Supporting Information

Palladium-catalyzed $\mathbf{C - N}$ and $\mathrm{C}-\mathrm{O}$ bond formation of N -substituted 4-bromo-7-azaindoles with amides, amines, amino acid esters and phenols

Rajendra Surasani ${ }^{1,2}$, Dipak Kalita* ${ }^{\star 1}$, A. V. Dhanunjaya Rao ${ }^{1}$ and K. B. Chandrasekhar ${ }^{2}$

Address: ${ }^{1}$ Custom Pharmaceutical Services, Dr. Reddy's Laboratories Ltd., Miyapur, Hyderabad - 50049, India and ${ }^{2}$ Department of Chemistry, Institute of Science and Technology, JNTU University of Anantapur, Anantapur 515002, India

Email: Dipak Kalita - dipakk@drreddys.com
*Corresponding author
\#DRL Communication no.: IPDO IPM- 00294

Experimental procedures, analytical data and NMR spectra

Table of Contents Page
General Information S2
Experimental procedures and analytical data S2-S11
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra S12-S32

General Information: All solvents were distilled prior to use. $\mathrm{Pd}_{2}(\mathrm{dba})_{3}, \mathrm{Pd}(\mathrm{OAc})_{2}$, Xantphos, XPhos, SPhos, amines, amino acids and amides were purchased from Aldrich and Alfa Aesar. Anhydrous solvents were distilled by following standard protocols. Melting points (mp) were recorded with a Büchi melting point B-540 instrument and are uncorrected. IR spectra were recorded as KBr pellet with a Shimadzu IR-Prestige-21 instrument and only diagnostic and/or intense peaks are reported. Mass spectra were recorded with a PE Sciex model API 3000 instrument. HRMS spectra were recorded with Waters LCT Premier XE (Micro mass Oa-TOF) instrument. ${ }^{1} \mathrm{H}$ NMR spectra were recorded in DMSO- d_{6} with a Varian Mercury plus 400 and 500 MHz instrument. ${ }^{13} \mathrm{C}$ NMR spectra were recorded in DMSO- d_{6} with a Varian Gemini 200 MHz instrument. Signals due to the solvent (${ }^{13} \mathrm{C}$ NMR) or residual protonated solvent (${ }^{1} \mathrm{H}$ NMR) served as the internal standard. The ${ }^{1} \mathrm{H}$ NMR chemical shifts and coupling constants were determined assuming first-order behavior. Multiplicity is indicated by one or more of the following: s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet), br (broad); the list of coupling constants ($(\mathcal{J}$ corresponds to the order of multiplicity assignment.

General procedure for $\mathbf{C - N}$ bond formation by coupling of 4-bromo-7-azaindole derivatives with amides

To a 100 mL dried sealed Schlenk tube charged N -substituted 4-bromo 7-azaindole (1.0 mmol), amide (1.2 mmol), cesium carbonate (1.5 mmol), $\mathrm{Pd}(\mathrm{OAc})_{2}(5 \mathrm{~mol} \%)$, Xantphos (10 mol \%), and 2 mL of dioxane were added. Nitrogen was bubbled through the reaction mass for 2 min . The reaction mixture was heated to $100^{\circ} \mathrm{C}$ and stirred for the appropriate time as mentioned in Table 2. The reaction mass was
cooled to room temperature and diluted with ethyl acetate (20 mL), filtered through a celite bed and wash with ethyl acetate (10 mL). The filtrate was concentrated in vacuum. The crude product was purified by column chromatography on silica gel (100-200) using ethyl acetate and hexane mixture as an eluent to afford the pure title products.

N-(1-methyl-1H-pyrrolo[2,3-b]pyridin-4-yl)benzamide (3a). Off white solid; mp $145-147^{\circ} \mathrm{C}$; IR (KBr): 3400, 3178, 3061, 1678, 1656, 1608, 1575, 1498, 1394, 1317, $713,555 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}): $\delta 10.42$ (brs, $1 \mathrm{H} . \mathrm{NH}$), 8.20 (d, $J=5.2$ $\mathrm{Hz}, 1 \mathrm{H}), 7.99-7.97(\mathrm{~m}, 2 \mathrm{H}), 7.72(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.64-7.53(\mathrm{~m}, 4 \mathrm{H}), 7.41(\mathrm{~d}, J=$ $3.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.81(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.81\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{N}-\mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR (50 MHz , DMSO$\left.d_{6}\right): \delta 166.41,148.75,142.96,138.29,134.61,131.73,128.28,128.05,127.90$, 111.76, 106.87, 98.08, 30.95; MS (ES): m/z = 262.4 (M+1); HRMS (ESI): calculated for $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{~N}_{3} \mathrm{O}_{2}(\mathrm{M}+\mathrm{H})^{+}$262.1126; found 262.1137.

