Supporting Information

for
 Determination of the relative configuration of
 tropinone and granatanone aldols by using TBDMS ethers

Ryszard Lazny*1 ${ }^{* 1}$ Aneta Nodzewska ${ }^{1}$, Katarzyna Sidorowicz ${ }^{1}$, Przemyslaw Kalicki ${ }^{2}$

Address: ${ }^{1}$ Institute of Chemistry, University of Bialystok, ul. Hurtowa 1, 15-339
Bialystok, Poland and ${ }^{2}$ Institute of Organic Chemistry, Polish Academy of Sciences, ul. Kasprzaka 44/52, 01-224 Warsaw, Poland

Email: Ryszard Lazny* - lazny@uwb.edu.pl

* Corresponding author

Experimental procedures for the preparation and characterization of the remaining compounds
exo,anti-2-[Hydroxy(phenyl)methyl]-9-methyl-9-azabicyclo[3.3.1]nonan-3-one (exo,anti-4) [1] Mp 103-106 ${ }^{\circ} \mathrm{C} ; R_{\mathrm{f}} 0.38(10 \% \mathrm{MeOH} / \mathrm{DCM}) ;{ }^{1} \mathrm{H}$ NMR $\delta 7.72$ (br s, 1H), 7.36-7.30 (m, 5H), $5.27(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.38(\mathrm{~d}, J=4.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.35-3.28(\mathrm{~m}, 1 \mathrm{H})$, 2.98 (dd, $J=16.2 \mathrm{~Hz}, 7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.74(\mathrm{~s}, 3 \mathrm{H}), 2.57(\mathrm{~d}, J=3.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.45(\mathrm{~d}, J=$ $16.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.20-2.05(\mathrm{~m}, 2 \mathrm{H}), 1.61-1.52(\mathrm{~m}, 2 \mathrm{H}), 1.38-1.29(\mathrm{~m}, 2 \mathrm{H})$.

Typical procedure for preparation exo,syn aldols:

exo,syn-2-[Hydroxy(phenyl)methyl]-9-methyl-9-azabicyclo[3.3.1]nonan-3-one (exo,syn-4) [1] Benzaldehyde ($0.102 \mathrm{~mL}, 1 \mathrm{mmol}$) was added to a mixture of granatanone ($0.306 \mathrm{~g}, 2 \mathrm{mmol}$) and water ($0.011 \mathrm{~mL}, 0.61 \mathrm{mmol}$). The reaction mixture was then stirred at room temperature until NMR monitoring showed satisfactory conversion (33 d - conversion 30\%). The mixture was taken up in toluene and evaporated under vacuum (repeated 3 times). The residue was crystallized from cyclohexane or diethyl ether to give exo,syn-4 (0.047 g, 18\%). Mp 117-118 ${ }^{\circ} \mathrm{C}$ (decomp.); $R_{\mathrm{f}} 0.46$ (7\% MeOH/DCM); ${ }^{1} \mathrm{H}$ NMR $\delta 7.62$ (br s, 1H), 7.44-7.22 (m, 5H), 5.08 (d, $J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.34-3.28(\mathrm{~m}, 1 \mathrm{H}), 3.17(\mathrm{dd}, J=17.1 \mathrm{~Hz}, 7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.05(\mathrm{~d}, J=$ 4.2 Hz, 1H), $2.64(\mathrm{~s}, 3 \mathrm{H}), 2.54(\mathrm{~d}, J=17.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.48(\mathrm{~s}, 1 \mathrm{H}), 2.12-2.01(\mathrm{~m}, 1 \mathrm{H})$, 1.97-1.88 (m, 1H), 1.55-1.42 (m, 2H), 1.36-1.29 (m, 1H), 1.01-0.91 (m, 1H); ${ }^{13} \mathrm{C}$ NMR δ $211.6,143.7,128.2,126.8,125.4,76.1,60.0,53.6,53.5,46.9,39.6,22.6,22.3,16.4$; HRMS (ESI): $282.1465\left[M^{+}+\mathrm{H}\right]$ calcd for $\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{NO}_{2} \mathrm{Na}$, 282.1470.

