black oil. **9**{8}: IR (film) 3351, 2926, 1662, 1508 cm⁻¹; ¹H NMR (300 MHz. CDCl₃) δ 7.82 (d, 1H, J = 7.2 Hz), 7.61–7.43 (m, 3H), 6.82–6.62 (m, 4H), 4.78 (t, 1H, J = 4.9 Hz), 4.24 (ddd, 1H, J = 15.0, 5.1, 3.3 Hz), 3.75 (s, 4H), 3.26 (ddd, 1H, J = 12.0, 8.4, 3.9 Hz), 3.18–3.06 (m, 3H), 2.52–2.42 (m, 2H), 2.27–2.16 (m, 1H), 1.82–1.67 (m, 1H); ¹³C NMR (75) MHz, CDCl₃) δ 168.4, 153.7, 145.5, 140.7, 132.5, 131.8, 128.4, 123.3, 122.2, 117.3, 116.4, 114.9, 114.8, 69.2, 64.0, 56.8, 55.7, 38.6, 36.4, 30.7; ESIMS m/z (% rel. intensity): 339 ([M + H_{1}^{+} , 100); HRMS-ESI (m/z): $[M + H]^{+}$ calcd for $C_{20}H_{23}N_2O_3$, 339.1706; found, 339.1709. (9RS,10RS,11aRS)-9-Hydroxy-10-((4-methoxyphenyl)amino)-7,8,9,10,11,11a-hexahydro-**5H-azepino**[**2,1-***a*]isoindol-**5-one** (**10**{8}): ¹H NMR (300 MHz, CDCl₃) δ 7.74 (d, 1H, *J* = 7.5 Hz), 7.61–7.42 (m, 3H), 6.87–6.73 (m, 4H), 4.95–4.85 (m, 1H), 3.84–3.77 (m, 2H), 3.75 (s, 3H), 3.71-3.56 (m, 2H), 3.47-3.38 (m, 4H), 2.66 (ddd, 1H, J = 15.0, 3.1, 1.9 Hz), 2.27-2.15 (m, 2H), 1.45 – 1.28 (m, 1H).

Ethyl 4-(((9*SR*,10*SR*,11*aRS*)-10-hydroxy-5-oxo-7,8,9,10,11,11a-hexahydro-5*H*-azepino[2,1*a*]isoindol-9-yl)amino)benzoate 9{9}. According to the general protocol, 5 (20 mg, 0.093 mmol), ZnI₂ (123 mg, 0.375 mmol) and ethyl 4-aminobenzoate (93.0 mg, 0.557 mmol) were heated at 90 °C in CH₃CN (0.5 mL) for 93 h. The crude product was purified by chromatography on SiO₂ (CH₂Cl₂/MeOH, 60:1 to 40:1 to 20:1) to afford **9**{*9*} (5.4 mg, 85%) as a yellow-orange foam and **10**{*9*} (5.4 mg, 15%) as a yellow oil. **9**{*9*}: ¹H NMR (300 MHz, CDCl₃) δ 7.85 (d, 2H, *J* = 6.9 Hz), 7.79 (d, 1H, *J* = 7.5 Hz), 7.59–7.42 (m, 3H), 6.64 (d, 1H, *J* = 8.7 Hz), 4.86 (t, 1 H, *J* = 5.4 Hz), 4.28 (q, 2H, *J* = 7.2 Hz), 4.21–4.11 (m, 1H), 4.05 (m, 1H), 3.73 (m, 1H), 3.52–3.44 (m, 1H), 3.35–3.10 (m, 1H), 2.52–2.43 (m, 1H), 2.38–2.22 (m, 2H), 1.91–1.82 (m, 1H), 1.48–1.22 (m, 4H). Ethyl 4-(((*9RS*,10*RS*,11*aRS*)-9-hydroxy-5-oxo-7,8,9,10,11,11a-hexahydro-5*H*-azepino[2,1-*a*]isoindol-10-yl)amino)benzoate (10{*9*}): ¹H NMR (300 MHz, CDCl₃) δ 7.91 (d, 2H, *J* = 8.7 Hz), 7.81 (d, 1H, *J* = 6.9 Hz), 7.52–7.42 (m, 2H), 7.32 (d, 1H, *J* = 7.2 Hz), 6.69 (d, 2H, *J* = 9.0 Hz), 4.68 (d, 1H, *J* = 9.0 Hz), 4.34 (q, 2H, *J* = 7.2 Hz), 3.93 (bs, 1H), 3.88–3.62 (m, 3H), 2.94 (bs, 1H), 2.65 (dt, 1H, *J* = 14.4, 2.5 Hz), 2.42–2.30 (m, 1H), 2.22–2.07 (m, 1H), 1.38 (t, 3H, *J* = 7.2 Hz) 1.32–1.22 (m, 2H).