N-(1-methyl-1H-pyrrolo[2,3-b]pyridin-4-yl)benzene sulfonamide (3b). Off white solid; mp 175-177 º C ; IR (KBr): 3259, 3111, 1604, 1571, 1517, 1444, 1398, 1330, 1309, 1161, 1091, 894, 713, $580 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}): $\delta 10.88$ (brs, $1 \mathrm{H} . \mathrm{NH}), 8.03(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.90(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.87(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H})$, $7.52-7.60(\mathrm{~m}, 3 \mathrm{H}), 7.33(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.99(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.78(\mathrm{~d}, J=3.6$ $\mathrm{Hz}, 1 \mathrm{H}), 3.72$ (s, 3H, N-CH3$) ;{ }^{13} \mathrm{C}$ NMR (50 MHz, DMSO-d d_{6}): $\delta 143.02,139.61$, 133.08, 128.28, 128.83, 128.18, 126.56, 125.50, 110.77, 103.50, 97.17, 30.96; MS (ES): $m / z=288.3(M+1)$; HRMS (ESI): calculated for $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}(\mathrm{M}+\mathrm{H})^{+}$288.0807; found 288.0820 .

1-(1-methyl-1 H-pyrrolo[2,3-b]pyridin-4-yl)pyrrolidin-2-one (3c). Brown thick liquid; IR (KBr): 2924, 1705, 1568, 1384, 1309, 823, 754, $721 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}): $\delta 8.19(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{~d}, J=5.2 \mathrm{~Hz}$,
$1 \mathrm{H}), 6.52(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.05(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.80\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{N}-\mathrm{CH}_{3}\right), 2.50(\mathrm{t}, J=$ 2.0 Hz, 2H), 2.16-2.09 (m, 2H); ${ }^{13} \mathrm{C}$ NMR (50 MHz, DMSO- d_{6}): δ 173.98, 149.10, $142.55,139.13,128.42,112.45,107.72,99.32,49.40,31.78,31.00,18.58 . ; \mathrm{MS}$ (ES): $m / z=216.3(M+1)$.

N-(1-ethyl-1H-pyrrolo[2,3-b]pyridin-4-yl)-2-methoxybenzamide (3d). Off white solid; ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}): $\delta 10.44$ (brs, $\left.1 \mathrm{H} . \mathrm{NH}\right), 8.20(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H})$, $8.08(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.82(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.65(\mathrm{~d}, J=4.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.53$ $(\mathrm{m}, 1 \mathrm{H}), 7.22(\mathrm{~d}, J=3.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.18(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.68(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H})$, $4.30(\mathrm{~m}, 2 \mathrm{H}), 4.03(\mathrm{~s}, 3 \mathrm{H}), 139(\mathrm{t}, 3 \mathrm{H}, J=7.2 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR (50 MHz, DMSO- d_{6}): $\delta 164.22,157.11,147.82,143.34,137.77,132.98,130.60,126.73,122.78,120.78$, 112.30, 110.52, 105.14, 96.02, 56.26, 55.69, 15.43; MS (ES): $\mathrm{m} / \mathrm{z}=296.30(\mathrm{M}+1)$; HRMS (ESI): calculated for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{~N}_{3} \mathrm{O}_{2}(\mathrm{M}+\mathrm{H})^{+}$296.1399; found 296.1397.

N-(1-ethyl-1H-pyrrolo[2,3-b]pyridin-4-yl)-4-fluorobenzamide (3e). Off white solid; ${ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- d_{6}): $\delta 10.47$ (brs, $1 \mathrm{H} . \mathrm{NH}$), $8.20(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.08$ (d, $J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.06(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.69(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.49(\mathrm{~d}, J=2.8$ $\mathrm{Hz}, 1 \mathrm{H}), 7.41(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.81(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.31(\mathrm{~m}, 2 \mathrm{H}), 1.39(\mathrm{t}, 3 \mathrm{H}$, $J=6.0 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$): $\delta 165.38,148.24,142.92,138.22$, 131.14, 131.11, 130.97, 130.88, 126.54, 115.41, 115.19, 112.04, 107.08, 98.28, 38.80, 15.45; MS (ES): $\mathrm{m} / \mathrm{z}=284.30(\mathrm{M}+1)$; HRMS (ESI): calculated for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{OF}$ $(\mathrm{M}+\mathrm{H})^{+}$284.1199; found 284.1198.

2-Amino-N-(1-ethyl-1 H-pyrrolo[2,3-b]pyridin-4-yl)benzamide (3f). Light yellow solid; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$): $\delta 10.51(\mathrm{~s}, 1 \mathrm{H}), 8.16-8.15(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H})$, 7.69-7.67 (d, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.62-7.60(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.46-7.45(\mathrm{~d}, J=3.6 \mathrm{~Hz}$, $1 \mathrm{H}), 7.26-7.22(\mathrm{t}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.79-6.75(\mathrm{~m}, 2 \mathrm{H}), 6.64-6.60(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H})$, $6.33(\mathrm{~s}, 2 \mathrm{H}), 4.30-4.25(\mathrm{~m}, 2 \mathrm{H}), 1.39-1.35(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz ,

DMSO- d_{6}): $\delta 168.36,149.90,148.21,142.88,138.68,132.57,129.53,126.44$, 116.48, 115.07, 114.92, 112.13, 107.08, 98.39, 38.87, 15.62; MS (ES): $m / z=281.20$ $(\mathrm{M}+1)$; HRMS (ESI): calculated for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{~N}_{4} \mathrm{O}(\mathrm{M}+\mathrm{H})^{+}$281.1402; found 281.1395.

