Supporting information

for

2-Allylphenyl glycosides as complementary building blocks for oligosaccharide and glycoconjugate synthesis

Hemali D. Premathilake and Alexei V. Demchenko*

Address: Department of Chemistry and Biochemistry, University of Missouri - St. Louis, One University Boulevard, St. Louis, MO 63121, USA

Email: Alexei V. Demchenko - demchenkoa@umsl.edu

*Corresponding author

> Experimental procedures, extended experimental data, ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra for all new compounds.
Content
Synthesis of glycosyl donors S2
Synthesis of glycosyl acceptors S7
Synthesis of additional building blocks (SI only) S10
Data for di- and trisaccharides S14
NMR spectra S21
References S61

Synthesis of glycosyl donors

2-Allylphenyl 2,3,4,6-tetra-O-benzyl- β-D-glucopyranoside (1a). 2-Allylphenyl 2,3,4,6-tetra-O-acetyl- β-D-glucopyranoside (see below for the synthesis, $1.00 \mathrm{~g}, 2.16 \mathrm{mmol}$) was dissolved in methanol (8 mL), and the pH was adjusted (pH 9) by careful addition of a 1 M solution of NaOCH_{3} in $\mathrm{MeOH}(\sim 0.1 \mathrm{~mL})$. The reaction mixture was kept for 1 h at $r t$, then Dowex $\left(\mathrm{H}^{+}\right)$was added until neutral pH was reached. The resin was filtered off and rinsed with methanol $(3 \times 5 \mathrm{~mL})$. The combined filtrate $(\sim 30 \mathrm{~mL})$ was concentrated in vacuo and dried. The resultant solid was dissolved in DMF (14 mL) and benzyl bromide ($1.41 \mathrm{~mL}, 11.82 \mathrm{mmol}$) was added. The resulting mixture was cooled to $0^{\circ} \mathrm{C}$ and $\mathrm{NaH}(0.426 \mathrm{~g}, 17.74 \mathrm{mmol})$ was added portionwise. The reaction mixture was allowed to gradually warm to rt. After stirring for 1 h at rt , the reaction was quenched by stirring with ice water (50 mL). The organic phase was extracted with ethyl acetate/diethyl ether $1 / 1(\mathrm{v} / \mathrm{v}, 3 \times 40 \mathrm{~mL})$ and the combined organic extract was washed with water $(3 \times 20 \mathrm{~mL})$, the organic phase was separated, dried with MgSO_{4} and concentrated in vacuo. The residue was purified by column chromatography on silica gel (ethyl acetate/hexane gradient elution) to afford the title compound ($1.3 \mathrm{~g}, 92 \%$) as white crystals. Analytical data for 1a: $R_{\mathrm{f}} 0.50$ (ethyl acetate/hexanes $1: 5, \mathrm{v} / \mathrm{v}$); mp $94-97^{\circ} \mathrm{C}$ (diethyl ether/hexanes); $[\alpha]_{\mathrm{D}}{ }^{23}+16.7\left(c 1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR: $\delta 3.34-3.49(\mathrm{~m}, 2 \mathrm{H}$, $\mathrm{PhCH}_{2} \mathrm{CH}=\mathrm{CH}_{2}$), 3.54-3.55 (m, 1H, H-5), 3.60-3.76 (m,5H, H-2, H-3, H-4, H-6a, H-6b), 4.43-4.54 (m, 2H, CH $\left.\mathrm{C}_{2} \mathrm{Ph}\right), 4.76-4.94\left(\mathrm{~m}, 4 \mathrm{H}, 2 \times \mathrm{CH}_{2} \mathrm{Ph}\right), 4.94-5.00\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{J}_{1,2}=\right.$ $\left.7.8 \mathrm{~Hz}, \mathrm{H}-1, \mathrm{PhCH}_{2} \mathrm{CH}=\mathrm{CH}_{2}, 1 / 2 \times \mathrm{CH}_{2} \mathrm{Ph}\right), 5.97-6.10\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{PhCH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), 6.94-$ 7.28 (m, 24H, aromatic) ppm; ${ }^{13} \mathrm{C}$ NMR: $\delta 34.3,69.0,73.7,75.2,75.3,75.4,76.0,77.4$, $78.0,82.3,85.1,101.5,115.6,116.1,122.8,127.6,127.7,127.8,127.9(\times 4), 128.0(\times 2)$,
$128.1(\times 2), 128.2(\times 2), 128.5(\times 2), 128.6(\times 3), 128.7(\times 2), 129.8,130.1,136.9,138.2$, 138.3, 138.4, 138.7, $155.1 \mathrm{ppm} ; \operatorname{HRMS}-\mathrm{MS}(\mathrm{m} / \mathrm{z}):[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{43} \mathrm{H}_{44} \mathrm{O}_{6} \mathrm{Na}^{+}$, 679.3036; found, 679.3058.

