Supporting information

for

2-Allylphenyl glycosides as complementary building blocks for oligosaccharide and glycoconjugate synthesis

Hemali D. Premathilake and Alexei V. Demchenko*

Address: Department of Chemistry and Biochemistry, University of Missouri – St. Louis, One University Boulevard, St. Louis, MO 63121, USA

Email: Alexei V. Demchenko - demchenkoa@umsl.edu

*Corresponding author

Experimental procedures, extended experimental data, ¹H and ¹³C NMR spectra for all new compounds.

Content

Synthesis of glycosyl donors	S2
Synthesis of glycosyl acceptors	S7
Synthesis of additional building blocks (SI only)	S10
Data for di- and trisaccharides	S14
NMR spectra	S21
References	S61

Synthesis of glycosyl donors

2-Allylphenyl 2,3,4,6-tetra-O-benzyl-β-D-glucopyranoside (1a). 2-Allylphenyl 2,3,4,6tetra-O-acetyl- β -D-glucopyranoside (see below for the synthesis, 1.00 g, 2.16 mmol) was dissolved in methanol (8 mL), and the pH was adjusted (pH 9) by careful addition of a 1 M solution of NaOCH₃ in MeOH (~0.1 mL). The reaction mixture was kept for 1 h at rt, then Dowex (H⁺) was added until neutral pH was reached. The resin was filtered off and rinsed with methanol (3 × 5 mL). The combined filtrate (~30 mL) was concentrated in vacuo and dried. The resultant solid was dissolved in DMF (14 mL) and benzyl bromide (1.41 mL, 11.82 mmol) was added. The resulting mixture was cooled to 0 °C and NaH (0.426 g, 17.74 mmol) was added portionwise. The reaction mixture was allowed to gradually warm to rt. After stirring for 1 h at rt, the reaction was guenched by stirring with ice water (50 mL). The organic phase was extracted with ethyl acetate/diethyl ether 1/1 (v/v, 3×40 mL) and the combined organic extract was washed with water (3 × 20 mL), the organic phase was separated, dried with MgSO₄ and concentrated in vacuo. The residue was purified by column chromatography on silica gel (ethyl acetate/hexane gradient elution) to afford the title compound (1.3 g, 92%) as white crystals. Analytical data for 1a: Rf 0.50 (ethyl acetate/hexanes 1:5, v/v); mp 94-97 °C (diethyl ether/hexanes); [α]_D²³ +16.7 (*c* 1.0, CHCl₃); ¹H NMR: δ 3.34–3.49 (m, 2H, PhCH₂CH=CH₂), 3.54–3.55 (m, 1H, H-5), 3.60–3.76 (m, 5H, H-2, H-3, H-4, H-6a, H-6b), 4.43–4.54 (m, 2H, C H_2 Ph), 4.76–4.94 (m, 4H, 2×C H_2 Ph), 4.94–5.00 (m, 4H, $J_{1,2}$ = 7.8 Hz, H-1, PhCH₂CH=CH₂, 1/2×CH₂Ph), 5.97–6.10 (m, 1H, PhCH₂CH=CH₂), 6.94– 7.28 (m, 24H, aromatic) ppm; ¹³C NMR: δ 34.3, 69.0, 73.7, 75.2, 75.3, 75.4, 76.0, 77.4, 78.0, 82.3, 85.1, 101.5, 115.6, 116.1, 122.8, 127.6, 127.7, 127.8, 127.9 (x4), 128.0 (x2),

128.1 (x2), 128.2 (x2), 128.5 (x2), 128.6 (x3), 128.7 (x2), 129.8, 130.1, 136.9, 138.2, 138.3, 138.4, 138.7, 155.1 ppm; HRMS–MS (m/z): [M + Na]⁺ calcd for C₄₃H₄₄O₆Na⁺, 679.3036; found, 679.3058.

2-Allylphenyl 2,3,4,6-tetra-O-benzoyl-β-D-glucopyranoside (1b). 2-Allylphenyl 2,3,4,6-tetra-O-acetyl- β -D-glucopyranoside (see below for the synthesis, 5.40 g, 11.63 mmol) was dissolved in methanol (44 mL), and the pH was adjusted to pH 9 by careful addition of 1 M solution of NaOCH₃ in MeOH (~0.2 mL). The reaction mixture was kept for 1 h at rt, then Dowex (H⁺) was added until neutral pH. The resin was filtered off and washed with methanol (3 × 5 mL). The combined filtrate was concentrated in vacuo and dried. The residue was dissolved in dry pyridine (70 mL), the mixture was cooled to 0 °C and benzoyl chloride (7.2 mL, 62.5 mmol) was added dropwise. The reaction mixture was allowed to gradually warm to rt. After stirring for 1 h at rt, the reaction was guenched by the addition of methanol (5 mL). The resulting mixture was evaporated and coevaporated with toluene (3 × 10 mL) under reduced pressure. The residue was diluted with CH_2Cl_2 (20 mL) and washed with water (10 mL), sat. aq. NaHCO₃ (10 mL) and water (3 × 10 mL). The organic layer was separated, dried with MgSO₄, and concentrated in vacuo. The residue was purified by column chromatography on silica gel (ethyl acetate/hexane gradient elution) to afford the title compound (8.8 g, 90%) as white crystals. Analytical data for **1b**: R_f 0.58 (ethyl acetate/hexanes 4:10 v/v); mp 130–132 °C (diethyl ether/hexanes); $[\alpha]_D^{23}$ +26.7 (c 1, CHCl₃); ¹H NMR: δ 3.06 (d, 2H, J = 6.6 Hz, PhCH₂CH=CH₂), 4.18–4.26 (m, 1H, H-5), 4.39 (dd, 1H, $J_{6a,6b}$ = 12.0 Hz, $J_{5,6a}$ = 6.8 Hz, H-6a), 4.54–4.69 (m, 3H, H-6b, PhCH₂CH=CH₂), 5.26 (d, 1H, $J_{1,2}$ = 6.0 Hz, H-1), 5.50–5.64 (m, 2H, H-4,

PhCH₂*CH*=CH₂), 5.77 (dd, 1H, $J_{2,3} = 9.0$ Hz, H-2), 5.90 (dd, 1H, $J_{3,4} = 9.5$ Hz, H-3), 6.82–7.92 (m, 24H, aromatic) ppm; ¹³C NMR: δ 34.0, 63.4, 69.9, 71.7, 72.8, 73.0, 99.9, 115.4, 115.7, 123.4, 128.5 (×2), 128.6 (×2), 128.7 (×3), 128.8 (×2), 128.9, 129.0, 129.3, 129.7, 129.8 (×3), 129.9 (×2), 130.0 (×2), 130.1 (×2), 130.2, 130.3, 133.4, 133.5, 133.8, 136.4, 154.8, 165.2, 165.5, 166.0, 166.2 ppm; HRMS–MS (*m*/*z*): [M + Na]⁺ calcd for C₄₃H₃₆O₁₀Na, 735.2205; found, 735.2194.