4-(((9SR,10SR,11aRS)-10-Hydroxy-5-oxo-7,8,9,10,11,11a-hexahydro-5H-azepino[2,1-

a]isoindol-9-yl)amino)benzonitrile (9{10}). According to the general protocol, 5 (20 mg, 0.093 mmol), ZnI₂ (59 mg, 0.19 mmol) and 4-aminobenzonitrile (56 mg, 0.46 mmol) were heated at 80 °C in CH₃CN (0.93 mL) for 23 h. The crude product was purified by chromatography on SiO₂ (CH₂Cl₂/MeOH, 40:1 to 20:1) to afford 9{10} (14.8 mg, 59%) as a yellow oil and 10{10} (3.7 mg, 15%) as a brown oil. 9{10}: ¹H NMR (300 MHz, CD₃OD) δ 7.74 (d, 1H, *J* = 7.5 Hz), 7.59–7.53 (m, 1H), 7.48–7.41 (m, 2H), 7.40–7.36 (m, 2H), 6.67 (dt, 2H, *J* = 8.7, 1.8 Hz), 4.98 (dd, 1H, *J* = 8.7, 2.4 Hz), 4.03 (bs, 2H), 3.99–3.93 (m, 1H), 3.84–3.83 (m, 2H), 3.48 (ddd, 1H, *J* = 15.0, 7.3, 2.9 Hz), 2.48–2.35 (m, 2H), 1.99–1.86 (m, 2H).

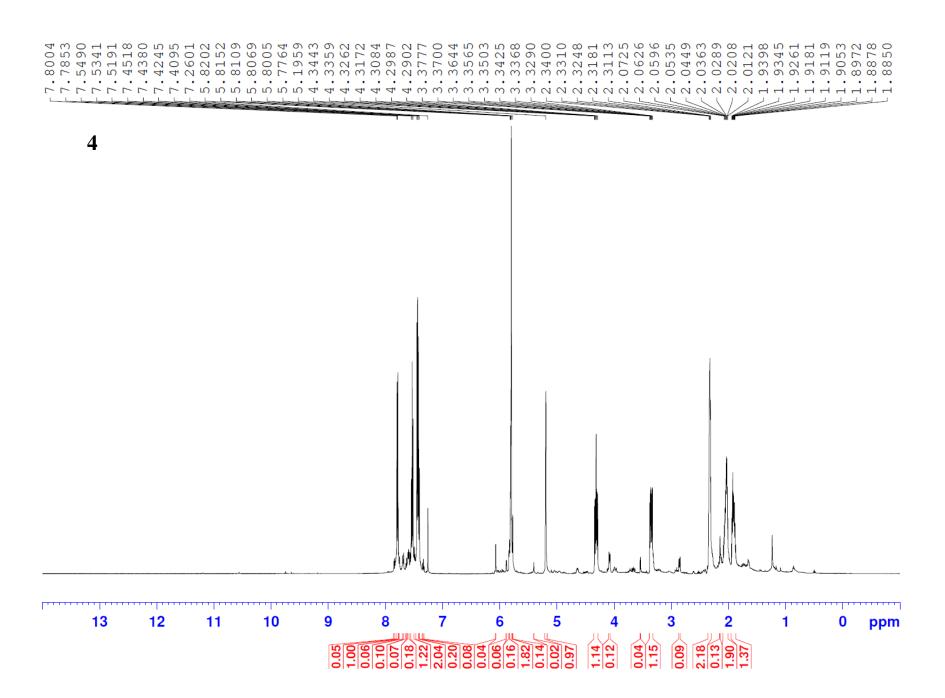
(((9RS,10RS,11aRS)-9-Hydroxy-5-oxo-7,8,9,10,11,11a-hexahydro-5H-azepino[2,1-

a]isoindol-10-yl)amino)benzonitrile (10{*10*}): Characteristic peaks: ¹H NMR (300 MHz, CD₃OD) δ 7.73 (d, 1H, *J* = 7.5 Hz), 7.58–7.40 (m, 5H), 6.75 (d, 1H, *J* = 9.0 Hz), 4.94 (d, 1H, *J* = 12.6 Hz), 3.87–3.71 (m, 4H), 2.64–2.58 (m, 1H), 2.24–2.20 (m, 2H), 1.58–1.43 (m, 1H).

