Supporting Information

for

Azobenzene dye-coupled quadruply hydrogen-bonding modules as colorimetric indicators for supramolecular interactions

Yagang Zhang and Steven C. Zimmerman*

Address: Department of Chemistry, 600 South Mathews Avenue, University of Illinois, Urbana, IL 61801, USA

Email: Steven C. Zimmerman* - sczimmer@illinois.edu

*Corresponding author

General experimental procedures, detailed synthetic procedures and characterization data

Table of contents

Experimental section	
Additional general methods	<u>S2</u>
Synthetic procedures	S3
¹ H and ¹³ C NMR spectra	
Compound 1	<u></u> S10
Compound 2	<u></u> S11
Compound 3	<u></u> \$12
Compound 5	<u></u> \$13
Compound 6	<u></u> S14
Compound 8	<u></u> \$15
Compound 10	S16

Compound 12	S17
Compound 13	<u>_</u> S18
Compound 14	<u>_</u> S19
Compound 15	<u>_</u> S20
Compound 18	<u>_</u> S21
Elemental composition reports of HR-ESI-MS	<u></u> S22
References	S28

Experimental section

Additional general methods

Analytical thin-layer chromatography (TLC) was performed by using 0.2 mm silica 60 coated, plastic plates with F_{254} indicator purchased from EM Science. Column chromatography was performed by using Ultra Pure SiliaFlash® P60 230–400 mesh (40–63 µm) silica gel (SiO₂) with fluorescence indicator green 254 nm (Fluka) following the general procedure reported by Still and co-workers [1]. Analytical size-exclusion chromatography (SEC) was performed in THF with a flow-rate of 1 mL min⁻¹ (30 °C) using Waters auto sampler, pump, photodiode array and refractive-index detector outfitted with Waters Styragel columns (HR5, HR4, HR3, HR1). Molecular weight was determined using conventional calibration against polystyrene standards.

¹H NMR spectra were acquired on a Varian Unity 500 MHz (13 C, 126 MHz) spectrometer. ¹H NMR chemical shifts (δ) are reported in parts per million (ppm) and are referenced to the residual solvent peak at 7.26 ppm for CDCl₃, 2.50 ppm for DMSO-*d*₆ and 3.31 ppm for CD₃OD. ¹H NMR coupling constants (*J*) are reported in hertz (Hz). Several of the aromatic protons in the azobenzene units are listed as doublets although additional coupling and broadening was seen in most of the aromatic resonances. ¹³C NMR chemical shifts are reported in ppm and were referenced to the residual solvent peak at 77.16 ppm for CDCl₃, 39.52 ppm for DMSO-*d*₆ and 49.00 ppm for CD₃OD. All NMR spectra are original spectra obtained from the NMR instrument and then scanned. Mass spectra were obtained on Micromass Q-Tof Ultima (HR-ESI) and Micromass Quattro (LR-ESI) instruments. Melting points were determined by using a Thomas-Hoover melting point apparatus and are uncorrected.

Synthetic procedures

tert-Butyl 4-[(4-hydroxyphenyl)diazenyl]benzoate (1)

To a stirred suspension of 4-aminobenzoic acid *tert*-butyl ester (2.40 g, 12.0 mmol) in 30 mL of a 2 M aqueous hydrochloric acid solution cooled in a 0 °C ice bath, was added dropwise 5 mL of an aqueous solution of NaNO₂ (900 mg, 13.0 mmol). The solution was stirred for 8 min and diluted with ice-cold MeOH (50 mL). The resultant yellow solution was added slowly to a solution of phenol (1.17 g, 12.4 mmol) and NaOH (960 mg, 24.0 mmol) in 14 mL MeOH cooled to 0 °C in an ice bath. The solution was stirred for 1 h and a concentrated aqueous solution of HCl was added until pH 1 to 2 was attained. The precipitate was filtered off and washed with an excess of water. The crude product was crystallized from EtOH–H₂O (1:10, *v/v*) to afford 2.23 g (60%) of **1** as an orange solid: mp 144-145 °C; ¹H NMR (500 MHz, CDCl₃) δ 8.12 (d, *J* = 8.5, 2H), 7.92 (d, *J* = 9.0, 2H), 7.88 (d, *J* = 8.5, 2H), 6.97 (d, *J* = 9.0, 2H), 5.41 (s, 1H), 1.62 (s, 9H); ¹³C NMR (126 MHz, CDCl₃) δ 165.5, 158.9, 155.2, 147.4, 133.4, 130.6, 125.5, 122.4, 116.0, 81.6, 28.4, 28.3; ESI-HR-MS calcd for (C₁₇H₁₈N₂O₃+H)⁺ 299.1396, found 299.1395.

tert-Butyl 4-{[4-(4-ethoxy-4-oxobutoxy)phenyl]diazenyl}benzoate (2)