2-Allylphenyl 2-O-benzoyl-3,4,6-tri-O-benzyl-B-D-glucopyranoside (1c). A mixture of 3,4,6-tri-O-benzyl-1,2-O-methoxybenzylidene- α -D-glucopyranose [1] (0.360 g, 0.63 mmol), molecular sieves (4 Å, 400 mg) and 2-allylphenol (0.84 mL, 6.34 mmol) in dry dichloromethane (3.6 mL) was stirred under argon for 10 min at rt. TMSOTf (0.03 mL, 0.16 mmol) was added, and the resulting mixture was stirred at rt for 4 h. After that, the reaction mixture was filtered through celite, the filtrate was diluted with dichloromethane (30 mL) and then washed with water (10 mL), sat. aq. NaHCO₃ (10 mL), and water (3 × 10 mL). The organic phase was separated, dried over MgSO₄, and concentrated in vacuo. The residue was purified by column chromatography on silica gel (ethyl acetate/hexane gradient elution) to afford the title compound (0.120 g, 28% yield) as a white solid. Analytical data for **1c**: $R_{\rm f}$ 0.59 (ethyl acetate/hexanes 3:10, v/v); $[\alpha]_{\rm D}^{23}$ +26.4 (c 1, CHCl₃); ¹H NMR: δ 3.31 (d, 1H, J = 10.0 Hz, PhCH₂CH=CH₂), 3.85–4.06 (m, 5H, H-3, H-4, H-5, H-6a, H-6b), 4.71–5.01 (m, 8H, PhCH₂CH=CH₂, 3 × CH₂Ph), 5.21 (d, 1H, $J_{1,2}$ = 7.9 Hz, H-1), 5.76 (dd, 1H, $J_{2,3}$ = 9.0 Hz, H-2), 5.79–5.89 (m, 1H, PhCH₂CH=CH₂), 7.04–8.14 (m, 24H, aromatic) ppm; ¹³C NMR: δ 33.98, 68.99, 73.6, 73.8, 75.3, 75.4, 75.7, 78.1, 82.9, 99.8, 115.2, 115.5, 122.9, 127.5, 127.8, 127.9, 128.0 (x2), 128.1, 128.2 (x4), 128.4 (x3), 128.5 (x2), 128.6 (x2), 128.7 (x2), 130.0 (x2), 130.1

(×2), 133.3, 136.7, 137.9, 138.0, 138.3, 155.2, 165.3 ppm; HRMS–MS (*m*/*z*): [M + Na]⁺ calcd for C₄₃H₄₂O₂Na 693.2831, found 693.2834.

2-Allylphenyl 2.3.4.6-tetra-O-benzyl-B-D-galactopyranoside (1d). 2-Allylphenyl 2,3,4,6-tetra-O-acetyl-β-D-galactopyranoside (see below for the synthesis, 2.00 g, 4.32 mmol) was dissolved in methanol (16 mL), and the pH was adjusted (pH 9) by careful addition of a 1 M solution of NaOCH₃ in MeOH (~0.1 mL). The reaction mixture was kept for 1 h at rt, then Dowex (H^+) was added until neutral pH was reached. The resin was filtered off and washed with methanol (3 x 10 mL). The combined filtrate was concentrated in vacuo and dried. The resultant solid was dissolved in dry DMF (24 mL) and benzyl bromide (2.4 mL, 20.27 mmol). Then the reaction mixture was cooled down to 0 °C and NaH was added (0.73 g, 30.41 mmol) portionwise. The reaction mixture was allowed to warm up gradually. After stirring for 1 h at rt, the reaction was guenched by stirring with ice water (50 mL). The organic phase was extracted with ethyl acetate/diethyl ether 1:1 (v/v, 3 × 40 mL) and the combined organic extract was washed with water (3 × 20 mL). The organic phase was separated, dried with MgSO₄ and concentrated in vacuo. The residue was purified by column chromatography on silica gel (ethyl acetate/hexanes gradient elution) to afford the title compound (2.6 g, 98%) as a white solid. Analytical data for **1d**: $R_f 0.80$ (ethyl acetate/hexanes 2:3, v/v); $[\alpha]_D^{24}$ -22.3 (*c* 1.0, CHCl₃); ¹H NMR: δ 3.39–3.50 (m, 2H, PhC*H*₂CH=CH₂), 3.60–3.71 (m, 4H, H-3, H-4, H-6a, H-6b), 3.97 (m, 1H, H-5), 4.15 (dd, 1H, J_{2.3}=8.3 Hz, H-2), 4.43 (dd, 2H, J = 11.6 Hz, CH_2Ph), 4.66 (d, 1H, $^2J = 8.4$ Hz, 1/2 × CH_2Ph), 4.72–4.80 (s, 2H, CH_2Ph), 4.88–5.05 (m, 6H, $J_{1,2}$ = 7.8 Hz, H-1, PhCH₂CH=CH₂, 1.5×CH₂Ph), 5.96–6.01 (m, 1H, PhCH₂C*H*=CH₂), 6.96–7.34 (m, 24H, aromatic) ppm; ¹³C NMR: δ 34.2, 69.1, 73.1, 73.2,

73.3, 73.8, 74.1, 74.5, 74.7, 75.7, 79.2, 82.7, 101.8, 115.1, 115.4, 116.0, 116.2, 127.7, 127.8, 127.9, 128.1, 128.2 (x2), 128.3, 128.4, 128.5 (x2), 128.6 (x3), 128.7 (x2), 129.7, 130.0, 136.9, 138.1, 138.5, 138.6, 138.7, 155.2 ppm; HRMS–MS (m/z): [M + Na]⁺ calcd for C₄₃H₄₄O₆Na⁺ 679.3036, found 679.3019.