2-Allylphenyl 2,3,4,6-tetra-O-benzoyl- β-D-glucopyranoside (1b). 2-Allylphenyl

 2,3,4,6-tetra-O-acetyl- β-D-glucopyranoside (see below for the synthesis, 5.40 g , $11.63 \mathrm{mmol})$ was dissolved in methanol (44 mL), and the pH was adjusted to pH 9 by careful addition of 1 M solution of NaOCH_{3} in $\mathrm{MeOH}(\sim 0.2 \mathrm{~mL})$. The reaction mixture was kept for 1 h at rt , then Dowex $\left(\mathrm{H}^{+}\right)$was added until neutral pH . The resin was filtered off and washed with methanol $(3 \times 5 \mathrm{~mL})$. The combined filtrate was concentrated in vacuo and dried. The residue was dissolved in dry pyridine (70 mL), the mixture was cooled to $0^{\circ} \mathrm{C}$ and benzoyl chloride ($7.2 \mathrm{~mL}, 62.5 \mathrm{mmol}$) was added dropwise. The reaction mixture was allowed to gradually warm to rt . After stirring for 1 h at rt , the reaction was quenched by the addition of methanol (5 mL). The resulting mixture was evaporated and coevaporated with toluene $(3 \times 10 \mathrm{~mL})$ under reduced pressure. The residue was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ and washed with water (10 mL), sat. aq. $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$ and water $(3 \times 10 \mathrm{~mL})$. The organic layer was separated, dried with MgSO_{4}, and concentrated in vacuo. The residue was purified by column chromatography on silica gel (ethyl acetate/hexane gradient elution) to afford the title compound ($8.8 \mathrm{~g}, 90 \%$) as white crystals. Analytical data for $\mathbf{1 b}$: $R_{\mathrm{f}} 0.58$ (ethyl acetate/hexanes $4: 10 \mathrm{v} / \mathrm{v}$); mp $130-132^{\circ} \mathrm{C}$ (diethyl ether/hexanes); $[\alpha]_{\mathrm{D}}{ }^{23}+26.7(c 1$, $\left.\mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR: $\delta 3.06\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=6.6 \mathrm{~Hz}, \mathrm{PhCH} \mathrm{CH}_{2}=\mathrm{CH}_{2}\right), 4.18-4.26(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-5)$, $4.39\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}_{6 \mathrm{a}, 6 \mathrm{~b}}=12.0 \mathrm{~Hz}, \mathrm{~J}_{5,6 \mathrm{a}}=6.8 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{a}\right), 4.54-4.69(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}-6 \mathrm{~b}$, $\left.\mathrm{PhCH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), 5.26\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}_{1,2}=6.0 \mathrm{~Hz}, \mathrm{H}-1\right), 5.50-5.64(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-4$,$\mathrm{PhCH}_{2} \mathrm{CH}=\mathrm{CH}_{2}$), 5.77 (dd, $1 \mathrm{H}, \mathrm{J}_{2,3}=9.0 \mathrm{~Hz}, \mathrm{H}-2$), 5.90 (dd, $1 \mathrm{H}, \mathrm{J}_{3,4}=9.5 \mathrm{~Hz}, \mathrm{H}-3$), 6.82-7.92 (m, 24H, aromatic) ppm; ${ }^{13} \mathrm{C}$ NMR: ס 34.0, 63.4, 69.9, 71.7, 72.8, 73.0, 99.9, 115.4, 115.7, 123.4, 128.5 (×2), 128.6 ($\times 2$), 128.7 ($\times 3$), $128.8(\times 2), 128.9,129.0,129.3$, 129.7, 129.8 ($\times 3$), 129.9 ($\times 2$), 130.0 ($\times 2$), 130.1 ($\times 2$), 130.2, 130.3, 133.4, 133.5, 133.8, 136.4, 154.8, 165.2, 165.5, 166.0, 166.2 ppm; HRMS-MS (m / z): [$\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{43} \mathrm{H}_{36} \mathrm{O}_{10} \mathrm{Na}, 735.2205$; found, 735.2194 .