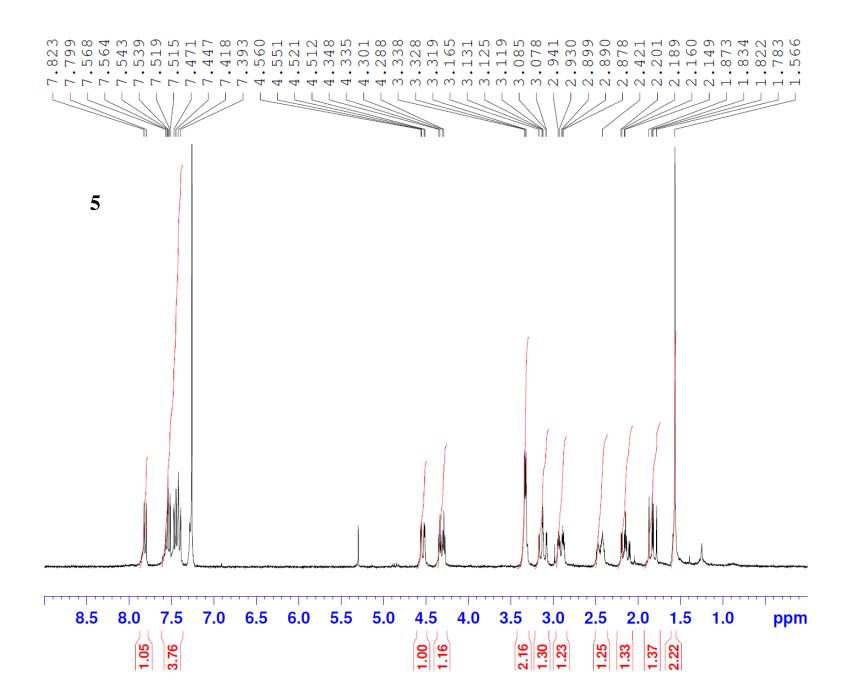
(9SR,10SR,11aRS)-9-((6-Chloropyridin-2-yl)amino)-10-hydroxy-7,8,9,10,11,11a-hexahydro-