Ethyl 2,3,4,6-tetra-O-benzyl-1-thio- β -D-glucopyranoside (24). Analytical data for the title compound was essentially the same as previously described [2].

Thiazolinyl 2,3,4,6-tetra-O-benzyl-1-thio-β-D-glucopyranoside (27). Analytical data for the title compound was essentially the same as previously described [3].

Tolyl 2,3,4,6-tetra-*O***-benzyl-1-thio**-**β-D-glucopyranoside (28).** Analytical data for the title compound was essentially the same as previously described [4].

Phenyl 2,3,4,6-tetra-O-benzyl-1-thio-β-D-glucopyranoside (29). Analytical data for the title compound was essentially the same as previously described [5].

Synthesis of glycosyl acceptors

Methyl 2,3,4-tri-*O***-benzyl-***α***-D-glucopyranoside (2)**. Analytical data for the title compound was essentially the same as previously described [1,6].

Methyl 2,3,6-tri-O-benzyl-α-D-glucopyranoside (3). Analytical data for the title compound was essentially the same as previously described [1,7].

Methyl 2,4,6-tri-*O***-benzyl-***α***-D-glucopyranoside (4)**. Analytical data for the title compound was essentially the same as previously described [7,8].

Methyl 3,4,6-tri-*O***-benzyl-***α***-D-glucopyranoside (5)**. Analytical data for the title compound was essentially the same as previously described [7,8].

Allylphenyl 2,3,4-tri-*O*-benzoyl-β-D-glucopyranoside (13). To a stirred solution of 2allylphenyl 2,3,4-tri-*O*-benzoyl-6-*O*-triphenylmethyl-β-D-glucopyranoside (see below for the synthesis, 1.1 g, 1.22 mmol) in CH₂Cl₂ (20 mL), water (0.2 mL) followed by trifluoroacetic acid (1.8 mL) were added until a persistent yellow color was obtained. The resultant mixture was stirred at rt for 45 min, diluted with CH₂Cl₂ (20 mL), and washed with water (10 mL), sat. aq. NaHCO₃ (10 mL), and water (3 × 10 mL). The organic layer was separated, dried with MgSO₄, and concentrated in vacuo. The residue was purified by column chromatography on silica gel (ethyl acetate/hexanes gradient elution) to afford the title compound (0.7 g, 90%) as a white solid. Analytical data for **13**: *R*_f 0.56 (ethyl acetate/hexanes 2:5, v/v); $[α]_D^{23}$ +15.6 (*c* 1.0, CHCl₃); ¹H NMR: δ 3.13 (t, *J* = 6.2 Hz, 1H, OH), 3.35 (d, 2H, J = 6.5 Hz, PhCH₂CH=CH₂), 3.87–4.02 (m, 2H, H-6a, H-6b), 4.08–4.13 (m, 1H, H-5), 4.89 (m, 2H, PhCH₂CH=CH₂), 5.57 (d, 1H, $J_{1,2} = 7.9$ Hz, H-1), 5.73 (dd, 1H, $J_{3,4} = 9.7$ Hz, H-4), 5.77–5.90 (m, 1H, PhCH₂CH=CH₂), 5.99 (dd, 1H, $J_{2,3} = 9.8$ Hz, H-2), 6.20 (dd, 1H, $J_{3,4} = 9.7$ Hz, H-3), 7.08–7.56 (m, 13H, aromatic), 7.95–8.09 (m, 6H, aromatic) ppm; ¹³C NMR: δ 33.9, 61.6, 69.6, 71.7, 72.9, 75.1, 77.6, 99.6, 114.9, 115.7, 123.3, 127.6, 128.5 (x3), 128.7 (x3), 128.9 (x2), 129.3, 129.9 (x2), 129.9 (x2), 130.1 (x2), 130.4, 133.5 (x2), 133.9, 136.5, 154.7, 165.2, 165.9, 166.1 ppm; HRMS–MS (*m*/*z*): [M + Na]⁺ calcd for C₃₆H₃₂O₉Na 631.1944, found 631.1937

Ethyl 2,3,4-tri-*O***-benzyl-1-thio-**β**-***D***-glucopyranoside (15).** Analytical data for the title compound was essentially the same as previously described [9].

Tolyl 2,3,4-tri-*O***-benzoyl-1-thio-***β***-D-glucopyranoside (17).** Analytical data for the title compound was essentially the same as previously described [10].

Phenyl 2,3,4-tri-*O***-benzyl-1-thio-**β**-***D***-glucopyranoside (19).** Analytical data for the title compound was essentially the same as previously described [11].

Phenyl 2,3,4-tri-O-benzoyl-1-thio-β-D-glucopyranoside (21). Analytical data for the title compound was essentially the same as previously described [12].

2-Allylphenyl 2,3,4-tri-*O***-benzyl-β-D-glucopyranoside (25).** A solution of 2-allylphenyl 6-*O*-acetyl-2,3,4-tri-*O*-benzyl-β-D-glucopyranoside (see below for the synthesis, 0.42 g, 0.69 mmol) was dissolved in methanol (3.2 mL) and the pH was adjusted to pH 9 by

careful addition of a 1 M solution of NaOCH₃ in MeOH (~0.1 mL). The reaction mixture was kept for 1 h at rt, then Dowex (H⁺) was added until a neutral pH was reached. The resin was filtered off and washed with methanol (3 × 5 mL). The combined filtrate was concentrated in vacuo and dried. The residue was purified by column chromatography on silica gel (ethyl acetate/hexanes gradient elution) to afford the title compound (0.270 g, 69%) as a white solid. Analytical data for **25**: $R_{\rm f}$ 0.56 (ethyl acetate/hexanes 2:5, v/v); $[\alpha]_{\rm D}^{23}$ –15.1 (*c* 1.0, CHCl₃); ¹H NMR: δ 1.82 (s, 1H, OH), 3.35–3.44 (m, 2H, H-4, PhCH₂CH=CH₂), 3.55–3.75 (m, 4H, $J_{2,3}$ = 8.7 Hz, H-2, H-3, H-5, H-6a), 3.80 (dd, 1H, $J_{6a,6b}$ = 12.1 Hz, $J_{5,6b}$ = 2.6 Hz, H-6b), 4.59 (d, ²J = 10.9 Hz, 1H, 1/2 CH₂Ph), 4.74–4.98 (m, 7H, PhCH₂CH=CH₂), 6.91–7.24 (m, 19H, aromatic) ppm; ¹³C NMR: δ 34.2, 62.2, 75.3, 75.5, 75.9, 82.3, 84.9, 101.1, 114.9, 116.2, 122.9, 127.7, 127.9 (x3), 128.0 (x2), 128.1 (x3), 128.3 (x3), 128.6 (x3), 128.7 (x3), 129.7, 130.4, 136.9, 138.0, 138.3, 138.6, 154.8 ppm; HRMS–MS (*m*/*z*); [M + Na]⁺ calcd for C₃₆H₃₈O₆Na 589.2668, found 589.2676.

