Supporting Information

for

Binding of group 15 and group 16 oxides by a concave host containing an isophthalamide unit

Jens Eckelmann, Vittorio Saggiomo, Svenja Fischmann and Ulrich Lüning*

Address: ¹Otto-Diels-Institut für Organische Chemie, Christian-Albrechts-Universität zu Kiel, Olshausenstr. 40, D-24098 Kiel, Germany

Email: Ulrich Lüning* - luening@oc.uni-kiel.de

*Corresponding author

Product analyses and experimental data

Contents

25⁵-tert-Butyl-2,11,13,22-tetraoxa-23,27-diaza-1,12(1,3,2)-25(1,3)tribenzenabicyclo[10.10.5]heptacosaphan-24,26-dione (1) ¹H NMR S2 ¹³C NMR S3 5-*tert*-Butyl-*N*,*N'*-bis(2,6-dimethoxyphenyl)-isophthalamide (**2**) ¹H NMR S4 ¹³C NMR S5 ¹H NMR experiments with different guests S6 Normalized CIS of 1 S9 Normalized CIS of 2 S10 Evaluation of the Normalized CIS Method S11 ¹H NMR titration of **1** and pyridine-*N*-oxide S17 ¹H, ¹H NOESY experiments S18 Transport experiments S20 References S23

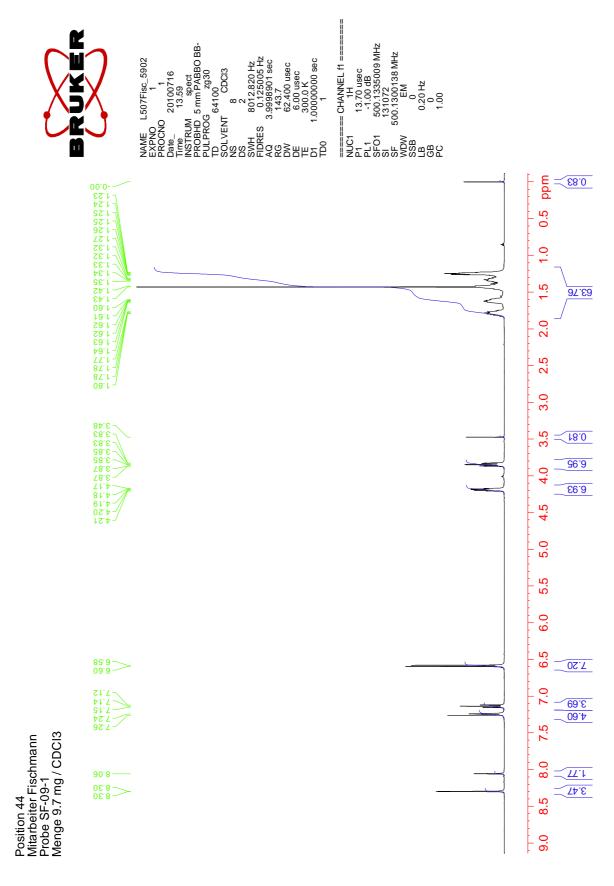


Figure S1: ¹H NMR (500 MHz, 300 K, CDCl₃) of 1.



Figure S2: 13 C NMR (125 MHz, 300 K, CDCl₃) of 1.

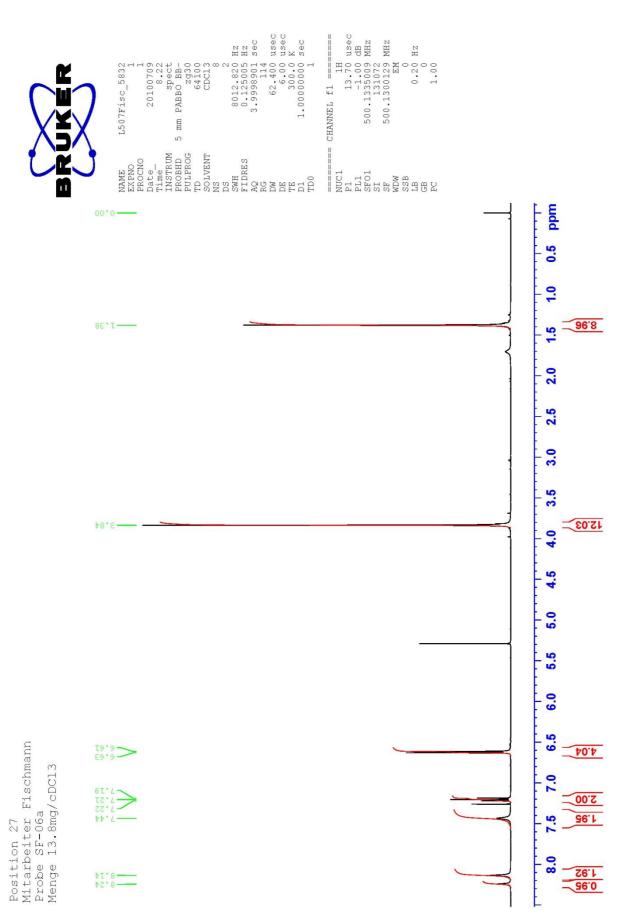


Figure S3: ¹H NMR (500 MHz, 300 K, CDCl₃) of 2.