A mixture of **1** (1.00 g, 3.35 mmol), ethyl 4-bromobutyrate (2.75 g, 13.4 mmol), potassium carbonate (1.39 g, 10.1 mmol), and potassium iodide (500 mg, 0.301 mmol) in 50 mL of THF was stirred and heated under reflux for 16 h. The mixture was cooled, concentrated in vacuo, and dissolved in ca. 35 mL of CH₂Cl₂. The solution was washed with 30 mL of a 2.0 M aqueous solution of HCl and 30 mL of brine. The organic layer was concentrated in vacuo and the residue purified by silica gel column chromatography with MeOH–CH₂Cl₂ (1:99 ν/ν , $R_f = 0.72$) to afford 995 mg (72%) of **2** as an orange solid: mp 108-109 °C; ¹H NMR (500 MHz, CDCl₃) δ 8.11 (d, J = 8.5, 2H), 7.93 (d, J = 9.0, 2H), 7.88 (d, J = 8.5, 2H), 7.00 (d, J = 9.0, 2H), 4.16 (q, J = 7.0, 2H), 4.10 (t, J = 6.0, 2H), 2.54 (t, J = 7.0, 2H), 2.14-2.18 (m, 2H), 1.62 (s, 9H), 1.26 (t, J = 7.0, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 173.2, 165.4, 162.0, 155.2, 147.2, 133.3, 130.5, 125.3, 122.3, 115.0, 114.8, 81.5, 67.3, 60.7, 30.8, 28.5, 28.4, 28.3, 24.7, 14.4, 14.3; ESI-HR-MS calcd for (C₂₃H₂₈N₂O₅+H)⁺ 413.2076, found 413.2079.

4-{[4-(4-Ethoxy-4-oxobutoxy)phenyl]diazenyl}benzoic acid (3)

Trifluoroacetic acid (4 mL, 52 mmol) was added to 2 (600 mg, 1.45 mmol). The mixture was stirred for 20 min. The excess trifluoroacetic acid was removed in vacuo and 2 mL acetone was

added. The solid was filtered off and was purified by silica gel column chromatography with MeOH-CH₂Cl₂ (5:95 v/v, $R_f = 0.25$) to afford 440 mg (85%) of **3** as an orange solid: mp 211-212 °C; ¹H NMR (500 MHz, DMSO- d_6) δ 13.20 (bs, 1H), 8.10 (d, J = 9.0, 2H), 7.91 (d, J = 9.5, 2H), 7.89 (d, J = 8.5, 2H), 7.13 (d, J = 9.0, 2H), 4.11 (t, J = 6.5, 2H), 4.07 (q, J = 7.0, 2H), 2.51 (t, J = 2.0, 2H), 1.99-2.02 (m, 2H), 1.18 (t, J = 7.0, 3H); ¹³C NMR (126 MHz, DMSO- d_6) δ 172.5, 161.8, 154.4, 146.2, 130.6, 125.0, 122.3, 115.2, 67.2, 60.0, 30.1, 24.1, 14.1; ESI-HR-MS calcd for (C₁₉H₂₀N₂O₅+H)⁺ 357.1450, found 357.1447.

Ethyl 4-{4-[4-(7-heptanamido-1,8-naphthyridin-2-ylcarbamoyl)phenyl]diazenyl}phenoxy)butanoate (5)

To a stirred solution of **4** (38 mg, 0.140 mmol), DMAP (5 mg, 0.035 mmol), and **3** (100 mg, 0.280 mmol) in 12 mL of CH₂Cl₂ cooled to 0 °C in an ice bath, was added EDC (54 mg, 0.280 mmol), and the mixture was warmed to ambient temperature over several hours and stirred for 24 h. The solution was diluted with 20 mL of CH₂Cl₂ and was washed with water (3 × 20 mL), a saturated aqueous solution of sodium bicarbonate (2 × 20 mL), and brine (20 mL). The organic layer was dried over sodium sulfate, concentrated in vacuo and purified by silica gel column chromatography with MeOH–CH₂Cl₂ (5:95 *v/v*, R_f = 0.65) to afford **5** (61 mg, 71%) as an orange solid. mp 228-229 °C; ¹H NMR (500 MHz, CDCl₃) δ 9.14 (s, 1H), 8.61 (s, 1H), 8.59 (d, *J* = 8.5, 1H), 8.46 (d, *J* = 9.0, 1H), 8.18 (d, *J* = 8.5, 1H), 8.14 (d, *J* = 9.0, 1H), 8.05 (d, *J* = 8.5, 2H), 7.93 (d, *J* = 9.0, 2H), 7.92 (d, *J* = 8.5, 2H), 7.00 (d, *J* = 9.0, 2H), 4.16 (q, *J* = 7.5, 2H), 4.10 (t, *J* = 6.0, 2H), 2.54 (t, *J* = 7.0, 2H), 2.44 (t, *J* = 7.5, 2H), 2.13-2.18 (m, 2H), 1.68-1.74 (m, 2H), 1.34 (t, *J* = 7.0, 3H), 1.26-1.28 (m, 6H), 0.86 (t, *J* = 7.0, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 173.2, 172.6, 165.4, 162.2, 155.2, 154.2, 154.1, 153.8, 147.1, 139.3, 139.2, 134.8, 128.5, 125.4, 123.0, 118.6, 114.9, 113.8, 113.7, 67.2, 60.7, 38.1, 31.6, 30.8, 28.9, 25.3, 24.6, 22.6, 14.4, 14.1; ESI-HR-MS calcd for (C₃₄H₃₈N₆O₅+H)⁺ 611.2982, found 611.2984.