Synthesis of additional building blocks

2-Allylphenyl 2,3,4,6-tetra-*O*-acetyl-β-D-glucopyranoside (S1).

2-Allylphenol (1.37 mL, 10.25 mmol), BF₃·OEt₂ (1.6 mL, 12.8 mmol), and triethylamine (0.36 mL, 2.56 mmol) were added to a stirred solution of 1,2,3,4,6-penta-O-acetyl-β-Dglucopyranoside (2.00 g, 5.13 mmol) in CH₂Cl₂ (40 mL). The reaction mixture was kept for 16 h at rt, then it was diluted with CH₂Cl₂ (30 mL) and washed with water (10 mL), sat. aq. NaHCO₃ (10 mL), and water (3×10 mL). The organic phase was separated, dried over MgSO₄, and concentrated in vacuo. The residue was purified by column chromatography on silica gel (ethyl acetate/hexane gradient elution) to afford the title compound (1.9 g, 90% yield) as white crystals. Analytical data for S1: Rf 0.50 (ethyl acetate/hexane 1:5, v/v); mp 145–148 °C (diethyl ether/hexanes); $[\alpha]_D^{23}$ –25.8 (c 1.0, CHCl₃); ¹H NMR: δ 2.02 (s, 3H, OCH₃), 2.03 (s, 3H, OCH₃), 2.04 (s, 3H, OCH₃), 2.06 (s, 3H, OCH₃), 3.23–3.38 (m, 2H, PhCH₂CH=CH₂), 3.81–3.87 (m, 1H, H-5), 4.16 (dd, 1H, $J_{6a,6b}$ = 12.2 Hz, $J_{5,6b}$ = 2.5 Hz, H-6b), 4.27 (dd, 1H, $J_{5,6a}$ = 5.5 Hz, H-6a), 4.95–5.05 (m, 3H, H-2, PhCH₂CH=CH₂), 5.12–5.19 (m, 1H; H-4), 5.24–5.35 (m, 2H, J_{1.2} = 8.7 Hz, H-1, H-3), 5.83–5.96 (m, 1H, PhCH₂CH=CH₂), 6.97–7.18 (m, 4H, aromatic) ppm; ¹³C NMR: δ 20.7, 20.8, 20.9, 21.0, 33.9, 62.1, 68.5, 71.2, 72.1, 72.9, 99.3, 115.4, 115.9, 123.5, 127.5, 130.0, 130.5, 136.6, 154.6, 169.3, 169.5, 170.4, 170.7 ppm; HRMS-MS (m/z): $[M + Na]^+$ calcd for C₂₃H₂₈O₁₀Na⁺, 487.1580; found, 487.1562.

2-Allylphenyl 2,3,4,6-tetra-*O*-acetyl-β-D-galactopyranoside (S2).

2-Allylphenol (1.37 mL, 10.25 mmol), BF₃·OEt₂ (1.6 mL, 12.8 mmol), and triethylamine (0.36 mL, 2.56 mmol) were added to a stirred solution of 1,2,3,4,6-penta-O-acetyl-β-Dgalactopyranoside (2.00 g, 5.13 mmol) in CH₂Cl₂ (40 mL). The reaction mixture was kept for 16 h at rt, then it was diluted with CH₂Cl₂ (30 mL) and washed with water (10 mL), sat. aq. NaHCO₃ (10 mL), and water (3 \times 10 mL). The organic phase was separated, dried over MgSO₄, and concentrated in vacuo. The residue was purified by column chromatography on silica gel (ethyl acetate/hexane gradient elution) to afford the title compound (1.8 g, 89% yield) as white crystals. Analytical data for S2: Rf 0.51 (ethyl acetate/hexane 2:3, v/v); mp 98–101 (diethyl ether/hexanes); $[\alpha]_D^{24}$ –13.0 (*c* 1.0, CHCl₃); ¹H NMR: δ, 2.23–2.42 (m, 12H, 4 × OCH₃), 3.55–3.63 (m, 2H, PhCH₂CH=CH₂), 4.33 (m, 1H, H-5), 4.40 (dd, 1H, J_{6a,6b} = 11.3 Hz, J_{5,6a} = 6.1 Hz, H-6a), 4.48 (dd, 1H, J_{5,6b} = 7.2 Hz, H-6b), 5.23 (d, 1H, $J_{1,2}$ = 8.0 Hz, H-1), 5.28 (t, 2H, PhCH₂CH=CH₂), 5.36 (dd, 1H, $J_{3,4} = 3.4$ Hz, H-3), 5.70 (dd, 1H, H-4), 5.78 (dd, 1H, $J_{2,3} = 10.4$ Hz, H-2), 6.12–6.24 (m, 1H, PhCH₂CH=CH₂), 7.10–7.29 (m, 4H; aromatic) ppm; ¹³C NMR: δ 20.6, 20.7, 20.8, 20.9, 33.8, 61.5, 67.0, 68.6, 70.9, 71.0, 99.6, 115.1, 115.7, 123.3, 127.4, 129.8, 130.3, 136.6, 154.6, 169.3, 170.1, 170.3, 170.5 ppm; HRMS-MS (*m/z*): [M + Na]⁺ calcd for C₂₃H₂₈O₁₀Na⁺, 487.1580; found, 487.1573.

2-Allylphenyl 2,3,4-tri-O-benzoyl-6-O-triphenylmethyl-β-D-glucopyranoside (S3).