N-(1-benzyl-1 H-pyrrolo[2,3-b]pyridin-4-yl)benzamide (3g). Light greenish solid; mp 165-167 ${ }^{\circ} \mathrm{C}$; IR (KBr): 3244, 2924, 1876, 1654, 1575, 1346, 1307, 1055, 902, 821, 721, 704, $557 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$): $\delta 10.44$ (brs, s, $1 \mathrm{H}, \mathrm{NH}$), $8.20(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.98-7.96(\mathrm{~m}, 2 \mathrm{H}), 7.74(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.65-7.54(\mathrm{~m}$, $3 \mathrm{H}), 7.53(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.36-7.21(\mathrm{~m}, 4 \mathrm{H}), 6.87(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.48(\mathrm{~s}, 2 \mathrm{H}$, $-\mathrm{N}-\mathrm{CH} 2-) ;{ }^{13} \mathrm{C}$ NMR (50 MHz, DMSO- d_{6}): $\delta 166.46,148.50,143.24,138.51,138.45$, 134.60, 131.79, 128.40, 128.32, 128.06, 127.21, 127.13, 111.86, 107.23, 98.90, 47.23; MS (ES): $\mathrm{m} / \mathrm{z}=328.4(\mathrm{M}+1)$; $\mathrm{HRMS}(E S I)$: calculated for $\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{~N}_{3} \mathrm{O}(\mathrm{M}+\mathrm{H})^{+}$ 328.1450; found328.1459.

General procedure for C-N bond formation by coupling of 4-bromo-7-azaindole derivatives with amines

To a 100 mL dried sealed Schlenk tube, N -substituted 4-bromo azaindole (1.0 mmol), amine (1.2 mmol), cesium carbonate (1.5 mmol), $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(5 \mathrm{~mole} \%$), Xantphos (10 mole \%), and 2 mL of dioxane were added. Nitrogen gas was bubbled through the reaction mass for 10 minutes. The reaction mixture was heated to $100^{\circ} \mathrm{C}$ and stirred for appropriate time as mentioned in Table no. 4. The reaction mass was cooled to room temperature and diluted with ethyl acetate (20 mL), filtered through a celite bed and wash with ethyl acetate (10 mL).The filtrate was concentrated in vacuum. The crude product was purified by column chromatography over silica gel (100-200) using ethyl acetate and hexane mixture as an eluent to afford the pure title products.

N-benzyl-1-methyl-1H-pyrrolo[2,3-b]pyridin-4-amine (5a). Light-brown solid; mp $136-138{ }^{\circ} \mathrm{C}$; IR (KBr): 3238, 3028, 1604, 1504, 1336, 1305, 1103, 1076, 869, 707, $623 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d $): \delta 7.77(\mathrm{~d}, \mathrm{~J}=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.36-7.28(\mathrm{~m}$, 4H), 7.23-7.18 (m, 2H), 7.11 (d, $J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.60(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.07(\mathrm{~d}, J=$ $5.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.48(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H}, \mathrm{N}-\mathrm{CH} 3) ;{ }^{13} \mathrm{C} \mathrm{NMR}(50 \mathrm{MHz}$, DMSO- d_{6}): $\delta 147.92,147.46,143.86,139.74,128.23,126.81,126.60,124.70$, 107.44, 96.89, 96.18, 45.48, 30.80; MS (ES): $m / z=238.4(M+1) ;$ HRMS (ESI): calculated for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{~N}_{3}(\mathrm{M}+\mathrm{H})^{+} 238.1344$; found 238.1348.

N-phenyl-1-methyl-1 H-pyrrolo[2,3-b]pyridin-4-amine (5b). Light-brown solid; mp 220.-224 ${ }^{\circ} \mathrm{C}$; IR (KBr): 3238, 3095, 1610, 1570, 1490, 1330, 1240, 1207, 729, 646 $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d d_{6}): $\delta 8.62$ (brs, $1 \mathrm{H} . \mathrm{NH}$), $7.94(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H})$, 7.37-7.27 (m, 5H), $7.24(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.01-7.05(\mathrm{~m}, 1 \mathrm{H}), 6.70(\mathrm{~d}, J=5.6 \mathrm{~Hz}$, $1 \mathrm{H}), 6.60(\mathrm{~d}, \mathrm{~J}=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}, \mathrm{N}-\mathrm{CH} 3)$; ${ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$): $\delta 148.72,143.67,141.07,129.06,125.97,122.30,120.62,108.95,98.62,97.27$, 30.93; $\mathrm{MS}(E S): m / z=224.2(\mathrm{M}+1)$; $\mathrm{HRMS}(E S I):$ calculated for $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{~N}_{3}(\mathrm{M}+\mathrm{H})^{+}$ 224.1188; found 224.1186.