4-(4-{[4-(*tert*-Butoxycarbonyl)phenyl]diazenyl}phenoxy)butanoic acid (6)

A suspension of 2 (0.148 g, 0.359 mmol) in 12 mL of a 1:1 (ν/ν) mixture of 10% aqueous LiOH and ethanol was stirred at room temperature for 1 h. The mixture was neutralized by dropwise addition of a 5% aqueous solution of HCl, concentrated in vacuo to remove ethanol, and extracted with CH₂Cl₂ (3 × 50 mL). The combined organic layers were washed with saturated aqueous sodium bicarbonate (20 mL), and brine (2 × 20 mL). The organic layer was dried over sodium sulfate, concentrated in vacuo and purified by silica gel column chromatography MeOH– CH₂Cl₂ (5:95 *v/v*, $R_f = 0.33$) to afford 121 mg (88%) of **6** as an orange solid: mp 202-203 °C; ¹H NMR (500 MHz, CDCl₃) δ 8.11 (d, J = 8.0, 2H), 7.94 (d, J = 9.0, 2H), 7.88 (d, J = 8.5, 2H), 7.01 (d, J = 9.0, 2H), 4.13 (t, J = 6.5, 2H), 2.63 (t, J = 7.0, 2H), 2.15-2.21 (m, 2H), 1.62 (s, 9H); ¹³C NMR (126 MHz, CDCl₃) δ 178.7, 165.5, 161.8, 155.2, 147.2, 133.3, 130.5, 125.3, 122.4, 114.9, 81.5, 67.0, 30.5, 28.3, 24.4; ESI-HR-MS calcd for (C₂₁H₂₄N₂O₅+H)⁺ 385.1763, found 385.1765.

tert-Butyl 4-({4-[4-(7-isobutyramido-1,8-naphthyridin-2-ylamino)-4-oxobutoxy]phenyl}diazenyl)benzoate (8)

To a stirred solution of **7** (30 mg, 0.130 mmol), DMAP (4 mg, 0.033 mmol), and **6** (50 mg, 0.130 mmol) in 10 mL of CH₂Cl₂ cooled to 0 °C in an ice bath, was added EDC (27 mg, 0.143 mmol), and the reaction mixture was warmed to ambient temperature over several hours and stirred for 24 h. The solution was diluted with 20 mL of CH₂Cl₂ and washed with water (2 × 20 mL), a saturated solution of aqueous sodium bicarbonate (20 mL), and brine (20 mL). The organic layer was dried over sodium sulfate, concentrated in vacuo and purified by silica gel column chromatography with MeOH–CH₂Cl₂ (1:9 ν/ν , $R_f = 0.72$) to afford 47 mg (60%) of **8** as an orange solid: mp 208-209 °C; ¹H NMR (500 MHz, CDCl₃) δ 8.86 (bs, 1H), 8.51 (bs, 1H), 8.46 (d, J = 8.5, 1H), 8.43 (d, J = 9.0, 1H), 8.13 (d, J = 9.0, 1H), 8.12 (d, J = 8.0, 1H), 8.10 (d, J = 8.0, 2H), 7.90 (d, J = 8.5, 2H), 7.86 (d, J = 8.5, 2H), 6.97 (d, J = 8.5, 2H), 4.13 (t, J = 6.0, 2H), 2.71 (t, J = 7.0, 2H), 2.60-2.64 (m, 1H), 2.23-2.27 (m, 2H), 1.61 (s, 9H), 1.26 (d, J = 7.0, 6H); ¹³C NMR (126 MHz, CDCl₃) δ 176.2, 171.7, 165.4, 161.8, 155.1, 154.2, 154.0, 147.2, 139.3, 139.2, 133.3, 130.6, 130.5, 125.3, 122.3, 118.5, 114.9, 113.7, 113.6, 81.5, 67.2, 37.0, 34.1, 28.3, 24.6, 19.4; ESI-HR-MS calcd for (C₃₃H₃₆N₆O₅+H)⁺ 597.2825, found 597.2825.

tert-Butyl 4-[(4-{4-[7-(2-ethylhexanamido)-1,8-naphthyridin-2-ylamino]-4-oxobutoxy}phenyl)diazenyl]benzoate (10)