Compound **S1** (1.00 g, 2.16 mmol) was dissolved in methanol (8 mL) and the pH was adjusted to pH 9 by careful addition of a 1 M solution of NaOCH₃ in MeOH (~0.1 mL). The reaction mixture was kept for 1 h at rt, then Dowex (H⁺) was added until neutral pH was reached. The resin was filtered off and rinsed with methanol (3 × 5 mL). The combined filtrate (~30 mL) was concentrated in vacuo and dried. The resultant solid was dissolved in pyridine (5.3 mL), and triphenylmethyl chloride (1.9 g, 6.76 mmol) was added and the resulting reaction mixture was stirred for 16 h. After that, the reaction mixture was cooled to 0 °C and benzoyl chloride (1.6 mL, 13.5 mmol) was added dropwise. The reaction mixture was allowed to gradually warm to rt and stirred for an additional 3 h at rt. The reaction was quenched by addition of methanol (10 mL), evaporated under reduced pressure and coevaporated with toluene (3 × 20 mL). The residue was diluted with CH₂Cl₂ (20 mL) and washed with water (10 mL), sat. aq. NaHCO₃ (10 mL) and water (3 \times 10 mL). The organic layer was separated, dried with MgSO₄, and concentrated in vacuo. The residue was purified by column chromatography on silica gel (ethyl acetate/hexanes gradient elution) to afford the title compound (1.5 g, 86%) as a white solid. Analytical data for S3: R_f 0.50 (ethyl acetate/hexanes 2:5, v/v); ¹H NMR: δ 3.33 (d, 2H, J = 6.5 Hz, PhCH₂CH=CH₂), 3.43 (dd, 1H, $J_{5.6a} = 2.2$ Hz, $J_{6b.6a} = 10.7$ Hz, H-6a), 3.52 (dd, 1H, $J_{5.6b} = 6.1$ Hz, H-6b), 4.03–4.09 (m, 1H, H-5), 4.80–4.92 (m, 2H, PhCH₂CH=C H_2), 5.40–5.43 (d, 1H, $J_{1,2}$ = 7.6 Hz, H-1), 5.65–5.72 (m, 1H, H-4), 5.76–5.89 (m, 1H, PhCH₂CH=CH₂), 5.93–6.01 (m, 2H, H-2, H-

3), 7.09–8.04 (m, 34H, aromatic) ppm; ¹³C NMR: δ 34.1, 60.6, 62.6, 69.6, 71.9, 73.3, 74.5, 74.6, 87.2 (×2), 100.0, 115.6, 115.7, 115.9, 123.4 (×2), 127.2, 127.6 (×5), 127.9, 128.4, 128.5, 128.7 (×6), 129.0, 129.1, 129.2, 129.4, 129.9, 129.9, 130.0 (×2), 130.1, 130.2, 133.4, 133.4, 136.6, 143.7 (×5), 155.1, 165.1 (×2), 165.3 (×2), 166.0 (×2) ppm; HRMS–MS (*m*/*z*): [M + Na]⁺ calcd for C₅₅H₄₆O₉Na 873.3072, found 873.3064.

2-Allylphenyl 6-O-acetyl-2,3,4-tri-O-benzyl-β-D-glucopyranoside (S4).

To a stirred solution of a **1a** (0.1 g, 0.15 mmol) in Ac₂O/AcOH 2:1 (v/v, 0.9 mL) was added freshly prepared ZnCl₂ (166 mg, 1.22 mmol) solution in Ac₂O/AcOH 2:1 (v/v, 0.86 mL). The reaction mixture was stirred under argon for 4 h at rt. Upon completion, the reaction was quenched with H₂O, diluted with ethyl acetate (50 mL), and washed with water (20 mL), sat. aq. NaHCO₃ (20 mL) and water (3 × 20 mL). The organic phase was separated, dried over MgSO₄, and concentrated in vacuo. The residue was purified by column chromatography on silica gel (ethyl acetate/toluene gradient elution) to afford the title compound (98 mg, 99%) as a clear form. Analytical data for **S4**: $R_{\rm f}$ 0.51 (ethyl acetate/toluene 1:10, v/v); $[\alpha]_{\rm D}^{23}$ –5.8 (*c* 1.0, CHCl₃); ¹H NMR: δ 1.92 (s, 3H, OCH₃), 3.29–3.45 (m, 2H, PhC*H*₂CH=CH₂), 3.48–3.65 (m, 2H, H-4, H-5), 3.67–3.71 (m, 2H, H-2, H-3), 4.14 (dd, 1H, *J*_{68,6b} = 11.8 Hz, *J*_{5,6a} = 5.1 Hz, H-6a), 4.24 (dd, 1H, *J*_{5,6b} = 1.7 Hz, H-6b), 4.51 (d, ²J = 10.9 Hz, 1/2 C*H*₂Ph), 4.74–5.01 (m, 8H, H-1, PhCH₂CH=CH₂, 2.5 × C*H*₂Ph), 5.83–5.93 (m, 1H, PhCH₂C*H*=CH₂), 6.87–7.27 (m, 19H, aromatic) ppm; ¹³C NMR: δ 20.9, 34.2, 63.3, 73.1, 75.2, 75.3, 75.9, 82.1, 85.0, 101.3, 115.5, 116.1,

123.0, 127.5, 127.9, 128.0, 128.1, 128.2, 128.3, 128.4 (×3), 128.5, 128.6 (×3), 128.6, 128.7 (×3), 129.9, 130.2, 136.8, 137.7, 138.2, 138.4, 154.9, 170.8 ppm; HRMS–MS (m/z): [M + Na]⁺ calcd for C₃₈H₄₀O₇Na, 631.2674; found, 631.2665.

Data for di- and trisaccharides

Methyl 6-O-(2,3,4,6-tetra-O-benzyl-α/β-D-glucopyranosyl)-2,3,4-tri-O-benzyl-α-Dglucopyranoside (6a). Analytical data for the title compound was similar to that previously described [13].

Methyl 6-*O*-(2,3,4,6-tetra-*O*-benzoyl-β-D-glucopyranosyl)-2,3,4-tri-*O*-benzyl-α-Dglucopyranoside (6b). Analytical data for the title compound was essentially the same as previously described [13].

Methyl 6-O-(2-O-benzoyl-3,4,6-tri-O-benzyl-β-D-glucopyranosyl)-2,3,4-tri-O-benzylα-D-glucopyranoside (6c). Analytical data for the title compound was essentially the same as previously described [14]. Methyl 6-*O*-(2,3,4,6-tetra-*O*-benzyl-D-galactopyranosyl)-2,3,4-tri-*O*-benzyl-α-Dglucopyranoside (6d). Analytical data for the title compound was essentially the same as previously described [15].

Methyl 4-O-(2,3,4,6-tetra-O-benzyl-α/β-D-glucopyranosyl)-2,3,6-tri-O-benzyl-α-Dglucopyranoside (7a). Analytical data for the title compound was similar to that previously described [13].