4-(1-methyl-1 H-pyrrolo[2,3-b]pyridin-4-yl)morpholine (5c). Brown solid; mp 82-84 ${ }^{\circ} \mathrm{C}$; IR (KBr): 2954, 2816, 1874, 1575, 1355, 1309, 1251, 1112, 991, 812, 709, 628 $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}): $\delta 8.01(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{~d}, J=3.6 \mathrm{~Hz}$, $1 \mathrm{H}), 6.50(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.45(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.79-3.77(\mathrm{t}, J=4.8 \mathrm{~Hz}, 4 \mathrm{H})$, $3.75\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{N}-\mathrm{CH}_{3}\right), 3.37-3.35(\mathrm{t}, \mathrm{J}=4.8 \mathrm{~Hz}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$): $\delta 150.78,148.82,143.49,126.25,109.78,101.16,98.57,66.02,49.07,30.98$; MS (ES): $m / z=218.3(\mathrm{M}+1)$; HRMS (ESI): calculated for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{~N}_{3} \mathrm{O}(\mathrm{M}+\mathrm{H})^{+}$218.1293; found 218.1291.

1-Ethyl-N-(4-methoxybenzyl)-1 H-pyrrolo[2,3-b]pyridin-4-amine (5d). Light brown solid; mp 98-100 ${ }^{\circ} \mathrm{C}$; IR (KBr): 3240, 2927, 1861, 1606, 1572, 1502, 1344, 1317, 1209, 1082, 935, 867, 794, 773, 723, $623 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$): $\delta 7.76(\mathrm{~d}, \mathrm{~J}=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.29-7.26(\mathrm{~m}, 2 \mathrm{H}), 7.16-7.12(\mathrm{~m}, 2 \mathrm{H}), 6.89-6.85(\mathrm{~m}, 2 \mathrm{H})$, $6.58(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.07(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.39(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.17-4.12$ ($q, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{N}-\mathrm{CH}_{2}$), $3.70\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{O}-\mathrm{CH}_{3}\right), 1.33-1.29(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (50 MHz, DMSO- d_{6}): $\delta 158.05,147.48,147.29,143.72,131.53,128.09$, 123.09, 113.67, 107.55, 97.00, 96.20, 54.97, 44.95, 38.51, 15.66; MS (ES): m/z = $282.4(\mathrm{M}+1)$; HRMS (ESI): calculated for $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{~N}_{3} \mathrm{O}(\mathrm{M}+\mathrm{H})^{+}$282.1606; found 282.1609.

N-Butyl-1-ethyl-1H-pyrrolo[2,3-b]pyridin-4-amine (5e). Brown solid; mp $93-95^{\circ} \mathrm{C}$; IR (KBr): 3234, 2927, 1872, 1604, 1568, 1512, 1340, 1244, 1035, 819, 799, 617 $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}): $\delta 7.82(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.13(\mathrm{~d}, J=3.6 \mathrm{~Hz}$, $1 \mathrm{H}), 6.55(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.48(\mathrm{t}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}), 6.11(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H})$, $4.17(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.22(\mathrm{q}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.61-1.55(\mathrm{~m}, 2 \mathrm{H}), 1.41(\mathrm{q}, J=7.2$ $\mathrm{Hz}, 2 \mathrm{H}), 1.33(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.94(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (50 MHz , DMSO$\left.d_{6}\right): \delta 147.71,147.32,143.86,122.80,107.35,97.06,95.50,41.79,38.48,30.82$, 19.77, 15.65, 13.76; MS (ES): $\mathrm{m} / \mathrm{z}=218.5(\mathrm{M}+1)$; HRMS (ESI): calculated for $\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{~N}_{3}(\mathrm{M}+\mathrm{H})^{+} 218.1657$; found 218.1658.
tert-Butyl 4-(1-ethyl-1 H-pyrrolo[2,3-b]pyridin-4-yl)piperazine-1-carboxylate (5f). Brick red solid; mp 82-84 º C ; IR (KBr): 2976, 1693, 1573, 1498, 1417, 1365, 1240, 1168, 1001, 756, $663 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$): $\delta 7.99(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H})$, $7.36(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.51(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.45(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.24(\mathrm{q}, J=$ $7.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.53(\mathrm{t}, \mathrm{J}=4.8 \mathrm{~Hz}, 4 \mathrm{H}), 3.38(\mathrm{t}, \mathrm{J}=4.8 \mathrm{~Hz}, 4 \mathrm{H}), 1.43\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}-\left(\mathrm{CH}_{3}\right)_{3}\right)$, $1.35(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(50 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right): \delta 153.79,150.54,148.14$,
143.36, 124.75, 110.04, 101.47, 98.63, 78.95, 48.45, 43.08, 28.03, 15.50; MS (ES): $\mathrm{m} / \mathrm{z}=331.5(\mathrm{M}+1)$; HRMS (ESI) : calculated for $\mathrm{C}_{18} \mathrm{H}_{27} \mathrm{~N}_{4} \mathrm{O}_{2}(\mathrm{M}+\mathrm{H})^{+} 331.2134$; found 331.2139.