To a stirred solution of **9** (31 mg, 0.108 mmol), DMAP (4 mg, 0.033 mmol) and **6** (42 mg, 0.108 mmol) in 10 mL CH₂Cl₂ cooled to 0 °C in an ice bath, was added EDC (25 mg, 0.119 mmol) and the mixture was warmed to ambient temperature over several hours and stirred for 24 h. The solution was diluted with 20 mL CH₂Cl₂ and was washed with water (2 × 20 mL), a saturated aqueous solution of sodium bicarbonate (20 mL), and brine (20 mL). The organic layer was dried over sodium sulfate, concentrated in vacuo and purified by silica gel column

chromatography with MeOH–CH₂Cl₂ (5:95 v/v, R_f =0.41) to afford 47 mg (62%) of **10** as an orange solid: mp 198-199 °C; ¹H NMR (500 MHz, CDCl₃) δ 8.88 (bs, 1H), 8.50 (bs, 1H), 8.48 (d, J = 9.0, 1H), 8.43 (d, J = 9.0, 1H), 8.14 (d, J = 9.0, 1H), 8.13 (d, J = 8.5, 1H), 8.10 (d, J = 8.0, 2H), 7.90 (d, J = 9.0, 2H), 7.87 (d, J = 8.5, 2H), 6.97 (d, J = 9.0, 2H), 4.13 (t, J = 6.0, 2H), 2.71 (t, J = 7.0, 2H), 2.23-2.27 (m, 2H), 2.17-2.21 (m, 1H), 1.67-1.74 (m, 2H), 1.61 (s, 9H), 1.48-1.55 (m, 2H), 1.25-1.30 (m, 2H), 0.93 (t, J = 7.5, 3H), 0.84 (t, J = 7.0, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 175.6, 171.7, 165.4, 161.8, 155.1, 154.1, 153.8, 147.2, 139.3, 139.2, 133.3, 130.6, 125.3, 124.3, 122.3, 119.3, 118.5, 114.9, 114.3, 113.9, 113.6, 81.5, 67.2, 60.0, 34.1, 32.5, 29.9, 28.3, 26.1, 24.6, 22.8, 14.0, 12.1; ESI-HR-MS calcd for (C₃₇H₄₄N₆O₅+H)⁺ 653.3451, found 653.3453.

tert-Butyl 4-[(4-{2-[2-(3-butylureido)-7-(cyclohexylmethyl)-4-oxo-4,7-dihydro-3*H*-pyrrolo-[2,3-*d*]pyrimidin-6-yl]acetoxy}phenyl)diazenyl]benzoate (12)

To a stirred solution of **11** (36 mg, 0.089 mmol), DMAP (3 mg, 0.025 mmol) and **1** (19 mg, 0.064 mmol) in 10 mL of CH₂Cl₂ cooled to 0 °C in an ice bath, was added EDC (22 mg, 0.116 mmol) and the mixture was warmed to ambient temperature over several hours and stirred for 24 h. The solution was diluted with 20 mL CH₂Cl₂ and was washed with water (2 × 20 mL), a saturated aqueous solution of sodium bicarbonate (20 mL), and brine (20 mL). The organic layer was dried over sodium sulfate, concentrated in vacuo and purified by silica gel column chromatography with MeOH–CH₂Cl₂ (5:95 ν/ν , R_f = 0.24) to afford 47 mg (35%) of **12** as an orange-yellow solid: mp 150-151 °C; ¹H NMR (500 MHz, CDCl₃) δ 9.65 (bs, 1H), 9.36 (bs, 1H), 8.94 (bs, 1H), 8.13 (d, *J* = 8.5, 2H), 7.98 (d, *J* = 9.0, 1H), 7.91 (d, *J* = 8.5, 2H), 7.65 (bs, 1H), 7.31 (d, *J* = 9.0, 2H), 4.03 (s, 2H), 3.93 (d, *J* = 7.0, 2H), 3.45-3.49 (m, 2H), 1.80-1.84 (m, 2H), 1.75-1.77 (m, 1H), 1.63-1.68 (m, 4H), 1.62 (s, 9H), 1.46-1.51 (m, 2H), 1.14-1.19 (m, 4H), 0.99 (t, *J* = 7.5, 3H), 0.84-0.91 (m, 2H); ¹³C NMR (126 MHz, CDCl₃) δ 180.9, 168.1, 165.3, 154.8, 153.8, 153.0, 151.8, 149.2, 146.4, 134.0, 132.2, 130.5, 125.5, 124.5, 122.7, 122.3, 120.1, 116.1, 104.0, 81.7, 50.5, 49.5, 40.4, 40.3, 39.1, 38.9, 33.4, 32.3, 32.1, 30.9, 29.8, 28.3, 26.4, 25.8, 20.4, 14.0; ESI-HR-MS calcd for (C₃₇H₄₅N₇O₆+H)⁺ 684.3510, found 684.3508.