Methyl 4-O-(2,3,4,6-tetra-O-benzyl-D-galactopyranosyl)-2,3,6-tri-O-benzyl-α-Dglucopyranoside (7d). Analytical data for the title compound was similar to that previously described [16].

Methyl 3-O-(2,3,4,6-tetra-O-benzyl-α/β-D-glucopyranosyl)-2,4,6-tri-O-benzyl-α-D-glucopyranoside (8a). Analytical data for the title compound was similar to that previously described [17].

Methyl 3-O-(2,3,4,6-tetra-O-benzyl-D-galactopyranosyl)-2,4,6-tri-O-benzyl-α-Dglucopyranoside (8d). Analytical data for the title compound was similar to that previously described [18].

Methyl 2-O-(2,3,4,6-tetra-O-benzyl-α/β-D-glucopyranosyl)-3,4,6-tri-O-benzyl-α-D-glucopyranoside (9a). Analytical data for the title compound was similar to that previously described [19].

Methyl 2-O-(2,3,4,6-tetra-O-benzoyl-β-D-glucopyranosyl)-3,4,6-tri-O-benzyl-α-D-glucopyranoside (9b). Analytical data for the title compound was essentially the same as previously described [19].

Methyl 2-*O*-(2,3,4,6-tetra-*O*-benzyl-D-galactopyranosyl)-3,4,6-tri-*O*-benzyl-α-Dglucopyranoside (9d). The title compound was obtained as a clear film from 1d and 5 by Method C in 80% yield ($\alpha/\beta = 3.0/1$). Selected analytical data for α-9d: ¹H NMR: δ 3.91 (dd, 1H, $J_{2,3} = 7.6$ Hz, H-2), 4.02 (dd, 1H, $J_{2',3'} = 9.6$ Hz, H'-2), 4.93 (d, 1H, $J_{1,2} =$ 3.4 Hz, H-1), 4.97 (d, 1H, $J_{1'2'} = 3.5$ Hz, H'-1) ppm; ¹³C NMR: δ 94.9 (C-1), 96.7 (C'-1) ppm; HRMS–MS (m/z): [M + Na]⁺ calcd for C₆₂H₆₆O₁₁Na⁺, 1009.4503; found, 1009.4510.

2-[3-lodo-2-(methyl 2,3,4-tri-O-benzyl-α-D-glucopyranosid-6-yl)propyl]oxyphenyl 2,3,4,6-tetra-O-benzyl-β-D-glucopyranoside (12). The title compound was isolated as a by-product from the synthesis of **6a** from **1a** and **2** by Method B in 15% yield. Selected analytical data for **12**: ¹H NMR: δ 3.74 (dd, 1H, $J_{2',3'}$ = 7.9 Hz, H'-2), 4.53 (d, $J_{1,2}$ = 4.1 Hz, H-1), 5.02 (d, 1H, $J_{1',2'}$ = 8.0 Hz, H'-1) ppm; ¹³C NMR: δ 10.6, 35.9, 55.3, 68.0, 68.8, 70.4, 73.5, 73.6, 73.7, 74.8, 75.2, 75.3, 75.4, 75.5, 75.8, 75.9, 77.4, 77.8, 77.9, 79.4, 79.9, 80.1, 82.2, 82.3, 82.4, 85.1, 85.2, 98.2, 101.8, 115.8, 122.8, 122.9, 127.1, 127.6, 127.7, 127.8, 127.9 (x2), 128.0 (x2), 128.1 (x2), 128.1 (x2), 128.2 (x2), 128.3, 128.4 (x2), 128.5 (x2), 128.6 (x4), 128.7 (x4), 128.9, 129.2, 132.2, 138.1, 138.2, 138.3, 138.4, 138.5, 138.6, 138.7, 138.8, 155.5 ppm; HRMS–MS (*m/z*): [M + Na]⁺ calcd for C₇₁H₇₅IO₁₂Na⁺, 1269.4201; found, 1269.4214.

2-Allylphenyl 6-O-(2,3,4,6-tetra-O-benzyl-α/β-D-glucopyranosyl)-2,3,4-tri-O-

benzoyl-β-D-glucopyranoside (14). The title compound was obtained as a clear film from **1a** and **13** by Method B in 78% yield ($\alpha/\beta = 1.0/1$). Selected analytical data for α-**14**: ¹H NMR: δ 4.58 (d, 1H, $J_{1',2'} = 4.6$ Hz, H'-1), 5.28 (d, $J_{1,2} = 7.8$ Hz, H-1) ppm; ¹³C NMR: δ 80.4 (C-1), 98.4 (C'-1) ppm; Selected analytical data for β-**14**: ¹H NMR: δ 4.42 (d, 1H, $J_{1',2'} = 11.0$ Hz, H'-1) ppm; ¹³C NMR: δ 82.2 (C-1), 100.1 (C'-1) ppm; HRMS–MS (*m/z*): [M + Na]⁺ calcd for C₇₀H₆₈O₁₄Na⁺, 1155.4609; found, 1155.4623.

Ethyl 6-*O*-(2,3,4,6-tetra-*O*-benzyl- α/β -D-glucopyranosyl)-2,3,4-tri-*O*-benzyl-1-thio- β -D-glucopyranoside (16). Analytical data for the title compound was essentially the same as previously described [2].

Tolyl 6-*O*-(2,3,4,6-tetra-*O*-benzyl-α/β-D-glucopyranosyl)-2,3,4-tri-*O*-benzoyl-1-thioβ-D-glucopyranoside (18). The title compound was obtained as a clear film from 6 and 15 by Method A in 75% yield ($\alpha/\beta = 2.4/1$). Selected analytical data for α-18: ¹H NMR: δ 4.67 (d, 1H, $J_{1',2'} = 3.7$ Hz, H'-1), 4.85 (d, 1H, $J_{1,2} = 9.3$ Hz, H-1) ppm; ¹³C NMR: δ 86.1 (C-1), 97.6 (C'-1) ppm. Selected analytical data for β-18: ¹H NMR: δ 4.52 (d, 1H, $J_{1',2'} =$ 10.8 Hz, H'-1) ppm; ¹³C NMR: δ 87.2 (C-1), 103.9 (C'-1) ppm; HRMS–MS (*m*/*z*): [M + Na]⁺ calcd for C₆₈H₆₄O₁₃SNa⁺, 1143.3965; found, 1143.3970.