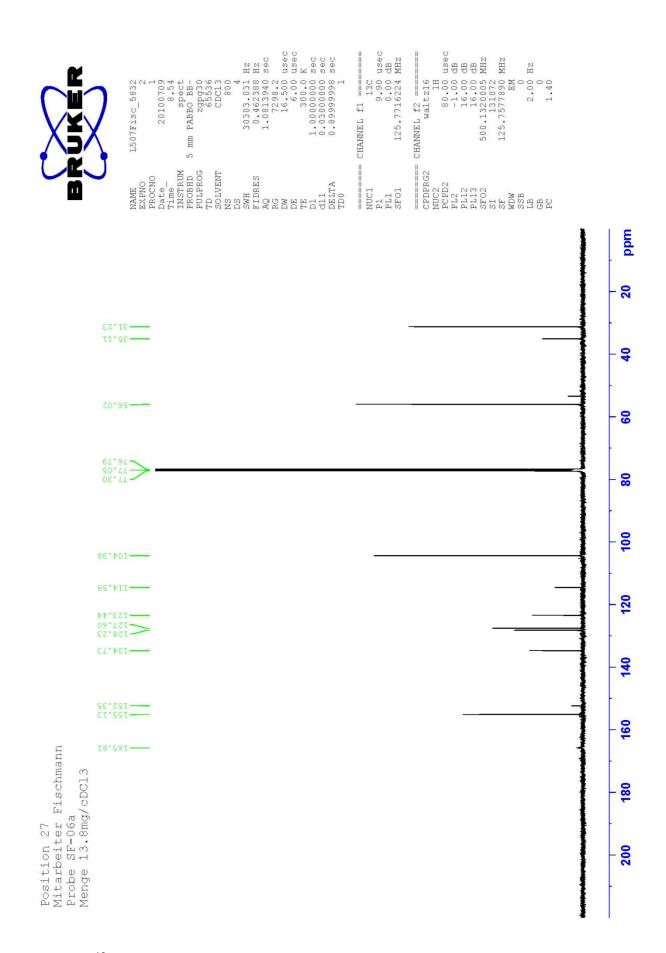
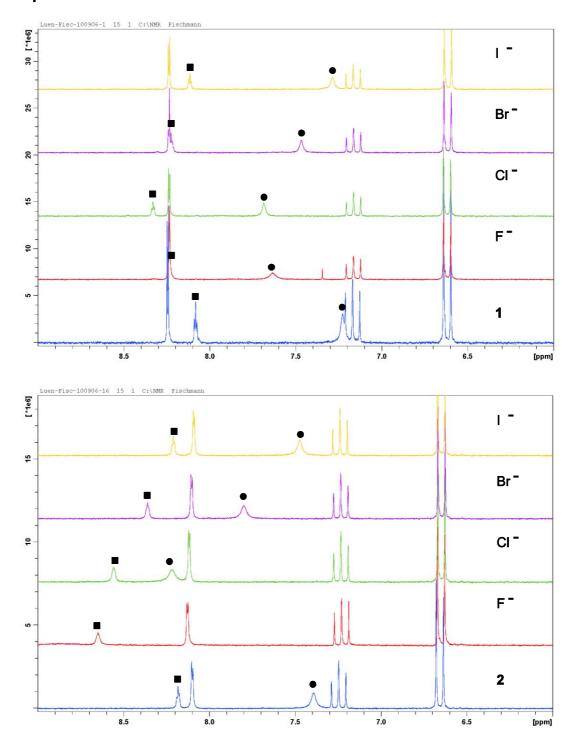
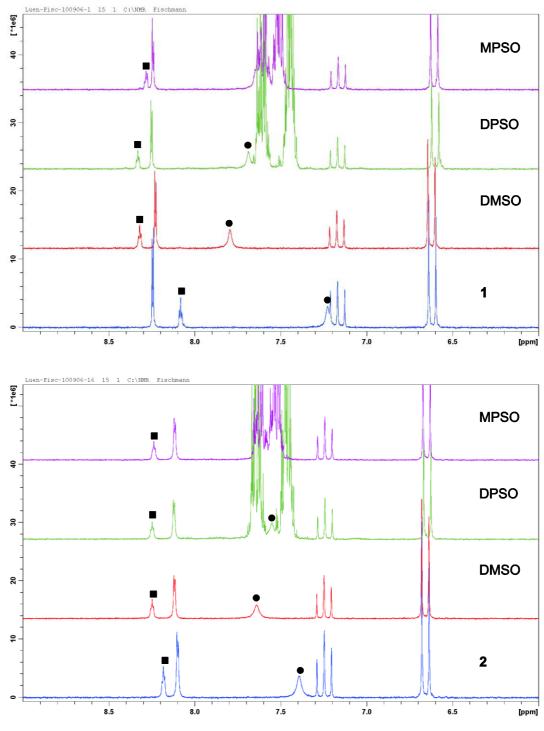




Figure S4: 13 C NMR (125 MHz, 300 K, CDCl₃) of **2**.