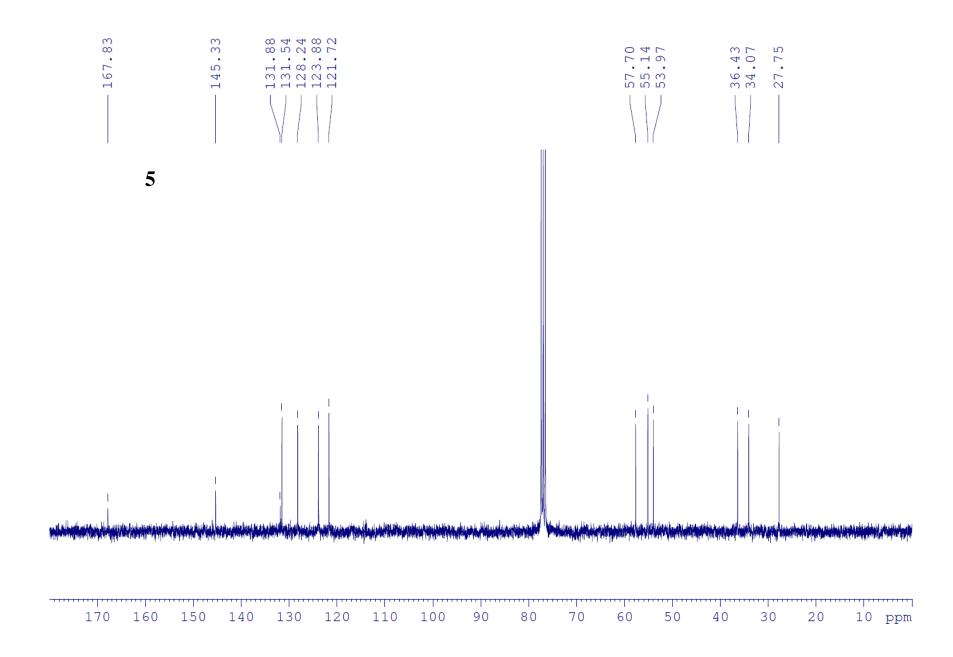
5*H*-azepino[2,1-*a*]isoindol-5-one (9{*I1*}). According to the general protocol, **5** (15.7 mg, 0.073 mmol), 6-chloro-2-aminopyridine (44 mg, 0.34 mmol) and ZnI₂ (46.6 mg, 0.15 mmol) in CH₃CN (0.73 mL) were heated at 80 °C for 41 h. The crude product was purified by chromatography on SiO₂ (CH₂Cl₂/MeOH, 40:1 to 20:1) to afford **9**{*I1*} (14.9 mg, 59%) as a yellow solid and **10**{*I1*} (7.9 mg, 32%) as a red solid. **9**{*I1*}: ¹H NMR (300 MHz, CDCl₃) δ 7.75 (d, 1H, *J* = 7.5 Hz), 7.58–7.52 (m, 1H), 7.48–7.40 (m, 2H), 7.33 (t, 1H, *J* = 7.7 Hz), 6.61 (d, 1H, *J* = 7.5 Hz), 6.40 (d, 1H, *J* = 8.4 Hz), 4.94–4.89 (m, 2H), 4.33 (ddd, 1H, *J* = 15.0, 7.5, 3.0 Hz), 4.23–4.17 (m, 2H), 3.74 (t, 1H, *J* = 5.4 Hz), 3.36 (ddd, 1H, *J* = 15.0, 7.3, 2.3 Hz), 2.02–1.90 (m, 1H). (9*RS*,10*RS*,11a*RS*)-10-((6-Chloropyridin-2-yl)amino)-9-hydroxy-7,8,9,10,11,11a-hexahydro-5*H*-azepino[2,1-*a*]isoindol-5-one (10{*I1*}): ¹H NMR (300 MHz, CD₃OD) δ 7.72 (d, 1H, *J* = 7.5 Hz), 7.57–7.42 (m, 4H), 7.31 (t, 1H, *J* = 7.8 Hz), 6.52 (d, 1H, *J* = 7.5 Hz), 6.37 (d, 1H, *J* = 8.1 Hz), 4.91 (d, 1H, *J* = 8.1 Hz), 4.20–4.13 (m, 1H), 3.80–3.70 (m, 4H), 2.73 (dt, 1H, *J* = 9.3, 2.6 Hz), 2.22–2.16 (m, 2H), 1.55 (dt, 1H, *J* = 14.4, 10.4 Hz).

(9*S*,10*S*,11*aR*)-9-((3-Bromopyridin-2-yl)amino)-10-hydroxy-7,8,9,10,11,11a-hexahydro-5*H*-azepino[2,1-*a*]isoindol-5-one (9{*12*}). According to the general protocol, 5 (25 mg, 0.12 mmol),