General procedure for C-N-bond formation by coupling of 4-bromo-7-azaindole derivatives with amino acid ester

To a 100 mL dried sealed Schlenk tube, N -substituted 4-bromo azaindole (1.0 mmol), amino acids/esters (1.2 mmol), cesium carbonate (3.0 mmol), $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(5 \mathrm{~mole} \%$), Xantphos (10 mole \%), and 2 mL of dioxane were added. Nitrogen gas was bubbled through the reaction mass for 10 minutes. The reaction mixture was heated to $100^{\circ} \mathrm{C}$ and stirred for an appropriate time as mentioned in Table 6. The reaction mass was cooled to room temperature and diluted with ethyl acetate (20 mL), filtered through a celite bed and wash with ethyl acetate (10 mL).The filtrate was concentrated in vacuum. The crude product was purified by column chromatography on silica gel (100-200) using a ethyl acetate and hexane mixture as an eluent to afford the pure title products.
(R)-methyl 2-((1-methyl-1H-pyrrolo[2,3-b]pyridin-4-yl)amino)propanoate (7b). Pale yellow solid; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.08(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.98(\mathrm{~d}, J=$ $3.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.38(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.15(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.94(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $1 \mathrm{H}), 4.42-4.35(\mathrm{~m}, 1 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 1.58(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta 174.19,148.30,146.01,144.53,125.53,108.13,96.80,95.60$, 52.43, 50.97, 31.42, 18.75; MS (ES): m/z = $234.20(\mathrm{M}+1)$; HRMS (ESI): calculated for $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{2}(\mathrm{M}+\mathrm{H})^{+}$234.1234; found 234.1236; ee\% (the methyl ester) 98.79 (HPLC: Chiral Pak AD-H Column, n-heptane:ethanol:IP amine (60:40:0.10), 1.0 $\left.\mathrm{mL} / \mathrm{min}, 240 \mathrm{~nm}, \mathrm{t}=30^{\circ} \mathrm{C}\right)$.

Ethyl 2-((1-methyl-1 H-pyrrolo[2,3-b]pyridin-4-yl)amino)acetate (7c). Pale yellow solid; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.10(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.98(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H})$, $6.40(\mathrm{~d}, \mathrm{~J}=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.13(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.02(\mathrm{~s}, 1 \mathrm{H}), 4.31-4.26(\mathrm{~m}, 2 \mathrm{H})$, $4.09(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 1.34-1.30(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): ~ \delta 170.35,148.22,146.48,144.54,125.48,107.99,96.73,95.64,61.54$, 44.74, 31.38, 14.09; $\mathrm{MS}(E S): \mathrm{m} / \mathrm{z}=234.20(\mathrm{M}+1)$; HRMS (ESI): calculated for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{~N}_{3} \mathrm{O}_{2}(\mathrm{M}+\mathrm{H})^{+}$234.1243; found 234.1237.

(R)-methyl 3-(tert-butoxy)-2-((1-methyl-1H-pyrrolo[2,3-b]pyridin-4-yl)

amino)propanoate (7d). Pale yellow solid; ${ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 8.07$ (d, J = $5.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.98(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.40(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.14(\mathrm{~d}, J=5.2 \mathrm{~Hz}$, $1 \mathrm{H}), 5.23(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.4-4.40(\mathrm{~m}, 1 \mathrm{H}), 3.88(\mathrm{dd}, J=4.0 \& 8.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.83$ $(\mathrm{s}, 3 \mathrm{H}), 3.77(\mathrm{~m}, 1 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 1.17(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right)$: $\delta 171.95,148.38,146.46,144.47,125.50,108.34,97.02,95.74,73.67,62.19,56.08$, 52.34, 31.46, 27.30; MS (ES): $\mathrm{m} / \mathrm{z}=306.20(\mathrm{M}+1)$; HRMS (ESI): calculated for $\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{~N}_{3} \mathrm{O}_{3}(\mathrm{M}+\mathrm{H})^{+} 361.1818$; found 361.1815 ; ee\% (the methyl ester) 95.48 (HPLC: Chiral Pak AD-H Column, n-heptane:ethanol:IP amine (60:40:0.10), $1.0 \mathrm{~mL} / \mathrm{min}$, $\left.240 \mathrm{~nm}, \mathrm{t}=30^{\circ} \mathrm{C}\right)$.

(R)-methyl 2-((1-methyl-1H-pyrrolo[2,3-b]pyridin-4-yl)amino)propanoate

Pale yellow solid; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.07(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}$), 7.04 (d, $J=$ $3.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.39(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.15(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.91(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $1 \mathrm{H}), 4.40-4.35(\mathrm{~m}, 1 \mathrm{H}), 4.31-4.25(\mathrm{~m}, 2 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 1.58(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.47$ ($\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 3 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta 174.20,147.68,145.97$, 144.39, 123.79, 108.21, 96.76, 95.65, 52.39, 50.94, 39.36, 18.74, 15.68; MS (ES): m/z = 248.20 (M+1); HRMS (ESI): calculated for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{~N}_{3} \mathrm{O}_{2}(\mathrm{M}+\mathrm{H})^{+}$248.1399; found
248.1398; ee\% (the methyl ester) 98.91 (HPLC: Chiral Pak AD-H Column, nheptane:ethanol:IP amine ($60: 40: 0.10$), $1.0 \mathrm{~mL} / \mathrm{min}, 240 \mathrm{~nm}, \mathrm{t}=30^{\circ} \mathrm{C}$).