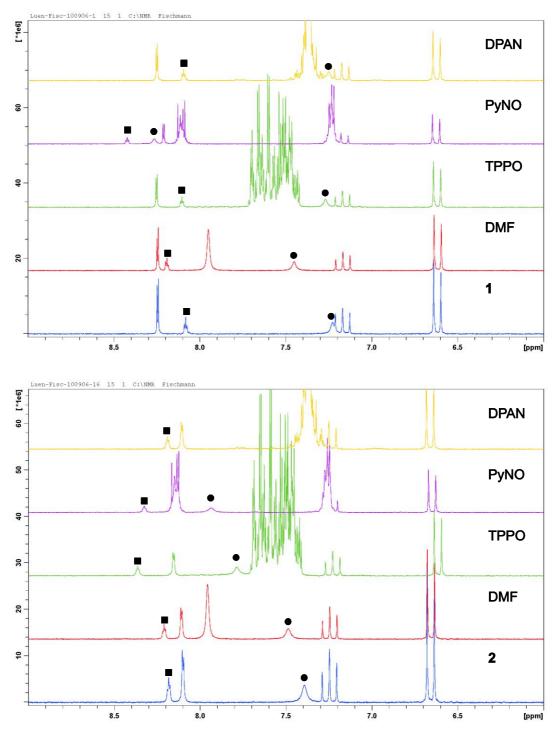

NMR-Experiments

Figure S5: Binding studies with different tetrabutylammonium halides (5 equivalents; top: bi-macrocycle **1**, bottom: isophthalamide **2**). The guests were added in solid form and the exact amount was calculated from the ¹H NMR integration.

Figure S6: Binding studies with different sulfoxides (5 equivalents; top: bi-macrocycle **1**, bottom: isophthalamide **2**, MPSO = methylphenyl sulfoxide, DPSO = diphenyl sulfoxide, DMSO = dimethyl sulfoxide). The guests were added undiluted and the exact amount was calculated from the ¹H NMR integration.

Figure S7: Binding studies with different guests (5 equivalents; top: bi-macrocycle **1**, bottom: isophthalamide **2**, DPAN = diphenylacetonitrile, PyNO = pyridine-N-oxide, TPPO = triphenylphosphine oxide, DMF = N,N-dimethylformamide). The guests were added undiluted and the exact amount was calculated from the 1 H NMR integration.

Normalized CIS of 1

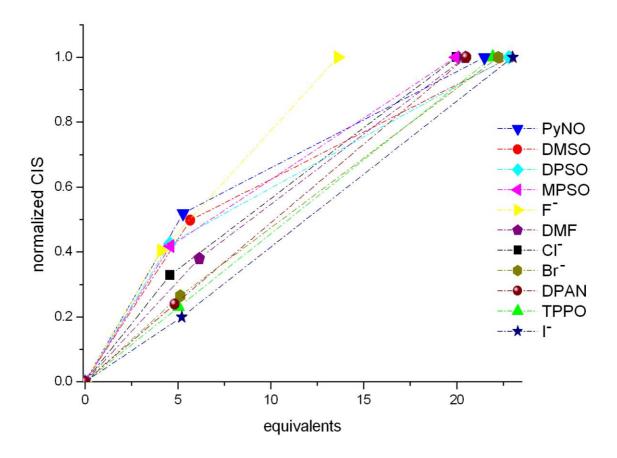


Figure S8: Normalized CIS of 1 (isophthalamide endo-CH proton).

Normalized CIS of 2

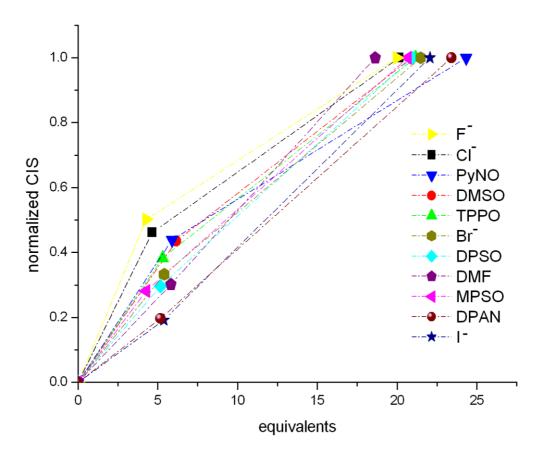


Figure S9: Normalized CIS of 2 (isophthalamide endo CH proton).

Evaluation of the Normalized CIS Method

To prove that normalized CIS is a valid method to estimate the binding strength, six different titration curves were simulated. Association constants between $K_{ass} = 2$ and $K_{ass} = 100$ were chosen. Host concentration was fixed at 0.003 mol L⁻¹.

Equations used:

$$\begin{split} \text{H} := 0.003 & \text{K} = \text{association constant } (M^{\text{-}1}) \\ \text{G} := 0\,, 0.0001\,..\,0.06 & \text{G} = \text{concentration guest } (M) \\ \text{H} = \text{concentration host } (M) \\ \Delta \delta_{\text{max}} := 1 & \Delta \delta_{\text{max}} = \text{shift} (G_{\text{sat}}) - \text{shift } (G_0) \text{ (ppm)} \end{split}$$

- max

K := 2

$$K_{2}(G) := \left[\left[\frac{\Delta \delta_{\text{max}}}{(2 \cdot H)}\right] \cdot \left[\left[G + H + \left(\frac{1}{K}\right)\right] - \left[\left[\left(G - H\right)^{2}\right] + \left(2 \cdot \frac{G}{K}\right) + \left(2 \cdot \frac{H}{K}\right) + \left[\frac{1}{\left(K\right)^{2}}\right]^{0.5}\right]\right]$$