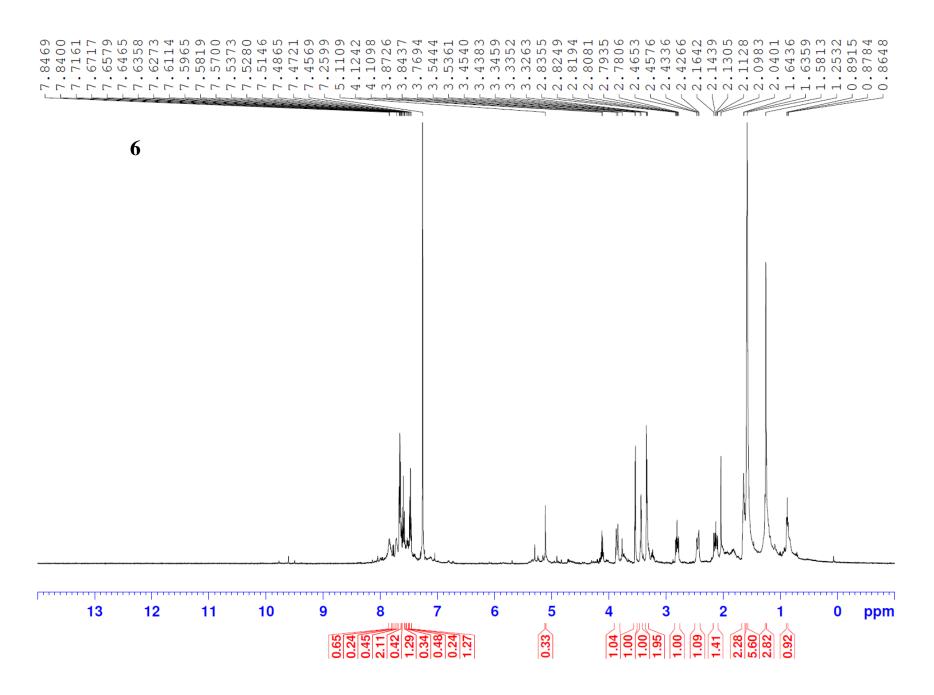

ZnI₂ (74 mg, 0.23 mmol) and 2-amino-3-bromopyridine (0.10 g, 0.58 mmol) were heated at 80 °C in CH₃CN (1.4 mL) for 41.5 h. The crude product was purified by chromatography on SiO₂ (CH₂Cl₂/MeOH, 40:1 to 20:1 to 10:1) to afford **9**{*12*} (4.1 mg, 20%) as a yellow oil: ¹H NMR (300 MHz, CDCl₃) δ 8.03 (dd, 1H, *J* = 4.9, 1.7 Hz), 7.85 (d, 1H, *J* = 7.2 Hz), 7.67 (dd, 1H, *J* = 7.5, 1.5 Hz), 7.61–7.43 (m, 3H), 6.55 (dd, 1H, *J* = 7.6, 5.0 Hz), 5.06–5.00 (m, 1H), 4.92 (dd, 1H, *J* = 7.2, 3.3 Hz), 4.49 (ddd, 1H, *J* = 15.0, 6.0, 3.0 Hz), 4.30–4.21 (m, 1H), 3.76 (td, 1H, *J* = 6.0, 2.4 Hz), 3.38–3.29 (m, 1H), 2.54 (ddd, 2 H, *J* = 15.0, 6.0, 3.6 Hz), 2.21–2.09 (m, 3H).

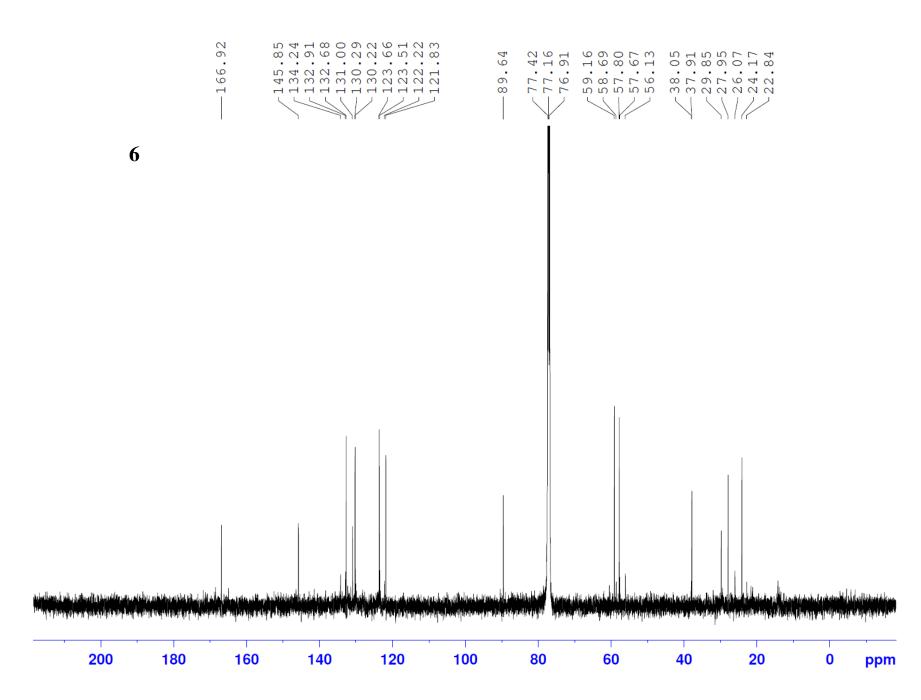
(9RS,10R,11aR)-10-((3S,5S,7S)-adamantan-1-ylamino)-9-hydroxy-7,8,9,10,11,11a-