4-[(4-Hydroxyphenyl)diazenyl]benzoic acid (13)

To a suspension of 4-aminobenzoic acid (1.24 g, 9.00 mmol) in 25 mL of a 2.0 M aqueous solution of hydrochloric acid cooled to 0 °C in an ice bath was added dropwise a solution of

sodium nitrite (1.04 g, 15.1 mmol) in water (5.0 mL). The pale yellow mixture was stirred at 0 °C for 20 min and added slowly to an ice-cold solution of phenol (706 mg, 7.50 mmol), sodium hydroxide (260 mg, 6.50 mmol) and potassium carbonate (1.40 g, 10.1 mmol) in 20 mL of water. The mixture was stirred for 1 h while being cooled in an ice-water bath and then warmed to ambient temperature and stirred for 3 h. The brown suspension was neutralized with a 2 M aqueous solution of HCl and filtered. The solid was dissolved in MeOH and dry loaded on silica gel and purified by column chromatography with MeOH-CH₂Cl₂ (5:95 ν/ν , $R_f = 0.32$) to afford 1.18 g, (65%) of **13** as an orange solid: mp 274-275 °C; ¹H NMR (500 MHz, CD₃OD) δ 8.15 (d, J = 8.5, 2H), 7.88 (d, J = 8.5, 2H), 7.85 (d, J = 9.0, 2H), 6.92 (d, J = 9.0, 2H); ¹³C NMR (126 MHz, CD₃OD) δ 169.2, 162.9, 156.8, 147.6, 133.0, 131.8, 126.4, 123.2, 116.8; ESI-HR-MS calcd for (C₁₃H₁₀N₂O₃+H)⁺ 243.0770, found 243.0772.

4-{[4-(5-Bromopentyloxy)phenyl]diazenyl}benzoic acid (14)

A mixture of **13** (120 mg, 0.500 mmol), 1,5-dibromopentane (137 mg, 0.596 mmol), potassium carbonate (207 mg, 1.50 mmol), and potassium iodide (9 mg, 0.0542 mmol) in 15 mL anhydrous ethanol was stirred and heated under reflux for 20 h. The mixture was cooled to ambient temperature and concentrated in vacuo. The residue was dissolved in 50 mL of CH₂Cl₂ and washed with 30 mL of a 2 M aqueous solution of HCl and 30 mL of brine. The organic layer was concentrated in vacuo and purified by silica gel column chromatography with MeOH-CH₂Cl₂ (1:9 ν/ν , $R_{\rm f} = 0.43$) to afford 120 mg (62%) of **14** as an orange solid: mp 216-217 °C; ¹H NMR (500 MHz, DMSO-*d*₆) δ 13.22 (bs, 1H), 8.12 (d, *J* = 8.5, 2H), 7.93 (d, *J* = 9.0, 2H), 7.91 (d, *J* = 8.0, 2H), 7.15 (d, *J* = 9.0, 2H), 4.11 (t, *J* =6.5, 2H), 3.58 (t, *J* = 7.0, 2H), 1.86-1.92 (m, 2H), 1.76-1.82 (m, 2H), 1.53-1.59 (m, 2H); ¹³C NMR (126 MHz, DMSO-*d*₆) δ 166.8, 162.0, 154.4, 146.1, 132.2, 130.6, 125.0, 122.2, 115.2, 67.9, 35.1, 31.9, 27.7, 24.2; ESI-HR-MS calcd for (C₁₈H₁₉N₂O₃Br+H)⁺ 391.0657, found 391.0657.

Ethyl 4-{[4-(5-bromopentyloxy)phenyl]diazenyl}benzoate (15)

To a stirred solution of **14** (125 mg, 0.320 mmol), DMAP (12 mg, 0.098 mmol), and anhydrous ethanol (2.76 g, 60 mmol) in 12 mL of CH_2Cl_2 cooled to 0 °C in an ice bath, was added EDC (67 mg, 0.350 mmol). The mixture was warmed to ambient temperature over several hours, stirred for 24 h, and concentrated in vacuo. The residue was dissolved in 40 mL of CH_2Cl_2 and washed with water (2 × 20 mL), a saturated aqueous solution of sodium bicarbonate (2 × 20 mL),

and with brine (20 mL). The organic layer was dried over sodium sulfate, concentrated in vacuo and purified by silica gel column chromatography with MeOH-CH₂Cl₂ (1:99 ν/ν , $R_f = 0.83$) to afford **15** (102 mg, 76%) as an orange solid: mp 98-99 °C; ¹H NMR (500 MHz, CDCl₃) δ 8.17 (d, J = 8.5, 2H), 7.94 (d, J = 8.5, 2H), 7.90 (d, J = 8.0, 2H), 7.00 (d, J = 8.5, 2H), 4.41 (q, J = 7.0, 2H), 4.06 (t, J = 6.0, 2H), 3.45 (t, J = 6.5, 2H), 1.93-1.98 (m, 2H), 1.83-1.88 (m, 2H), 1.62-1.69 (m, 2H), 1.42 (t, J = 7.0, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 166.3, 162.2, 155.4, 147.0, 131.6, 130.6, 125.3, 122.4, 114.9, 68.1, 61.3, 33.7, 32.5, 28.5, 24.9, 14.5; ESI-HR-MS calcd for (C₂₀H₂₃N₂O₃Br+H)⁺ 419.0970, found 419.0969.