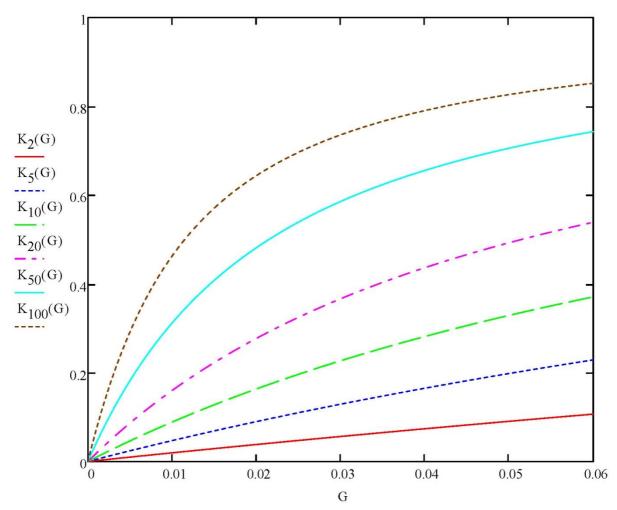
K := 5

$$K_{5}(\mathrm{G}) := \left[\left[\frac{\Delta \delta_{max}}{(2 \cdot \mathrm{H})} \right] \cdot \left[\left[\mathrm{G} + \mathrm{H} + \left(\frac{1}{\mathrm{K}} \right) \right] - \left[\left[\left(\mathrm{G} - \mathrm{H} \right)^{2} \right] + \left(2 \cdot \frac{\mathrm{G}}{\mathrm{K}} \right) + \left(2 \cdot \frac{\mathrm{H}}{\mathrm{K}} \right) + \left[\frac{1}{\left(\mathrm{K} \right)^{2}} \right] \right]^{0.5} \right]$$

K := 10

$$K_{10}(G) := \left[\left[\frac{\Delta \delta_{max}}{(2 \cdot H)} \right] \cdot \left[\left[G + H + \left(\frac{1}{K} \right) \right] - \left[\left[\left(G - H \right)^2 \right] + \left(2 \cdot \frac{G}{K} \right) + \left(2 \cdot \frac{H}{K} \right) + \left[\frac{1}{\left(K \right)^2} \right] \right]^{0.5} \right] \right]$$

K := 20


$$K_{20}(G) := \left[\left[\frac{\Delta \delta_{max}}{(2 \cdot H)} \right] \cdot \left[\left[G + H + \left(\frac{1}{K} \right) \right] - \left[\left[\left(G - H \right)^2 \right] + \left(2 \cdot \frac{G}{K} \right) + \left(2 \cdot \frac{H}{K} \right) + \left[\frac{1}{\left(K \right)^2} \right] \right]^{0.5} \right]$$

K := 50

$$K_{50}(G) := \left[\left[\frac{\Delta \delta_{max}}{(2 \cdot H)} \right] \cdot \left[\left[G + H + \left(\frac{1}{K} \right) \right] - \left[\left[\left(G - H \right)^2 \right] + \left(2 \cdot \frac{G}{K} \right) + \left(2 \cdot \frac{H}{K} \right) + \left[\frac{1}{\left(K \right)^2} \right] \right]^{0.5} \right] \right]$$

K := 100

$$K_{100}(G) := \left[\left[\frac{\Delta \delta_{max}}{(2 \cdot H)} \right] \cdot \left[\left[G + H + \left(\frac{1}{K} \right) \right] - \left[\left[\left(G - H \right)^2 \right] + \left(2 \cdot \frac{G}{K} \right) + \left(2 \cdot \frac{H}{K} \right) + \left[\frac{1}{\left(K \right)^2} \right] \right]^{0.5} \right]$$

Figure S10: Calculated titration curves for $K_{ass} = 2$ up to $K_{ass} = 100$. The change in CIS ($\Delta \delta$, in ppm) is plotted against the concentration of the guest (G, in M⁻¹).

In the normalizing procedure, the CIS at 5 eq. was divided by the CIS at 20 eq. and the CIS at 20 eq. was divided by itself.

$$\kappa_{2n} := \begin{bmatrix} 0 \\ \frac{K_2(5 \cdot H)}{K_2(20 \cdot H)} \\ 1 \end{bmatrix} \qquad \kappa_{5n} := \begin{bmatrix} 0 \\ \frac{K_5(5 \cdot H)}{K_5(20 \cdot H)} \\ \end{bmatrix} \qquad \kappa_{10n} := \begin{bmatrix} 0 \\ \frac{K_{10}(5 \cdot H)}{K_{10}(20 \cdot H)} \\ \end{bmatrix}$$

$$\kappa_{20n} := \begin{bmatrix} 0 \\ \frac{K_{20}(5 \cdot H)}{K_{20}(20 \cdot H)} \\ \end{bmatrix} \qquad \kappa_{50n} := \begin{bmatrix} 0 \\ \frac{K_{50}(5 \cdot H)}{K_{50}(20 \cdot H)} \\ \end{bmatrix} \qquad \kappa_{100n} := \begin{bmatrix} 0 \\ \frac{K_{100}(5 \cdot H)}{K_{100}(20 \cdot H)} \\ \end{bmatrix}$$

$$\kappa_{100n} := \begin{bmatrix} \frac{K_{100}(5 \cdot H)}{K_{100}(20 \cdot H)} \\ \end{bmatrix}$$