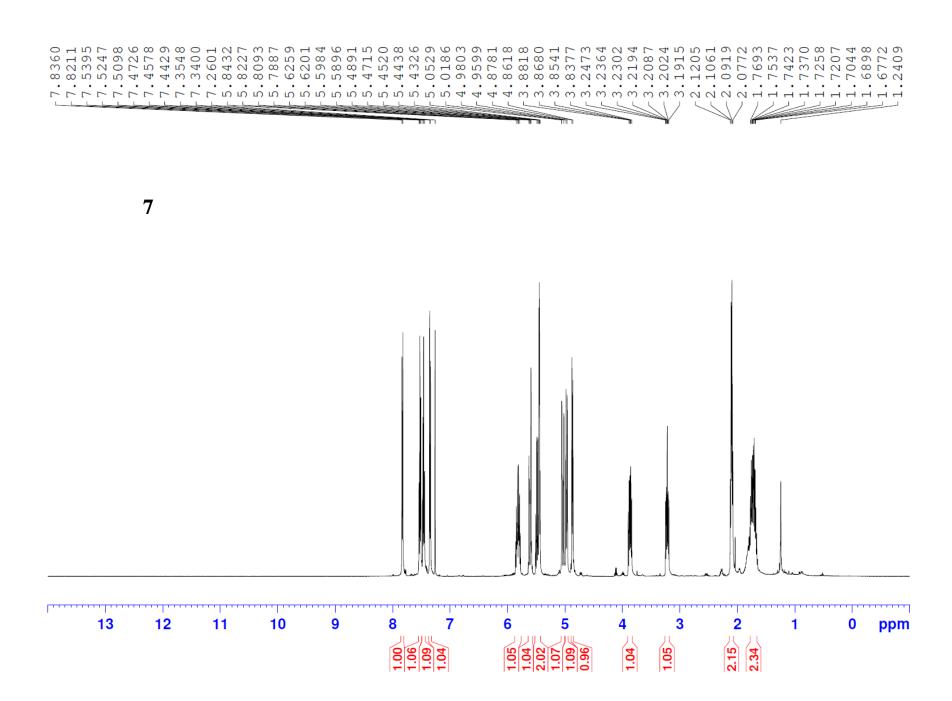

hexahydro-5*H*-azepino[2,1-*a*]isoindol-5-one (10{*13*}). According to general protocol, 5 (17 mg, 0.079 mmol), ZnI₂ (50 mg, 0.158 mmol) and 1-adamantylamine (86 mg, 0.553 mmol) were heated at 90 °C in CH₃CN (0.7 mL) for 28 h. The crude product was purified by chromatography on SiO₂ (CH₂CL₂/MeOH 40:1) to obtain **10**{*13*} (13.2 mg, 46%) as a yellow foam: ¹H NMR (300 MHz, CDCl₃) δ 7.78 (d, 1H, *J* = 7.5 Hz), 7.58–7.42 (m, 3H), 4.68 (d, 1H, *J* = 6 Hz), 4.25 (dt, 1H, *J* = 14.4, 3.5 Hz) 3.04 (dt, 1H, *J* = 12.8, 1.8 Hz), 2.67–2.51 (m, 3H), 2.37–2.27 (m, 1H), 2.15–2.03 (m, 5H) 1.73–1.51 (m, 14H).