Ethyl 2-((1-ethyl-1 H-pyrrolo[2,3-b]pyridin-4-yl)amino)acetate (7f). Pale yellow solid; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.09(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.04(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H})$, $6.40(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.12(\mathrm{~d}, \mathrm{~J}=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.08(\mathrm{~s}, 1 \mathrm{H}), 4.31-4.26(\mathrm{~m}, 4 \mathrm{H})$, $4.09(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.47-1.43(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.34-1.31(\mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta 170.37,147.62,146.47,144.42,123.75,108.11$, 96.72, 95.69, 61.53, 44.75, 39.33, 15.68, 14.09; MS (ES): m/z = $248.20(\mathrm{M}+1)$; HRMS (ESI): calculated for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{~N}_{3} \mathrm{O}_{2}(\mathrm{M}+\mathrm{H})^{+}$248.1399; found 248.1397.

Methyl 2-((1-ethyl-1H-pyrrolo[2,3-b]pyridin-4-yl)amino)acetate (7g). Pale yellow solid; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.09(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.04(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H})$, 6.41 (d, $J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.12(\mathrm{~d}, \mathrm{~J}=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.99(\mathrm{~s}, 1 \mathrm{H}), 4.31-4.26(\mathrm{~m}, 2 \mathrm{H})$, $4.11(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 1.47-1.44(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 170.84,147.58,146.42,144.38,123.78,108.09,96.65,95.67,52.33$, 44.55, 39.32, 15.65; MS (ES): $\mathrm{m} / \mathrm{z}=234.20(\mathrm{M}+1)$; HRMS (ESI): calculated for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{~N}_{3} \mathrm{O}_{2}(\mathrm{M}+\mathrm{H})^{+}$234.1243; found 234.1236.

General procedure for $\mathrm{C}-\mathrm{O}$ bond formation by coupling of 4-bromo-7-azaindole derivatives with phenols

To a 100 mL dried sealed Schlenk tube, N -substituted 4-bromo-azaindole (1.0 mmol), phenol (1.2 mmol), potassium carbonate (1.5 mmol), $\mathrm{Pd}(\mathrm{OAc})_{2}(5 \mathrm{~mol} \%)$, Xantphos ($10 \mathrm{~mol} \%$), and 2 mL of dioxane were added. Nitrogen was bubbled through the reaction mass for 2 min . The reaction mixture was heated to $100^{\circ} \mathrm{C}$ and stirred for an appropriate time as mentioned in Table 8. The reaction mass cooled to room
temperature and was diluted with ethyl acetate (20 mL), filtered through a celite bed and wash with ethyl acetate (10 mL). The filtrate was concentrated in vacuum. The crude product was purified by column chromatography on silica gel (100-200) using ethyl acetate and hexane mixture as an eluent to afford the pure title products.

1-Methyl-4-(m-tolyloxy)-1H-pyrrolo[2,3-b]pyridine (9a). ${ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta \square 8.18(\mathrm{~d}, \mathrm{~J}=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.29-7.25(\mathrm{~m}, 2 \mathrm{H}), 7.05-6.91(\mathrm{~m}, 3 \mathrm{H}), 6.48(\mathrm{~d}, \mathrm{~J}=$ $5.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.32(\mathrm{~d}, \mathrm{~J}=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.88\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{N}-\mathrm{CH}_{3}\right), 2.36\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta 158.11,155.17,144.33,140.04,129.48,127.40,125.46$, 121.04, 117.39, 111.36, 102.81, $97.02,31.53,21.35 ; \mathrm{MS}(E S): m / z=239.10(\mathrm{M}+1)$; HRMS (ESI): calculated for $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{O}(\mathrm{M}+\mathrm{H})^{+}$239.1184; found 239.1174.

4-(4-Methoxyphenoxy)-1-methyl-1 H-pyrrolo[2,3-b]pyridine (9b). ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.15(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.12-7.07(\mathrm{~m}, 2 \mathrm{H}), 7.05(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H})$, 6.95-6.92 (m, 2H), $6.40(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.33(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}, \mathrm{N}-$ CH 3), $3.84\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{O}-\mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 159.03,156.75,148.36$, 144.23, 127.34, 121.84, 116.13, 114.85, 110.99, 101.91, 97.05, 55.63, 31.62; MS (ES): $m / z=255.10(M+1) ;$ HRMS (ESI): calculated for $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{O}_{2}(\mathrm{M}+\mathrm{H})^{+}$255.1134; found 255.1144