$$\kappa_{100n} := \begin{bmatrix} \frac{K_{100}(5 \cdot H)}{K_{100}(20 \cdot H)} \\ \end{bmatrix}$$

$$\kappa_{100n} := \begin{bmatrix} \frac{K_{100}(5 \cdot H)}{K_{100}(20 \cdot H)} \\ \end{bmatrix}$$

$$\kappa_{100n} := \begin{bmatrix} \frac{K_{100}(5 \cdot H)}{K_{100}(20 \cdot H)} \\ \end{bmatrix}$$

$$\kappa_{100n} := \begin{bmatrix} \frac{K_{100}(5 \cdot H)}{K_{100}(20 \cdot H)} \\ \end{bmatrix}$$

$$\kappa_{100n} := \begin{bmatrix} \frac{K_{100}(5 \cdot H)}{K_{100}(20 \cdot H)} \\ \end{bmatrix}$$

$$\kappa_{100n} := \begin{bmatrix} \frac{K_{100}(5 \cdot H)}{K_{100}(20 \cdot H)} \\ \end{bmatrix}$$

$$\kappa_{100n} := \begin{bmatrix} \frac{K_{100}(5 \cdot H)}{K_{100}(20 \cdot H)} \\ \end{bmatrix}$$

$$\kappa_{100n} := \begin{bmatrix} \frac{K_{100}(5 \cdot H)}{K_{100}(20 \cdot H)} \\ \end{bmatrix}$$

$$\kappa_{100n} := \begin{bmatrix} \frac{K_{100}(5 \cdot H)}{K_{100}(20 \cdot H)} \\ \end{bmatrix}$$

$$\kappa_{100n} := \begin{bmatrix} \frac{K_{100}(5 \cdot H)}{K_{100}(20 \cdot H)} \\ \end{bmatrix}$$

$$\kappa_{100n} := \begin{bmatrix} \frac{K_{100}(5 \cdot H)}{K_{100}(20 \cdot H)} \\ \end{bmatrix}$$

$$\kappa_{100n} := \begin{bmatrix} \frac{K_{100}(5 \cdot H)}{K_{100}(20 \cdot H)} \\ \end{bmatrix}$$

$$\kappa_{100n} := \begin{bmatrix} \frac{K_{100}(5 \cdot H)}{K_{100}(20 \cdot H)} \\ \end{bmatrix}$$

$$\kappa_{100n} := \begin{bmatrix} \frac{K_{100}(5 \cdot H)}{K_{100}(20 \cdot H)} \\ \end{bmatrix}$$

$$\kappa_{100n} := \begin{bmatrix} \frac{K_{100}(5 \cdot H)}{K_{100}(20 \cdot H)} \\ \end{bmatrix}$$

$$\kappa_{100n} := \begin{bmatrix} \frac{K_{100}(5 \cdot H)}{K_{100}(20 \cdot H)} \\ \end{bmatrix}$$

$$\kappa_{100n} := \begin{bmatrix} \frac{K_{100}(5 \cdot H)}{K_{100}(20 \cdot H)} \\ \end{bmatrix}$$

$$\kappa_{100n} := \begin{bmatrix} \frac{K_{100}(5 \cdot H)}{K_{100}(20 \cdot H)} \\ \end{bmatrix}$$

$$\kappa_{100n} := \begin{bmatrix} \frac{K_{100}(5 \cdot H)}{K_{100}(20 \cdot H)} \\ \end{bmatrix}$$

$$\kappa_{100n} := \begin{bmatrix} \frac{K_{100}(5 \cdot H)}{K_{100}(20 \cdot H)} \\ \end{bmatrix}$$

$$\kappa_{100n} := \begin{bmatrix} \frac{K_{100}(5 \cdot H)}{K_{100}(20 \cdot H)} \\ \end{bmatrix}$$

$$\kappa_{100n} := \begin{bmatrix} \frac{K_{100}(5 \cdot H)}{K_{100}(20 \cdot H)} \\ \end{bmatrix}$$

$$\kappa_{100n} := \begin{bmatrix} \frac{K_{100}(5 \cdot H)}{K_{100}(20 \cdot H)} \\ \end{bmatrix}$$

$$\kappa_{100n} := \begin{bmatrix} \frac{K_{100}(5 \cdot H)}{K_{100}(20 \cdot H)} \\ \end{bmatrix}$$

$$\kappa_{100n} := \begin{bmatrix} \frac{K_{100}(5 \cdot H)}{K_{100}(20 \cdot H)} \\ \end{bmatrix}$$

$$\kappa_{100n} := \begin{bmatrix} \frac{K_{100}(5 \cdot H)}{K_{100}(20 \cdot H)} \\ \end{bmatrix}$$

$$\kappa_{100n} := \begin{bmatrix} \frac{K_{100}(5 \cdot H)}{K_{100}(20 \cdot H)} \\ \end{bmatrix}$$

Figure S11: The resulting graph shows the simple correlation between the association constant and the deviation from the diagonal $(0,0 \rightarrow 20,1)$. The normalized change in CIS $(\Delta \delta_n$, in ppm) is plotted against the number of equivalents of the guest.

eq

In a second test, different titration curves with different $\Delta \delta_{\text{max}}$ (0.3, 1, 3 ppm) were simulated at a constant $K_{\text{ass}} = 20$.