exo,anti-2-[(tert-Butyldimethylsilyloxy)(phenyl)methyl]-9-methyl-9-

 azabicyclo[3.3.1]nonan-3-one (exo,anti-6) The aldol exo,anti-4 ($0.259 \mathrm{~g}, 1 \mathrm{mmol}$) was dissolved in dry DCM (3 mL). DMAP ($0.013 \mathrm{~g}, 0.11 \mathrm{mmol}$) and dry $\mathrm{Et}_{3} \mathrm{~N}(1.4 \mathrm{~mL})$ were added, followed by the addition of TBDMSCI ($0.300 \mathrm{~g}, 2 \mathrm{mmol}$). The resulting solution was allowed to stand at rt for 16 h . The reaction mixture was then diluted with DCM, shaken with 20% aq. $\mathrm{K}_{2} \mathrm{CO}_{3}$ and extracted with $\mathrm{DCM}(3 \times 10 \mathrm{~mL})$. The combined organic extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, the solvent was removed under vacuum, and the residue was subjected to flash chromatography in hexanes/AcOEt (1:9), which gave the pure product as a white solid ($0.306 \mathrm{~g}, 82 \%$). Mp $59-60^{\circ}{ }^{\circ} \mathrm{C}$ (decomp.); $R_{\mathrm{f}} 0.57$(MeOH/DCM); ${ }^{1} \mathrm{H}$ NMR $\delta 7.40-7.25(\mathrm{~m}, 5 \mathrm{H}), 5.21(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.27-3.20(\mathrm{~m}, 1 \mathrm{H})$, 3.01-2.89 (m, 1H), 2.56 (dd, $J=16.2 \mathrm{~Hz}, 7.0 \mathrm{~Hz}, 1 \mathrm{H}$), 2.52 (s, 3H), 2.49-2.40 (m, 1H, eq-H at C-2), $2.33(\mathrm{~d}, J=15.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.08-1.96(\mathrm{~m}, 1 \mathrm{H}), 1.94-1.83(\mathrm{~m}, 1 \mathrm{H}), 1.74-1.62$ $(\mathrm{m}, 1 \mathrm{H}), 1.49-1.41(\mathrm{~m}, 1 \mathrm{H}), 1.31-1.21(\mathrm{~m}, 1 \mathrm{H}), 1.01-0.91(\mathrm{~m}, 1 \mathrm{H}) 0.81(\mathrm{~s}, 9 \mathrm{H}),-0.03(\mathrm{~s}$, $3 \mathrm{H}),-0.33(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 211.2,143.6,128.1,128.0,127.7,76.1,65.4,55.6,55.4$, $46.1,40.4,25.6,22.4,22.2,18.0,17.0,-4.6,-5.2 ;$ HRMS (ESI): $396.2350\left[\mathrm{M}^{+}+\mathrm{Na}\right]$ calcd for $\mathrm{C}_{22} \mathrm{H}_{35} \mathrm{NO}_{2} \mathrm{SiNa}$, 396.2335.
exo,syn-2-[(tert-Butyldimethylsilyloxy)(phenyl)methyl]-9-methyl-9-
azabicyclo[3.3.1]nonan-3-one (exo,syn-6) Product exo,syn-6 was obtained as a white solid ($0.243 \mathrm{~g}, 65 \%$) in the same way as exo,anti-6 by using exo,syn-4 (0.259 g, 1 $\mathrm{mmol})$, dry DCM (3 mL), DMAP ($0.013 \mathrm{~g}, 0.11 \mathrm{mmol}$), $\mathrm{Et}_{3} \mathrm{~N}(1.4 \mathrm{~mL})$ and TBDMSCI ($0.300 \mathrm{~g}, 2 \mathrm{mmol}$). Mp 77-78 ${ }^{\circ} \mathrm{C}$ (decomp.); $R_{\mathrm{f}} 0.57$ ($7 \% \mathrm{MeOH} / \mathrm{DCM}$); ${ }^{1} \mathrm{H}$ NMR $\delta 7.45-$ $7.18(\mathrm{~m}, 5 \mathrm{H}), 5.16(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.44(\mathrm{~d}, J=4.0 \mathrm{~Hz} 1 \mathrm{H}), 3.27-2.20(\mathrm{~m}, 1 \mathrm{H}), 2.68$ (s, 3H), 2.64 (d, J=6.9Hz,1H), $2.54(\mathrm{~s}, 1 \mathrm{H}, \mathrm{eq}-\mathrm{H}$ at C-2), $2.20(\mathrm{dt}, J=16.9 \mathrm{~Hz}, 1.3 \mathrm{~Hz}$, $1 \mathrm{H})$, 2.14-1.95 (m, 2H), 1.60-1.42 (m, 2H), 1.30-1.12 (m, 2H), $0.85(\mathrm{~s}, 9 \mathrm{H}), 0.05(\mathrm{~s}, 3 \mathrm{H})$, -0.28 (s, 3H); ${ }^{13} \mathrm{C}$ NMR $\delta 211.0,142.5,128.0,127.6,126.6,106.6,74.8,66.2,55.2$, 47.3, 40.8, 25.8, 23.1, 22.9, 18.1, 17.0, -4.6, -5.0; HRMS (ESI): 396.2354 [$\left.{ }^{+}+\mathrm{Na}\right]$ calcd for $\mathrm{C}_{22} \mathrm{H}_{35} \mathrm{NO}_{2} \mathrm{SiNa}$, 396.2335.