Ethyl 4-{[4-(5-azidopentyloxy)phenyl]diazenyl}benzoate (16)

A mixture of **15** (100 mg, 0.238 mmol), sodium azide (372 mg, 0.572 mmol), tetrabutyl amonium bromide (100 mg, 0.31 mmol) and five drops of acetonitrile in 15 mL of CH₂Cl₂ was stirred and heated under reflux for 4 h. The mixture was cooled to ambient temperature and concentrated in vacuo. The residue was taken up in 60 mL of CH₂Cl₂, washed with brine (3 × 30 mL), and concentrated in vacuo to afford 131 mg of crude **16** as an orange solid, which was used for next step without further purification. The product was confirmed with HR-ESI-MS calcd for (C₂₀H₂₃N₅O₃+H)⁺ 382.1879, found 382.1879.

Ethyl 4-[(4-{5-[4-(3-{2-[2-(3-butylureido)-7-(cyclohexylmethyl)-4-oxo-4,7-dihydro-3*H*-pyrrolo[2,3-*d*]pyrimidin-6-yl]acetoxy}propyl)-1*H*-1,2,3-triazol-1-yl]pentyloxy}phenyl)diazenyl]benzoate (18)

To a stirred solution of **16** (131 mg) and **17** (40 mg, 0.085 mmol) in 15 mL of CH₂Cl₂ was added a solution of copper(II)sulfate pentahydrate (10 mg, 0.04 mmol) and sodium ascorbate (36 mg, 0.182 mmol) in 2 mL water. The mixture was stirred at room temperature for 24 h. The water layer was separated and washed with 40 mL of CH₂Cl₂. The combined CH₂Cl₂ layers were washed with brine (2 × 20 mL), dried over sodium sulfate, concentrated in vacuo and purified by silica gel column chromatography with MeOH-CH₂Cl₂ (1:9 ν/ν , $R_f = 0.46$) to afford 52 mg (71%) of **18** as an orange yellow solid: mp 159-160°C; ¹H NMR (500 MHz, CDCl₃) δ 11.24 (bs, 1H), 9.39 (bs, 1H), 8.97 (bs, 1H), 8.15 (d, J = 8.0, 2H), 7.89 (d, J = 9.0, 2H), 7.87 (d, J = 9.0, 2H), 7.39 (bs, 1H), 6.94 (d, J = 9.0, 2H), 6.85 (bs, 1H), 4.40 (q, J = 7.0, 2H), 4.37 (t, J = 6.0, 2H), 4.23 (t, J = 7.5, 2H), 4.15 (t, J = 7.0, 2H), 3.99 (t, J = 7.5, 2H), 3.82 (d, J = 7.0, 2H), 3.73 (s, 2H), 2.25-2.29 (m, 2H), 2.03-2.09 (m, 2H), 2.00-2.04 (m, 1H), 1.96-2.05 (m, 2H), 1.80-1.83 (m, 2H), 1.84-1.86 (m, 2H), 1.69-1.72 (m, 4H), 1.62-1.66 (m, 4H), 1.54-1.58 (m, 2H), 1.46-1.52 (m, 4H), 1.41 (t, J = 9.0, 3H), 0.97 (t, J = 7.0, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 170.0, 166.3, 162.1, 159.3, 155.4, 154.1, 148.6, 147.0, 146.4, 131.6, 130.6, 127.5, 126.3, 125.3, 122.4, 114.8, 103.5, 103.3, 102.5, 83.1, 69.4, 67.9, 64.4, 64.0, 61.3, 50.3, 49.3, 40.2, 39.0, 33.2, 32.2, 31.2, 30.1, 28.6, 28.2, 27.4, 26.3, 25.9, 23.2, 22.0, 20.5, 15.3, 14.5, 14.0; ESI-HR-MS calcd for (C₄₅H₅₈N₁₀O₇+H)⁺ 851.4568, found 851.4562.

¹H and ¹³C NMR spectra

Figure S1: Compound **1**, ¹H NMR (500 MHz, CDCl₃).

Figure S2: Compound **1**, ¹³C NMR (126 MHz, CDCl₃).

Figure S3: Compound 2, ¹H NMR (500 MHz, CDCl₃).

Figure S4: Compound **2**, ¹³C NMR (126 MHz, CDCl₃).

Figure S5: Compound 3, ¹H NMR (500 MHz, DMSO- d_6).

Figure S6: Compound 3, 13 C NMR (126 MHz, DMSO- d_6).

Figure S7: Compound 5, ¹H NMR (500 MHz, CDCl₃).

Figure S8: Compound 5, ¹³C NMR (126 MHz, CDCl₃).

Figure S9: Compound 6, ¹H NMR (500 MHz, CDCl₃).

Figure S10: Compound 6, ¹³C NMR (126 MHz, CDCl₃).

Figure S11: Compound 8, ¹H NMR (500 MHz, CDCl₃).