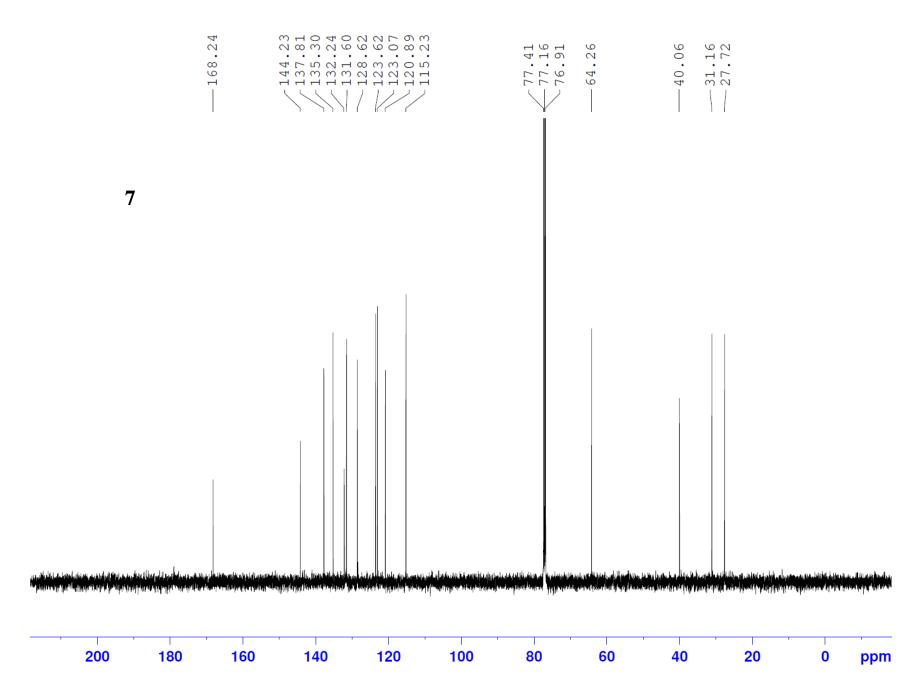

References

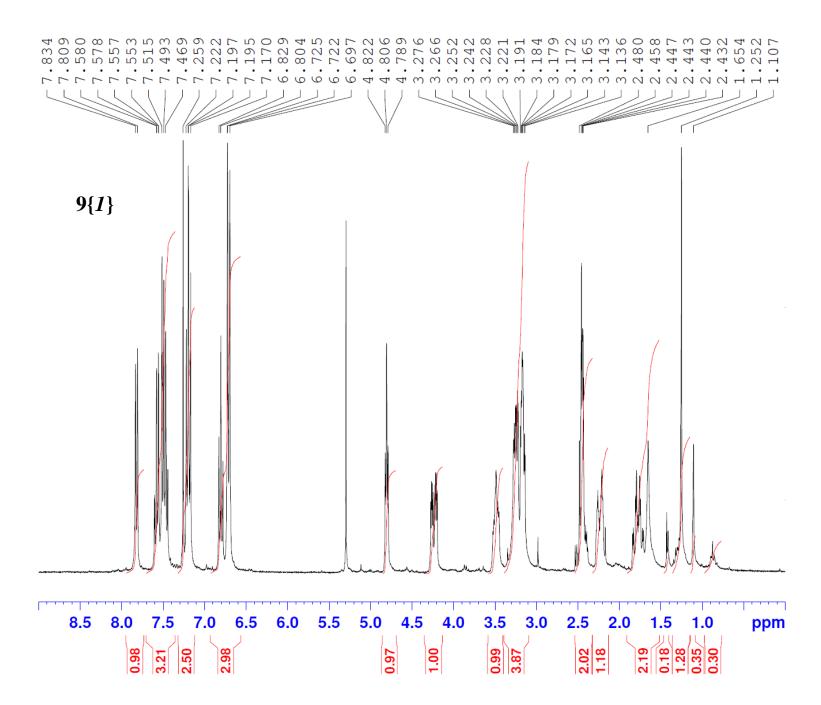
 Pierce, J. G.; Waller, D. L.; Wipf, P. J. Organomet. Chem. 2007, 692, 4618–4629. doi:10.1016/j.jorganchem.2007.05.035