Phenyl 6-O-(2,3,4,6-tetra-O-benzyl-α/β-D-glucopyranosyl)-2,3,4-tri-O-benzyl-1-thioβ-D-glucopyranoside (20). The title compound was obtained as a clear film from **1a** and **19** by Method B in 90% yield ($\alpha/\beta = 1.0/1$). Selected analytical data for α-**20**: ¹H NMR: δ 3.95 (t, 1H, $J_{2,3} = 9.0$ Hz, H-3), 4.57 (d, 1H, $J_{1,2} = 9.3$ Hz, H-1), 5.00 (d, 1H,

 $J_{1',2'}$ = 3.5 Hz, H'-1) ppm; ¹³C NMR: δ 89.2 (C-1), 96.6 (C'-1) ppm. Selected analytical data for β -**20**: ¹H NMR: δ 4.37 (d, 1H, $J_{1',2'}$ = 7.8 Hz, H'-1); ¹³C NMR: δ 95.2 (C-1), 103.4 (C'-1) ppm. HRMS–MS (*m*/*z*): [M + Na]⁺ calcd for C₆₇H₆₈O₁₀SNa⁺, 1087.4433; found, 1087.4406.

Phenyl 6-*O*-(2,3,4,6-tetra-*O*-benzyl- α/β -D-glucopyranosyl)-2,3,4-tri-*O*-benzoyl-1thio- β -D-glucopyranoside (22). Analytical data for the title compound was essentially the same as previously described [19].

Phenyl 6-*O*-(2-benzoyl-3,4,6-tri-*O*-benzyl-β-D-glucopyranosyl)-2,3,4-tri-*O*-benzoyl-1-thio-β-D-glucopyranoside (23). The title compound was obtained as a clear film from donors 1c and acceptor 21 by Method B in 75% yield. Selected analytical data for 23: ¹H NMR: δ 3.65 (dd, 1H, $J_{6a,6b}$ = 9.3 Hz, H-6a), 3.81 (dd, 1H, $J_{5,6b}$ = 3.2 Hz, H-6b), 3.87– 3.99 (m, 4H, H-5, H'-5, H'-6a, H'-6b), 4.08–4.14 (m, 2H, H'3, H'-4), 4.59 (d, 1H, ²*J* = 12.2 Hz, 1/2 CH₂Ph), 4.70 (d, 1H, ²*J* = 11.6 Hz, 1/2 CH₂Ph), 4.78–4.88 (m, 4H, 2 × CH₂Ph), 4.93 (d, 1H, $J_{1',2'}$ = 6.2 Hz, H'-1), 4.96 (d, 1H, H_{1,2} = 5.2 Hz, H-1), 5.39–5.49 (m, 3H, H-2, H-4, H'-2), 5.88 (dd, 1H, $J_{2,3}$ = 9.4 Hz, H-3), 7.27–8.12 (m, 40H, aromatic) ppm; ¹³C NMR: δ 68.8, 69.5, 70.5, 71.2, 73.7, 74.6, 74.9, 75.3, 77.6, 78.1, 78.5, 83.2, 101.3, 127.7, 127.9, 128.1 (x3), 128.3 (x3), 128.4 (x3), 128.5 (x3), 128.6 (x4), 128.9, 129.0, 129.1 (x3), 129.2 (x3), 129.3 (x2), 129.4 (x3), 129.5 (x2), 129.9 (x2), 130.0 (x3), 130.1 (x4), 130.2, 131.8, 133.2, 133.4, 133.5, 138.0, 138.1, 138.2, 165.2, 165.5, 165.6, 165.9 ppm; HRMS–MS (*m*/*z*): [M + Na]⁺ calcd for C₆₇H₆₀O₁₄SNa, 1143.3604; found, 1143.3636

2-Allylphenyl 6-O-(2,3,4,6-tetra-O-benzyl-α/β-D-glucopyranosyl)-2,3,4-tri-O-benzylβ-D-glucopyranoside (26). The title compound was obtained as a clear film from donors **24**, **27–29** and acceptor **25** by Method A in 82–90% yield. Selected analytical data for α-**26**: ¹H NMR: δ 4.37 (d, 1H, $J_{1',2'} = 2.7$ Hz, H'-1) ppm; ¹³C NMR: δ 97.6 (C-1), 100.6 (C'-1) ppm. Selected analytical data for β-**26**: ¹H NMR: δ 4.34 (d, 1H, $J_{1',2'} =$ 5.6 Hz, H'-1) ppm; ¹³C NMR: δ 101.6 (C-1), 104.2 (C'-1) ppm; HRMS–MS (*m/z*): [M + Na]⁺ calcd for C₇₀H₇₂O₁₁Na⁺, 1111.5057; found, 1111.4980.

Methyl O-(2,3,4,6-tetra-O-benzyl- α/β -D-glucopyranosyl)-(1 \rightarrow 6)-O-(2,3,4-tri-Obenzyl- α/β -D-glucopyranosyl)-(1 \rightarrow 6)-2,3,4-tri-O-benzyl- β -D-glucopyranoside (S5). The title compound was obtained from 2 and 26 by Method C in 80% yield and from 2 and 16 by Method C in 89% yield. Analytical data for the title compound was in accordance with that previously described [20].

Phenyl O-(2,3,4,6-tetra-*O*-benzyl-α/β-D-glucopyranosyl)-(1→6)-*O*-(2,3,4-tri-*O*-benzyl-α/β-D-glucopyranosyl)-(1→6)-2,3,4-tri-*O*-benzoyl-1-thio-β-Dglucopyranoside (30). The title compound was obtained as a clear film from 26 and 21 by method B in 90% yield. Selected analytical data for α-30: ¹H NMR: δ 4.69 (d, 1H, $J_{1',2'} = 3.1$ Hz, H'-1), 4.96 (d, 1H, $J_{1'',2''} = 2.3$ Hz, H''-1) ppm; ¹³C NMR: δ 97.4 (C-1), 97.5 (C'-1), 97.6 (C''-1) ppm. Selected analytical data for β-31: ¹H NMR: δ 5.27 (d, 1H, $J_{1,2} =$ 7.9 Hz, H-1) ppm; ¹³C NMR: δ 99.7 (C-1), 99.8 (C'-1), 103.8 (C''-1) ppm; HRMS–MS (*m*/*z*): [M + Na]⁺ calcd for C₉₄H₉₀O₁₈SNa⁺, 1561.5745; found, 1561.5731. 2-Allylphenyl O-(2,3,4,6-tetra-*O*-benzyl-α/β-D-glucopyranosyl)-(1→6)-*O*-(2,3,4-tri-*O*-benzyl-α/β-D-glucopyranoside (31). The title compound was obtained as a colorless syrup from 16 and 25 by method A in 50% yield. Selected analytical data for β-31: ¹H NMR: δ 4.27 (d, 1H, $J_{1',2'} = 9.0$ Hz, H'-1), 4.37 (d, 1H, $J_{1',2'} = 7.1$ Hz, H"-1), 5.25 (d, 1H, $J_{1,2} = 6.9$ Hz, H-1) ppm; ¹³C NMR: δ 98.2 (C-1), 102.0 (C'-1), 103.8 (C"-1) ppm; HRMS–MS (*m*/*z*): [M + Na]⁺ calcd for C₉₇H₁₀₀O₁₆Na⁺, 1543.6909; found, 1543.6936.