Figure S12: Compound 8, ¹³C NMR (126 MHz, CDCl₃).

Figure S13: Compound 10, ¹H NMR (500 MHz, CDCl₃).

Figure S14: Compound 10, ¹³C NMR (126 MHz, CDCl₃).

Figure S15: Compound 12, ¹H NMR (500 MHz, CDCl₃).

Figure S16: Compound 12, ¹³C NMR (126 MHz, CDCl₃).

Figure S17: Compound 13, ¹H NMR (500 MHz, CD₃OD).

Figure S18: Compound **13**, ¹³C NMR (126 MHz, CD₃OD).

Figure S19: Compound **14**, ¹H NMR (500 MHz, DMSO-*d*₆).

Figure S20: Compound **14**, ¹³C NMR (126 MHz, DMSO-*d*₆).

Figure S21: Compound 15, ¹H NMR (500 MHz, CDCl₃).

Figure S22: Compound 15, ¹³C NMR (126 MHz, CDCl₃).

Figure S23: Compound 18, ¹H NMR (500 MHz, CDCl₃).

Figure S24: Compound **18**, ¹³C NMR (126 MHz, CDCl₃).

Experimental composition reports of HR-ESI-MS

Figure S25: Elemental composition report of compound 1 (HR-ESI-MS).

Figure S26: Elemental composition report of compound 2 (HR-ESI-MS).

Elemental	Composition R	aport							O Page 1
Single Mas Tolerance = Element pre Number of is	ss Analysis 10.0 PPM / DB diction: Off sotope peaks used	E: min = -1. for i-FIT =	5, max = 1: 3	50.0	F	10	N [×] N	0	OEt
Monoisotopic 40 formula(e) Elements Use	Mass, Even Electron evaluated with 1 res d:	n lons ults within lis	nits (all resu	its (up to 100	00) for each ma	0 185)		3	
C: 0-100 M Zhang, Yagang Qtof_36005 51	;: 0-150 N: 1-3 , scz-zyg-3-10 (3.650) AM (Cen,3, 80	0: 4-6 .00, Ar,15000	Univers 0,716.46,0.70	ity of Illnois, S),LS 3); Sm (S	CS, Mass Spectr G, 2x3.00); Cm (rometry Lab 51:53)			Q-tof UE521 1: TOF MS ES+ 2.47e+003
100-1				:	157.1				2
% 353.1 0 353.0	353.3 353.9 354.3 0 354.00	354.7 355 355.00	355,835 356.00	6.2 357. 357	1 357.2 358.0 ³	358.1 358.3 00 3	359.2 ³	59.9 360.2 360.4 360.00	360.9 361.2 361.5 361.00 m/z
Minimum: Maximum:		5.0	10.0	-1.5 150.0					
Mass	Calc. Mass	mDa	PPM	DBE	i-FIT	Formula			
357.1447	357.1450	-0.3	-0.8	10.5	12.6	C19 H21	N2 05		

Figure S28: Elemental composition report of compound 5 (HR-ESI-MS).

Elemental	Composition R	eport						Page 1
Single Ma Tolerance = Element pre Number of i	ss Analysis 10.0 PPM / DB ediction: Off isotope peaks used	E: min = -1. 1 for i-FIT =	5, max = 150.0 3	<i>t-</i> BuO		1. N 6		
Monoisotopic 133 formula(Elements Us C: 0-150 Zhang, Yegan Otor 35207 20	 Mass, Even Electroi e) evaluated with 1 reed: H: 0-200 N: 2-6 g, 3-17-2 g, 3-80 AM (Com 3, 80 	n Ions sults within I O: 2-7	University of Illno	to 1000) for each	mass)		1:17	Q-tof UE521 DF MSES+
100-	38 (1.804) MM (C481,3, 80	5.2	0,734,47,0.70,L8 3); 5	im (56, 265.00); cir	(23:20)			9.28e+002
% 3	84.6 384.8384.9	385.3 385	.5 385.6 385.8 386	2 386.4 386.8	385.9 387.2	387,2387.5 38	7.8.387.9368.0 388.3	m/z
Minimum: Maximum:		5.0	-1.5 10.0 150.0	386,30	367.00	361.50		
Mass	Calc. Mass	mDa	PPM DBE	i-FIT	Formula			
385.1765	385.1763	0.2	0.5 10.5	0.7	C21 H25	N2 05		

Figure S30: Elemental composition report of compound 8 (HR-ESI-MS).