1-Methyl-4-(naphthalen-1-yloxy)-1 H-pyrrolo[2,3-b]pyridine (9c). ${ }^{1} \mathrm{H}$ NMR (400 $\left.\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.14(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.07(\mathrm{~d}, J=8.4,1 \mathrm{H})\right), 7.92(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, $1 \mathrm{H}), 7.76(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.55-7.44(\mathrm{~m}, 4 \mathrm{H}), 7.23(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.08(\mathrm{~d}, J=$ $3.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.39(\mathrm{~d}, \mathrm{~J}=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.90\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{N}-\mathrm{CH}_{3} ;{ }^{13} \mathrm{C} \mathrm{NMR}(100 \mathrm{MHz}\right.$, $\left.\mathrm{CDCl}_{3}\right): \delta 158.69,150.85,144.43,134.96,127.89,127.55,128.08,126.67,126.29$, 125.68, 125.01, 121.99, 116.26, 111.07, 102.55, 102.44, 96.99, 31.60; MS (ES): m/z $=275.10(\mathrm{M}+1)$; HRMS (ESI): calculated for $\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{O}(\mathrm{M}+\mathrm{H})^{+}$275.1184; found 275.1175
${ }^{1} \mathrm{H}$ NMR of $\mathbf{3 a}$ in DMSO- $\mathrm{d}_{6}, 400 \mathrm{MHz}$

${ }^{13} \mathrm{C}$ NMR of 3 a in DMSO- $\mathrm{d}_{6}, 50 \mathrm{MHz}$.

${ }^{1} \mathrm{H}$ NMR of $\mathbf{3} \mathbf{b}$ in DMSO- $d_{6}, 400 \mathrm{MHz}$.

${ }^{13} \mathrm{C}$ NMR of $\mathbf{3 b}$ in DMSO- $\mathrm{d}_{6}, 50 \mathrm{MHz}$.

${ }^{1} \mathrm{H}$ NMR of $\mathbf{3 c}$ in DMSO- $d_{6}, 400 \mathrm{MHz}$.

${ }^{13} \mathrm{C}$ NMR of $\mathbf{3 c}$ in DMSO- $\mathrm{d}_{6}, 50 \mathrm{MHz}$.

Analy wa, numpou, Diseovery Research, í,....
Instrument : jefinni 2000 (Varian 200MHz)
Instrument : ${ }^{\prime \prime}$ jellini 2000 (Varian 200 MHz)

| Date a Time : | $\begin{array}{l}\text { Mon Dee } 1 \\ \text { Recorded By : }\end{array}$ |
| :--- | :--- | :--- |
| Shruthi.0 | |

${ }^{1} \mathrm{H}$ NMR of 3 d in DMSO- $\mathrm{d}_{6}, 400 \mathrm{MHz}$.

${ }^{13} \mathrm{C}$ NMR of 3 d in DMSO- $d_{6}, 50 \mathrm{MHz}$.

${ }^{1} \mathrm{H}$ NMR of 3 e in DMSO- $\mathrm{d}_{6}, 500 \mathrm{MHz}$.
CPS399/CRAJ/257 in Daso
TDC-005

${ }^{13} \mathrm{C}$ NMR of 3 e in DMSO- $d_{6}, 100 \mathrm{MHz}$.

TDC-006 CPS399-CRAJ-257 in DKSO
MUR-400
AR-NOTME1210/3009

${ }^{1} \mathrm{H}$ NMR of $\mathbf{3 f}$ in DMSO- $d_{6}, 400 \mathrm{MHz}$.

${ }^{13} \mathrm{C}$ NMR of $\mathbf{3 f}$ in DMSO- $d_{6}, 100 \mathrm{MHz}$.
roc-006 CPS399-CRAJ-350 in onso
MKR-400MH2
AR MOTKNOB1/293

${ }^{1} \mathrm{H}$ NMR of 5 a in DMSO- $d_{6}, 400 \mathrm{MHz}$.

${ }^{13} \mathrm{C}$ NMR of 5 a in DMSO- $\mathrm{d}_{6}, 50 \mathrm{MHz}$.

${ }^{1} \mathrm{H}$ NMR of $\mathbf{5 b}$ in DMSO- $d_{6}, 400 \mathrm{MHz}$.

${ }^{13} \mathrm{C}$ NMR of $\mathbf{5} \mathbf{b}$ in DMSO- $\mathrm{d}_{6}, 50 \mathrm{MHz}$.

Analytical
Instrunent Research, Discovery Research, DRL
Instrunent : Gemini 2000 (Varian 200MHz)
$\begin{array}{ll}\text { Date \& Time : } \\ \text { Recerded } & \text { Wed Nov } 19 \\ ; & \text { Srikanth.A }\end{array}$

${ }^{1} \mathrm{H}$ NMR of $5 \mathbf{c}$ in DMSO- $\mathrm{d}_{6}, 400 \mathrm{MHz}$.

${ }^{13} \mathrm{C}$ NMR of $5 \mathbf{c}$ in DMSO- $d_{6}, 50 \mathrm{MHz}$.

${ }^{1} \mathrm{H}$ NMR of 5 d in DMSO- $d_{6}, 400 \mathrm{MHz}$.