2-Allylphenyl O-(2,3,4,6-tetra-*O*-benzyl-α/β-D-glucopyranosyl)-(1→6)-*O*-(2,3,4-tri-*O*-benzyl-α/β-D-glucopyranoside (32). The title compound was obtained as a colorless syrup from **16** and **13** by method A in 80% yield. Selected analytical data for α-**32**: ¹H NMR: δ 4.67 (d, 1H, $J_{1',2'}$ = 3.2 Hz, H'-1), 4.90 (d, 1H, $J_{1',2'}$ = 2.5 Hz, H"-1) ppm; ¹³C NMR: δ 97.4 (C-1), 97.5 (C'-1), 97.6 (C"-1) ppm; Selected analytical data for β-**33**: ¹H NMR: δ 5.27 (d, 1H, $J_{1,2}$ = 7.8 Hz, H-1) ppm; ¹³C NMR: δ 99.7 (C-1), 99.8 (C'-1), 103.8 (C"-1) ppm; HRMS–MS (*m*/*z*): [M + Na]⁺ calcd for C₉₇H₉₄O₁₉Na⁺, 1585.7729; found, 1585.7762.

NMR spectra

 $CDCI_3$ at 75 MHz

 CDCI_3 at 75 MHz

 CDCI_3 at 75 MHz

CDCl₃ at 300 MHz

 CDCI_3 at 75 MHz

 CDCI_3 at 75 MHz

1d

CDCl₃ at 300 MHz

 $CDCI_3$ at 75 MHz

 \mbox{CDCI}_3 at 75 MHz

CDCl₃ at 300 MHz

 $CDCI_3$ at 75 MHz

12

 $CDCI_3$ at 300 MHz

 $CDCI_3$ at 75 MHz

CDCI₃ at 300 MHz

CDCl₃ at 75 MHz

CDCI₃ at 300 MHz

CDCl₃ at 75 MHz

S44

 \mbox{CDCI}_3 at 75 MHz

CDCl₃ at 75 MHz

CDCl₃ at 300 MHz

 CDCl_3 at 75 MHz

CDCI₃ at 125 MHz

CDCl₃ at 75 MHz

 $CDCI_3$ at 75 MHz

CDCl₃ at 300 MHz

References

- [1] G. Ekborg and C. P. J. Glaudemans, *Carbohydr. Res.* **1984**, *129*, 287-292.
- [2] S. Kaeothip, P. Pornsuriyasak and A. V. Demchenko, *Tetrahedron Lett.* **2008**, *49*, 1542-1545.
- [3] A. V. Demchenko, P. Pornsuriyasak, C. De Meo and N. N. Malysheva, *Angew. Chem. Int. Ed.* **2004**, *43*, 3069-3072.
- [4] G. Balavoine, S. Berteina, A. Gref, J. C. Fischer and A. Lubineau, *J. Carbohydr. Chem.* **1995**, *14*, 1217-1236.
- [5] J. Dinkelaar, A. R. de Jong, R. van Meer, M. Somers, G. Lodder, H. S. Overkleeft, J.
- D. C. Codee and G. A. van der Marel, J. Org. Chem. 2009, 74, 4982-4991.
- [6] J. T. Smoot, P. Pornsuriyasak and A. V. Demchenko, *Angew. Chem. Int. Ed.* 2005, 44, 7123-7126.
- [7] J. M. Kuester and I. Dyong, Justus Liebigs Ann. Chem. 1975, 2179-2189.
- [8] S. C. Ranade, S. Kaeothip and A. V. Demchenko, Org. Lett. 2010, 12, 5628-5631.
- [9] C. Fei and T. H. Chan, Acta Chimica Sinica, Engl. Edit. 1989, 258-264.
- [10] X. Huang, L. Huang, H. Wang and X. S. Ye, *Angew. Chem. Int. Ed.* 2004, 43, 5221-5224.
- [11] P. J. Pfaeffli, S. H. Hixson and L. Anderson, *Carbohydr. Res.* **1972**, 23, 195-206.
- [12] L. A. J. M. Sliedregt, G. A. van der Marel and J. H. van Boom, *Tetrahedron Lett.* **1994**, *35*, 4015-4018.
- [13] B. A. Garcia and D. Y. Gin, J. Am. Chem. Soc. 2000, 122, 4269-4279.
- [14] H. M. Nguyen, Y. N. Chen, S. G. Duron and D. Y. Gin, *J. Am. Chem. Soc.* 2001, 123, 8766-8772.

[15] Y. D. Vankar, P. S. Vankar, M. Behrendt and R. R. Schmidt, *Tetrahedron* **1991**, *47*, 9985-9992.

[16] B. Wegmann and R. R. Schmidt, J. Carbohydr. Chem. 1987, 6, 357-375.

[17] H. Chiba, S. Funasaka and T. Mukaiyama, *Bull. Chem. Soc. Jpn.* **2003**, *76*, 1629-1644.

[18] Y. Kobashi and T. Mukaiyama, Bull. Chem. Soc. Jpn. 2005, 78, 910-916.

- [19] P. Pornsuriyasak and A. V. Demchenko, *Chem. Eur. J.* **2006**, *12*, 6630-6646.
- [20] S. Kaeothip, P. Pornsuriyasak, N. P. Rath and A. V. Demchenko, Org. Lett. 2009,

11, 799-802.