Elemental	Composition	Report			0	$\mathbf{\mathbf{n}}$	O III	0		Page 1
Single Mas Tolerance = Element pred Number of is	s Analysis 10.0 PPM / I diction: Off otope peaks us	DBE: min = sed for i-FI	-1.5, max Γ = 3	= 150.0	N N N	N I	1 1 10		N ^{-N}	OBu-t
Monoisotopic 441 formula(e) Elements Use C: 0-150 H Zhang, Yagang,	Mass, Even Elec) evaluated with d: : 0-200 N: 0- , scz-zyg-3-20	stron lons 5 results with 6 O: 0-7	hin limits (al Un	l results (up	to 1000) for each r	nass) rometry Lab				Q-tof UE521
Qtof_36452 21	(1.507) AM (Cen,3	, 80.00, Ar,15	000.0,734.47	,0.70,LS 3); S	im (SG, 2x3.00); Cm	(20:21)				1.63e+003
100	652.4 652.7	653.2	653.4 653.	9 654.2 654	.3 _654.4 654.9	655.3 655.	4 655.8 656.0	656.4 656.6	656.8 657.0	m/z
652.00	652.50	653.00	653.50	654.00	654.50 655.00	655.50	656.00	656.50	657.00	657.50
Minimum: Maximum:		5.0	10.0	-1.5 150.0						
Mass	Calc. Mass	mDa	PPM	DBE	i-FIT	Formula				
653.3453	653.3451 653.3478 653.3420 653.3492 653.3393	0.2 -2.5 3.3 -3.9 6.0	0.3 -3.8 5.1 -6.0 9.2	18.5 17.5 26.5 22.5 27.5	0.9 4.7 25.4 8.5 15.5	C37 H4 C41 H4 C48 H4 C42 H4 C42 H4	5 N6 O5 9 O7 5 O2 5 N4 O3 1 N6			

Figure S31: Elemental composition report of compound 10 (HR-ESI-MS).

Elemental Composition Report

684.3543

684.3550

-3.5

-5.1

13.5

22.5

Page 1

Single Mass Analysis Tolerance = 10.0 PPM / DBE: min = -1.5, max = 150.0 Element prediction: Off Number of isotope peaks used for i-FIT = 3 Monoisotopic Mass, Even Electron tons 135 formuta(e) evaluated with 3 results within limits (all results (up to 1000) for each mass) Elements Used: C: 0-150 H: 0-200 N: 5-7 O: 4-6 S: 0-1 Zhang, Yagang, scz-zyg-3-15-2 Qtof_36134A 53 (3.793) AM (Cen.3, 80.00, Ar,15000.0,734.47,0.70,LS 3); Sm (SG, 2x3.00); Cm (53:54) Q-tof UE521 1: TOF MS ES+ 3.08e+003 684.4 100-685.4 685.5 686.0 686.2 686.4 686.6 686.9 687.2 687.4687.4 % 684.2 684.6.684.7 685.0 683.7,683.8 0 ----- m/z 687.00 683.50 685.50 685.00 687.50 688.00 684,00 684.50 685.00 686.50 Minimum: -1.5 Maximum: 5.0 10.0 150.0 Mass Calc. Mass mDa PPM DBE Fornula i-FIT 684.3508 684.3510 18.5 2.9 C37 -0.2 -0.3 H46 N7 06

Figure S32: Elemental composition report of compound 12 (HR-ESI-MS).

13.1

N7 N5 06 S

04

C34 H50

C42 H46

Elemental Composition Report Page										
Single Mass Analysis Tolerance = 10.0 PPM / DBE: min = -1.5, max = 150.0 Element prediction: Off Number of isotope peaks used for i-FIT = 3										
Monoisotopic Mass, Even Electron Ions 153 formula(e) evaluated with 3 results within limits (all results (up to 1000) for each mass) Elements Used: C: 0-150 H: 0-200 N: 0-5 O: 0-5 Br: 1-1										
Zhang, Yagang Qtof_36632 45	, scz-zyg-3-26-1 (3.221) AM (Cen,3, 80	00, Ar,15000.	Universi 0,734.47,0.70	ty of Illnois, S ,LS 3); Sm (S	CS, Mass Spectr G, 2x3.00); Cm (4	ometry Lab 45)			Q-tof UE521 1: TOF MS ES+ 2.80e+003	
100 % 418.3 0 418.00	419.1 419.5 418.8 419.3 419.00	419.8 ^{420.}	1 420.4 42	421.1 1.0 421.4 121.00	421.8 422.142	2.2 422.7	423.1423.4,423	15 424.1 424.3424.6 424.00 42	425.1 5.00	
Minimum: Maximum:		5.0	10.0	-1.5 150.0						
Mass	Calc. Mass	mDa	PPM	DBE	i-FIT	Formula	L			
419.0969	419.0970 419.0930 419.1011	-0.1 3.9 -4.2	-0.2 9.3 -10.0	9.5 5.5 13.5	5.8 15.0 22.3	C20 H2 C15 H2 C25 H2	4 N2 O3 4 N4 O5 4 O Br	Br Br		

Figure S35: Elemental composition report of compound 15 (HR-ESI-MS).

Figure S36: Elemental composition report of compound 16 (HR-ESI-MS).

Figure S37: Elemental composition report of compound 18 (HR-ESI-MS).

References

 Still, W. C.; Kahn, M.; Mitra, A. J. Org. Chem. 1978, 43, 2923–2925. doi:10.1021/jo00408a041