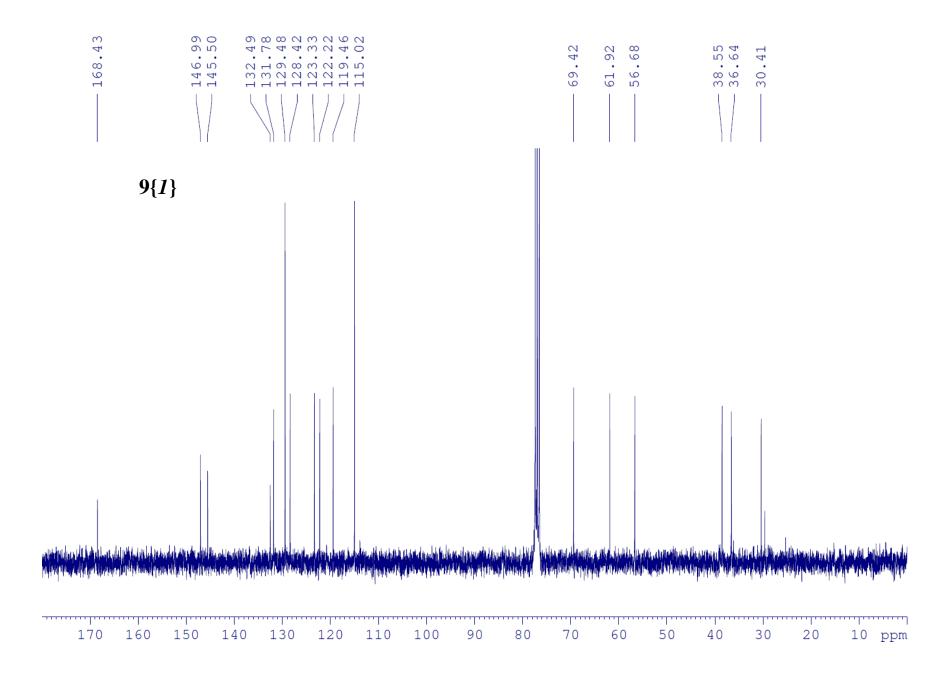


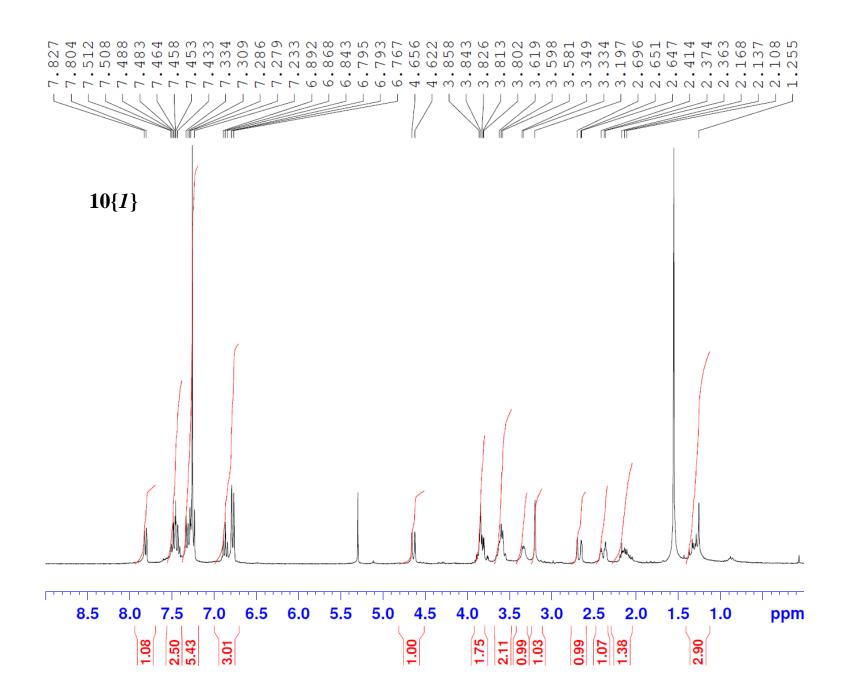


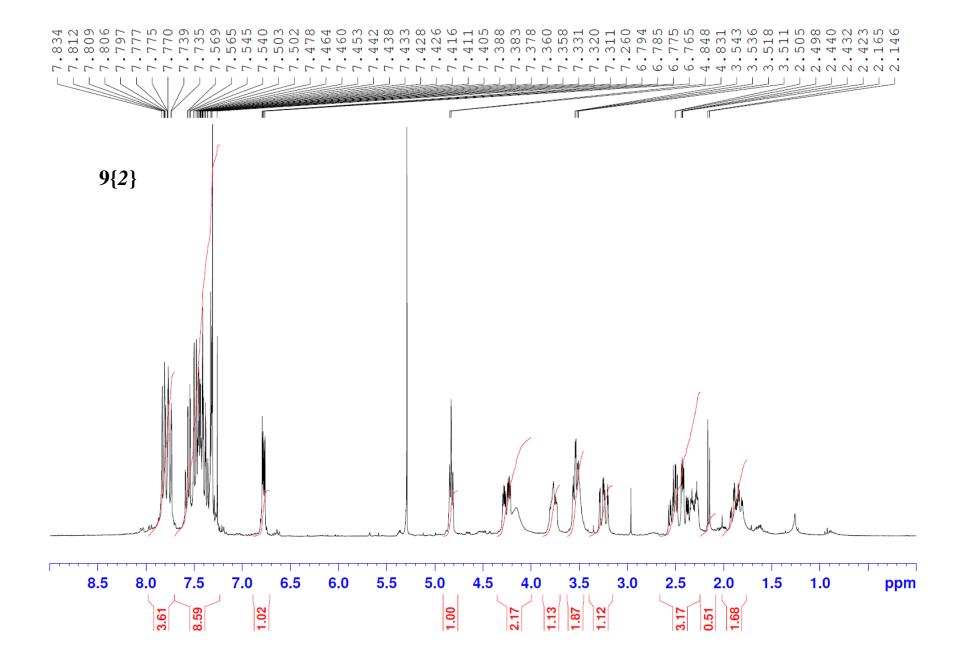



S19








S22