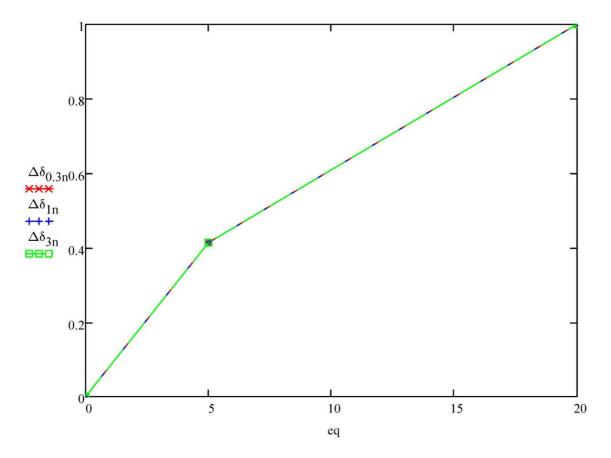

$$\begin{split} & \text{K} := 20 \\ & \text{H} := 0.003 \quad \text{G} := 0,0.0001...0.06 } \\ & \text{H} := 0.003 \quad \text{G} := 0,0.0001...0.06 } \\ & \text{H} := 0.003 \quad \text{G} := 0,0.0001...0.06 } \\ & \text{H} := 0.003 \quad \text{G} := 0,0.0001...0.06 } \\ & \text{A} = \text{concentration guest (M-1)} \\ & \text{A} \delta_{\text{max}} := 0.3 \\ & \Delta \delta_{0.3}(\text{G}) := \left[\left[\frac{\Delta \delta_{\text{max}}}{(2 \cdot \text{H})} \right] \cdot \left[\left[\text{G} + \text{H} + \left(\frac{1}{\text{K}} \right) \right] - \left[\left[(\text{G} - \text{H})^2 \right] + \left(2 \cdot \frac{\text{G}}{\text{K}} \right) + \left(2 \cdot \frac{\text{H}}{\text{K}} \right) + \left[\frac{1}{(\text{K})^2} \right]^{0.5} \right] \right] \\ & \Delta \delta_{\text{max}} := 1 \\ & \Delta \delta_{1}(\text{G}) := \left[\left[\frac{\Delta \delta_{\text{max}}}{(2 \cdot \text{H})} \right] \cdot \left[\left[\text{G} + \text{H} + \left(\frac{1}{\text{K}} \right) \right] - \left[\left[(\text{G} - \text{H})^2 \right] + \left(2 \cdot \frac{\text{G}}{\text{K}} \right) + \left(2 \cdot \frac{\text{H}}{\text{K}} \right) + \left[\frac{1}{(\text{K})^2} \right]^{0.5} \right] \right] \\ & \Delta \delta_{\text{max}} := 3 \\ & \Delta \delta_{3}(\text{G}) := \left[\left[\frac{\Delta \delta_{\text{max}}}{(2 \cdot \text{H})} \right] \cdot \left[\left[\text{G} + \text{H} + \left(\frac{1}{\text{K}} \right) \right] - \left[\left[(\text{G} - \text{H})^2 \right] + \left(2 \cdot \frac{\text{G}}{\text{K}} \right) + \left(2 \cdot \frac{\text{H}}{\text{K}} \right) + \left[\frac{1}{(\text{K})^2} \right]^{0.5} \right] \right] \\ & \Delta \delta_{0.3}(\text{G}) \\ & \Delta \delta_{1}(\text{G}) \\ & \Delta \delta_{3}(\text{G}) \\ & 0.5 \\ & 0.01 \quad 0.02 \quad 0.03 \quad 0.04 \quad 0.05 \quad 0.06 \\ \end{pmatrix}$$

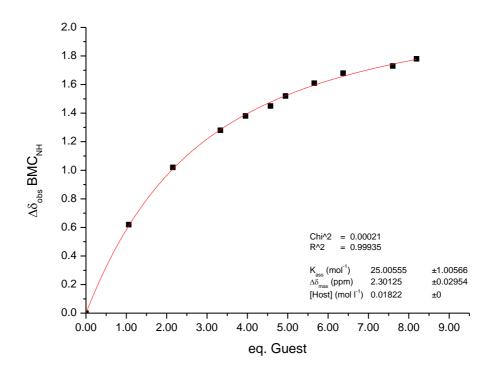
Figure S12: Calculated titration curves for different $\Delta \delta_{\text{max}}$ (0.3, 1, 3 ppm) at a constant association constant of 20 M⁻¹. The change in CIS ($\Delta \delta$, in ppm) is plotted against the concentration of the guest (G, in mol L⁻¹).

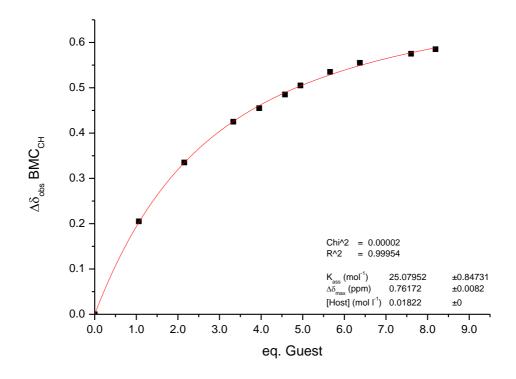
G

In the normalized procedure, the CIS at 5 eq. was divided by the CIS at 20 eq. and the CIS at 20 eq. was divided by itself.