${ }^{13} \mathrm{C}$ NMR of 5 d in DMSO- $\mathrm{d}_{6}, 50 \mathrm{MHz}$.

${ }^{1} \mathrm{H}$ NMR of 5 e in DMSO- $d_{6}, 400 \mathrm{MHz}$.

${ }^{13} \mathrm{C}$ NMR of 5 e in DMSO- $\mathrm{d}_{6}, 50 \mathrm{MHz}$.

${ }^{1} \mathrm{H}$ NMR of $\mathbf{5 f}$ in DMSO- $\mathrm{d}_{6}, 400 \mathrm{MHz}$.

${ }^{13} \mathrm{C}$ NMR of 5 f in DMSO- $\mathrm{d}_{6}, 50 \mathrm{MHz}$.

${ }^{1} \mathrm{H}$ NMR of $\mathbf{7 b}$ in DMSO- $d_{6}, 400 \mathrm{MHz}$.

${ }^{13} \mathrm{C}$ NMR of $7 \mathbf{b}$ in DMSO- $\mathrm{d}_{6}, 100 \mathrm{MHz}$.

```
TDC-006 CPS399-CRAJ-399 in CDC13
```

semb-400мhz
MR. No: ME1011/2570
Analyst: Haribabu
Date: 21st oct. 2011

${ }^{1} \mathrm{H}$ NMR of $\mathbf{7 c}$ in DMSO- $d_{6}, 400 \mathrm{MHz}$.

${ }^{13} \mathrm{C}$ NMR of 7 c in DMSO- $\mathrm{d}_{6}, 100 \mathrm{MHz}$.

${ }^{1} \mathrm{H}$ NMR of 7 d in DMSO- $\mathrm{d}_{6}, 400 \mathrm{MHz}$.

${ }^{13} \mathrm{C}$ NMR of $7 \mathbf{d}$ in DMSO- $d_{6}, 100 \mathrm{MHz}$.

```
TDC-006 CPS399-CRAJ-391 in CDC13
smR-400mez
AR. No:ME1111/402
Analyst: Har1babu
```

M

$$
\begin{aligned}
& 6.464 \\
& 44.478
\end{aligned}
$$

${ }^{1} \mathrm{H}$ NMR of 7 e in $\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$.

${ }^{13} \mathrm{C}$ NMR of 7 e in $\mathrm{CDCl}_{3}, 100 \mathrm{MHz}$.

```
TDC-006 CPS399-CRAJ-385 in CDC13
MMR-400MH2
Analygt: Haribabu
MOCLEOS:
```


${ }^{1} \mathrm{H}$ NMR of $\mathbf{7 f}$ in $\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$.

TDC-006 CP3399/CRAJ/386 in CDC13

AR. Mo: ME1011/2021
Analyst : Haribaba
Date: 19th oct. 2011

${ }^{13} \mathrm{C}$ NMR of 7 f in $\mathrm{CDCl}_{3}, 100 \mathrm{MHz}$.

TDC-006 CP9399-CRAJ-386 in CDC1
sarr-4003azz
MR. Mo: ME1011/2568
Analyst: Haribabo
Date: 21et oct. 2011

${ }^{1} \mathrm{H}$ NMR of $\mathbf{7} \mathbf{g}$ in $\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$.

${ }^{13} \mathrm{C}$ NMR of 7 g in $\mathrm{CDCl}_{3}, 100 \mathrm{MHz}$.

```
TDC-006 CP8399-CRAJ-387 in CDC13
```

smar-400nhz
AR. No: ME1011/2569
Analyst: Haribabu
Dato: 21st oct. 2011

${ }^{1} \mathrm{H}$ NMR of $9 \mathbf{a}$ in $\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$.

${ }^{13} \mathrm{C}$ NMR of 9 a in $\mathrm{CDCl}_{3}, 100 \mathrm{MHz}$.

${ }^{1} \mathrm{H}$ NMR of $\mathbf{9 b}$ in $\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$.
Ces399/CRNJ/142 in CDCL3
AR6D, Murigene Discovery Technologies Ltd, Hyderabad Instrument : Nercury Plus (Varian 400NAz) Date 5 Time : Yri Doe 4 09:03:53 Iss 2009
rocorded By : Grikanth rocorded by : Exikanth.

${ }^{13} \mathrm{C}$ NMR of 9 b in $\mathrm{CDCl}_{3}, 100 \mathrm{MHz}$.

CP3399-CRAT-142 in CDC13
mbe-210
an. WO: GE0110/14
Analyst:Srikanth, A
Data:Sth Jan 2010

${ }^{1} \mathrm{H}$ NMR of 9 c in $\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$.

${ }^{13} \mathrm{C}$ NMR of $9 \mathbf{c}$ in $\mathrm{CDCl}_{3}, 100 \mathrm{MHz}$.

```
*-DC-210
NR.no:Gz0110/21
Analyat: Shruthi
Data:9th Jan 2010
```


$\begin{array}{lll}140 & 120 & 100\end{array}$