endo,syn-2-[(tert-Butyldimethylsilyloxy)(phenyl)methyl]-9-methyl-9-

azabicyclo[3.3.1]nonan-3-one (endo,syn-6) The TBDMS-ether exo,anti-6 (0.030 g, 0.08 mmol) was applied on a flash silica column in DCM. The column was washed with $\mathrm{MeOH} / \mathrm{DCM}(4: 96)$ to remove the product of isomerization as a colorless oil (0.023 g , 77%). $R_{\mathrm{f}} 0.54$ ($7 \% \mathrm{MeOH} / \mathrm{DCM}$); ${ }^{1} \mathrm{H}$ NMR $\delta 7.40-7.20(\mathrm{~m}, 5 \mathrm{H}), 5.26(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 1 \mathrm{H})$,
3.43-3.38 (m, 1H), 3.29-3.23 (m, 1H), 3.03-2.91 (m, 1H, ax-H at C-2), $2.70(\mathrm{dd}, J=15.4$ $\mathrm{Hz}, 6.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.58(\mathrm{~s}, 3 \mathrm{H}), 2.18(\mathrm{~d}, \mathrm{~J}=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.07-1.89(\mathrm{~m}, 2 \mathrm{H}), 1.87-1.75$ $(\mathrm{m}, 1 \mathrm{H}), 1.59-1.46(\mathrm{~m}, 3 \mathrm{H}), 0.84(\mathrm{~s}, 9 \mathrm{H}), 0.09(\mathrm{~s}, 3 \mathrm{H}),-0.36(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR δ 209.4, 144.2, 127.9, 127.2, 127.1, 71.4, 58.0, 56.7, 56.2, 43.0, 41.0, 29.4, 25.5, 22.4, 18.1, 16.5, -4.6, -5.3; HRMS (ESI): $396.2344\left[M^{+}+\mathrm{Na}\right]$ calcd for $\mathrm{C}_{22} \mathrm{H}_{35} \mathrm{NO}_{2} \mathrm{SiNa}, 396.2335$.

endo,anti-2-[(tert-Butyldimethylsilyloxy)(phenyl)methyl]-9-methyl-9-

azabicyclo[3.3.1]nonan-3-one (endo,anti-6) The TBDMS-ether exo,syn-6 (0.030 g, 0.08 mmol) was applied on a flash silica column in DCM. The column was washed with $\mathrm{MeOH} / \mathrm{DCM}(2: 98)$ to remove the product of isomerization as an oil $(0.024 \mathrm{~g}, 80 \%) . R_{\mathrm{f}}$ 0.45 (7\% MeOH/DCM); ${ }^{1} \mathrm{H}$ NMR $\delta 7.45-7.20(\mathrm{~m}, 5 \mathrm{H}), 5.01(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.29-3.24$ (m, 1H), 3.14 (dd, $J=8.5 \mathrm{~Hz}, 5.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ax}-\mathrm{H}$ at C-2), 2.85 (dd, $J=14.6 \mathrm{~Hz}, 6.7 \mathrm{~Hz}$, $1 \mathrm{H}), 2.55(\mathrm{~s}, 3 \mathrm{H}), 2.52(\mathrm{~s}, 1 \mathrm{H}), 2.26(\mathrm{dd}, J=14.5 \mathrm{~Hz}, 0.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.11(\mathrm{~m}, 1 \mathrm{H}), 1.89-$ $1.78(\mathrm{~m}, 1 \mathrm{H}), 1.65-1.56(\mathrm{~m}, 2 \mathrm{H}), 1.54-1.47(\mathrm{~m}, 2 \mathrm{H}), 0.72(\mathrm{~s}, 9 \mathrm{H}), 0.08(\mathrm{~s}, 3 \mathrm{H}),-0.15(\mathrm{~s}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 210.0,142.0,128.2,127.5,125.5,72.1,59.5,57.6,56.0,47.3,43.1$, 40.8, 30.2, 25.7, 18.1, 16.0, $-4.9,-5.1$; HRMS (ESI): $396.2315\left[\mathrm{M}^{+}+\mathrm{Na}\right]$ calcd for $\mathrm{C}_{22} \mathrm{H}_{35} \mathrm{NO}_{2} \mathrm{SiNa}$, 396.2335.

Reference

1. Lazny, R.; Wolosewicz, K.; Zielinska, P.; Urbanczyk-Lipkowska, Z.; Kalicki, P. Tetrahedron 2011, 67, 9433-9439.