$$\mathbf{q} \coloneqq \begin{pmatrix} \mathbf{0} \\ \mathbf{5} \\ 2\mathbf{0} \end{pmatrix} \qquad \Delta \delta_{0.3n} \coloneqq \begin{bmatrix} \mathbf{0} \\ \frac{\Delta \delta_{0.3}(\mathbf{5} \cdot \mathbf{H})}{\Delta \delta_{0.3}(2\mathbf{0} \cdot \mathbf{H})} \end{bmatrix} \Delta \delta_{1n} \coloneqq \begin{bmatrix} \mathbf{0} \\ \frac{\Delta \delta_{1}(\mathbf{5} \cdot \mathbf{H})}{\Delta \delta_{1}(2\mathbf{0} \cdot \mathbf{H})} \end{bmatrix} \Delta \delta_{3n} \coloneqq \begin{bmatrix} \mathbf{0} \\ \frac{\Delta \delta_{3}(\mathbf{5} \cdot \mathbf{H})}{\Delta \delta_{3}(2\mathbf{0} \cdot \mathbf{H})} \end{bmatrix}$$

Figure S13: The resulting graph shows that the normalizing CIS method is not influenced by the maximum CIS of a titration experiment ($\Delta \delta_{max}$).


In an additional test, all six different association constants were permuted with these three different $\Delta\delta_{\text{max}}$ with results analogous to those already presented.


A cross-check of the normalized CIS method was carried out for a ^{1}H NMR titration with a small binding constant of $K_{ass}=37 \text{ M}^{-1}$, published in the literature [1,2].

By the normalizing CIS method employing only two points, an approximate association constant of $K_{ass} = ca. 40 \text{ M}^{-1}$ was determined.

All calculations were carried out by using Mathcad[®] 15.0 (Parametric Technology Corporation).

¹H NMR titration of 1 with pyridine-*N*-oxide

Figure S14: NMR titration of **1** and pyridine-*N*-oxide (500 MHz, 298 K, CD_2CI_2). To a solution of **1** (7.72 mg in 600 μ L CD_2CI_2) was added pyridine-*N*-oxide (in CD_2CI_2) in ten steps. Two signals were observed: amide NH (top) and the *endo*-CH (bottom), both resulting in $K_{ass} = 25 \text{ mol}^{-1} \text{ L}$.

¹H, ¹H NOESY experiments

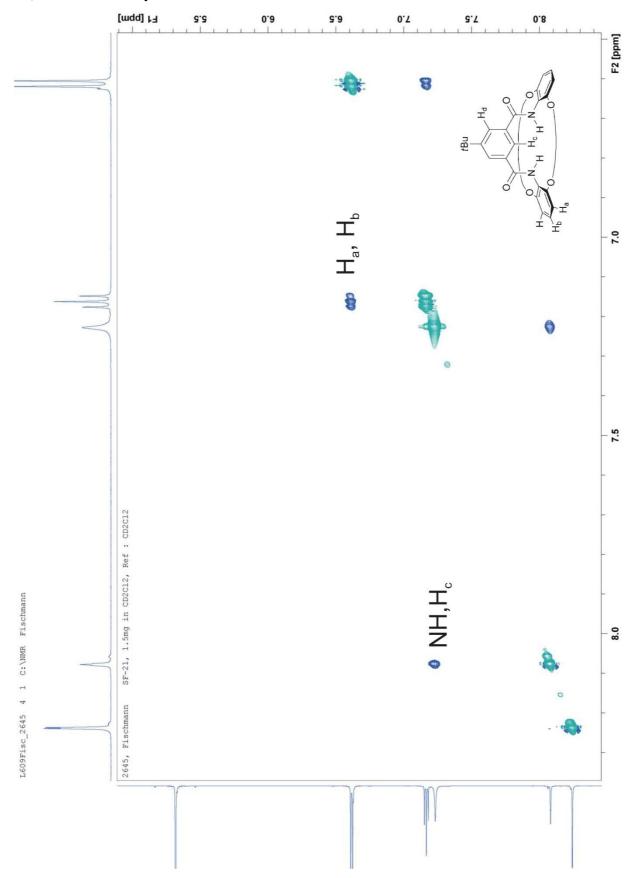
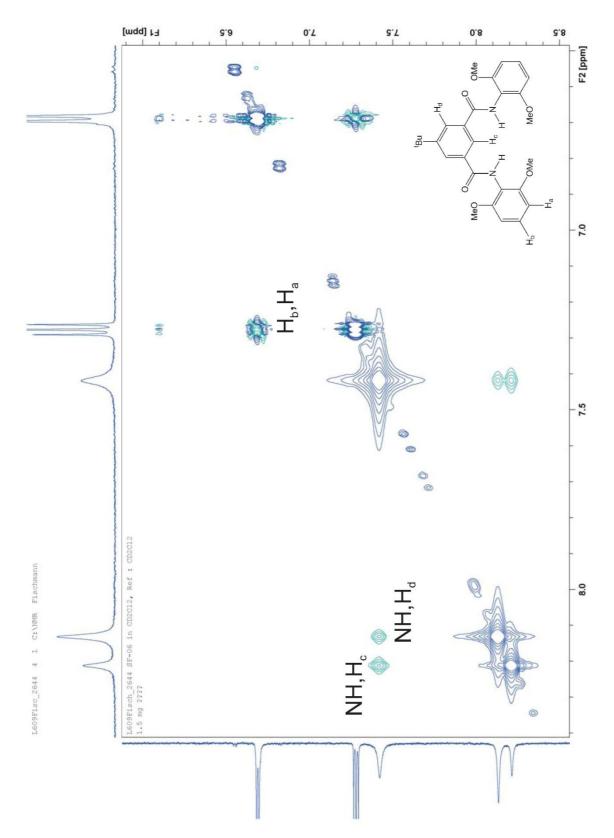
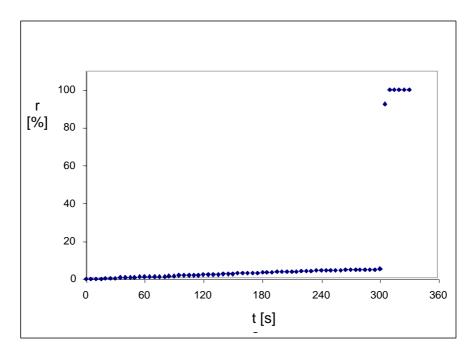
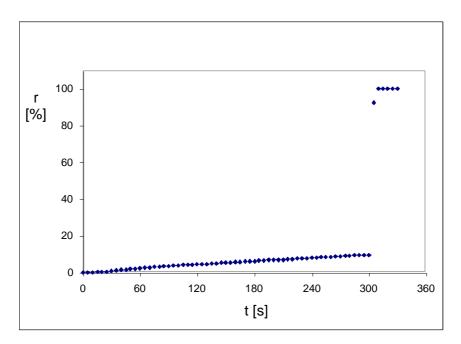


Figure S15: Bi-macrocycle 1. NOESY experiment, selected signals (600 MHz, 298 K, CD_2Cl_2).


Figure S16: Isophthalamide 2. NOESY experiment, selected signals (600 MHz, 298 K, CD_2Cl_2).

Transport experiments

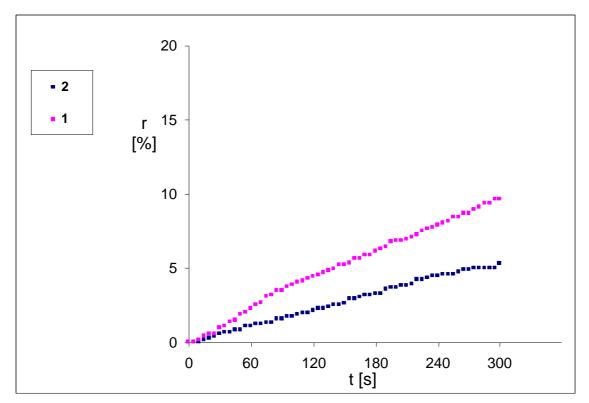

Preparation of phospholipid vesicles: The solvent of a solution of 1-palmitoyl-2-oleoyl-*sn*-glycero-3-phosphocholine (POPC, Genzyme) in chloroform (20 mg/mL) was evaporated to leave a lipid film. This was then dried under vacuum for 12 h. The lipid film was rehydrated with a solution of sodium chloride (476 mM of NaCl, 10 mM of phosphate buffer, pH = 7.2) and shaken by vortex. The suspension was then subjected to nine freeze—thaw cycles and 29 extrusions through a 200 nm polycarbonate Nucleopore membrane by using a LiposoFast Basic extruder (Avestin) to obtain unilamellar vesicles with a mean diameter of 200 nm. Finally, the suspension was dialysed against a NaNO₃ solution (476 mM NaNO₃ and 10 mM phosphate buffer, pH = 7.2) to remove unencapsulated NaCl.

Figure S17: Chloride efflux upon addition of **2** (50 μ M, 10 mol % carrier to lipid) to vesicles composed of 1-palmitoyl-2-oleoyl-*sn*-glycero-3-phosphocholine (POPC). The vesicles contained NaCl (476 mM NaCl and 10 mM phosphate buffer, pH 7.2) and were immersed in NaNO₃ (476 mM NaNO₃ and 10 mM phosphate buffer, pH 7.2). Once the electrode reading was stable the carrier was added and the chloride efflux was monitored for 5 min. At the end of the experiment, the vesicles were lysed with detergent to release all chloride ions and the resulting value was considered to represent a 100% release and used as such.

Figure S18: Chloride efflux upon addition of **1** (50 μ M, 10 mol-% carrier to lipid) to vesicles composed of 1-palmitoyl-2-oleoyl-*sn*-glycero-3-phosphocholine (POPC). The vesicles contained NaCl (476 mM NaCl and 10 mM phosphate buffer, pH 7.2) and were immersed in NaNO₃ (476 mM NaNO₃ and 10 mM phosphate buffer, pH 7.2). Once the electrode reading was stable the carrier was added and the chloride efflux was monitored for 5 min. At the end of the experiment, the vesicles were lysed with detergent to release all chloride ions and the resulting value was considered to represent a 100% release and used as such.

Figure S19: Comparison between chloride effluxes from chloride loaded liposomes promoted by the isophthalamides **1** and **2**.

References

- 1. Kühl, C.; Lüning, U. *Tetrahedron Lett.* **1998,** *39,* 5735–5738. doi:10.1016/S0040-4039(98)01200-3
- 2. Kühl, C. Ph.D. Thesis; Christian-Albrechts-Universität zu Kiel, 1998.