2-Allylphenyl 2-O-benzoyl-3,4,6-tri-O-benzyl- β-D-glucopyranoside (1c). A mixture of

 3,4,6-tri-O-benzyl-1,2-O-methoxybenzylidene- α-D-glucopyranose [1] (0.360 g , 0.63 mmol), molecular sieves ($4 \AA, 400 \mathrm{mg}$) and 2-allylphenol ($0.84 \mathrm{~mL}, 6.34 \mathrm{mmol}$) in dry dichloromethane (3.6 mL) was stirred under argon for 10 min at rt . TMSOTf ($0.03 \mathrm{~mL}, 0.16 \mathrm{mmol}$) was added, and the resulting mixture was stirred at rt for 4 h . After that, the reaction mixture was filtered through celite, the filtrate was diluted with dichloromethane $(30 \mathrm{~mL})$ and then washed with water $(10 \mathrm{~mL})$, sat. aq. $\mathrm{NaHCO}_{3}(10$ $\mathrm{mL})$, and water ($3 \times 10 \mathrm{~mL}$). The organic phase was separated, dried over MgSO_{4}, and concentrated in vacuo. The residue was purified by column chromatography on silica gel (ethyl acetate/hexane gradient elution) to afford the title compound ($0.120 \mathrm{~g}, 28 \%$ yield) as a white solid. Analytical data for $\mathbf{1 c}$: $R_{\mathrm{f}} 0.59$ (ethyl acetate/hexanes $3: 10, \mathrm{v} / \mathrm{v}$); $[\alpha]_{\mathrm{d}}{ }^{23}$ +26.4 (c 1, CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR: $\delta 3.31$ (d, $1 \mathrm{H}, \mathrm{J}=10.0 \mathrm{~Hz}, \mathrm{PhCH}_{2} \mathrm{CH}_{=}=\mathrm{CH}_{2}$), 3.85-4.06 (m, $5 \mathrm{H}, \mathrm{H}-3, \mathrm{H}-4, \mathrm{H}-5, \mathrm{H}-6 \mathrm{a}, \mathrm{H}-6 \mathrm{~b}$), 4.71-5.01 (m, 8H, $\mathrm{PhCH}_{2} \mathrm{CH}=\mathrm{CH}_{2}, 3 \times \mathrm{CH}_{2} \mathrm{Ph}$), 5.21 (d, $1 \mathrm{H}, \mathrm{J}_{1,2}=7.9 \mathrm{~Hz}, \mathrm{H}-1$), 5.76 (dd, $1 \mathrm{H}, \mathrm{J}_{2,3}=9.0 \mathrm{~Hz}, \mathrm{H}-2$), $5.79-5.89(\mathrm{~m}, 1 \mathrm{H}$, $\mathrm{PhCH}_{2} \mathrm{CH}=\mathrm{CH}_{2}$), $7.04-8.14$ (m, 24H, aromatic) ppm; ${ }^{13} \mathrm{C}$ NMR: $\delta 33.98,68.99,73.6$, $73.8,75.3,75.4,75.7,78.1,82.9,99.8,115.2,115.5,122.9,127.5,127.8,127.9,128.0$ (×2), 128.1, $128.2(\times 4), 128.4(\times 3), 128.5(\times 2), 128.6(\times 2), 128.7(\times 2), 130.0(\times 2), 130.1$(×2), 133.3, 136.7, 137.9, 138.0, 138.3, 155.2, $165.3 \mathrm{ppm} ; \operatorname{HRMS}-\mathrm{MS}(\mathrm{m} / \mathrm{z}):[\mathrm{M}+\mathrm{Na}]^{+}$ calcd for $\mathrm{C}_{43} \mathrm{H}_{42} \mathrm{O}_{2} \mathrm{Na} 693.2831$, found 693.2834.

2-Allylphenyl 2,3,4,6-tetra-O-benzyl- β-D-galactopyranoside (1d). 2-Allylphenyl 2,3,4,6-tetra-O-acetyl- β-D-galactopyranoside (see below for the synthesis, 2.00 g , 4.32 mmol) was dissolved in methanol (16 mL), and the pH was adjusted (pH 9) by careful addition of a 1 M solution of NaOCH_{3} in $\mathrm{MeOH}(\sim 0.1 \mathrm{~mL})$. The reaction mixture was kept for 1 h at rt , then Dowex $\left(\mathrm{H}^{+}\right)$was added until neutral pH was reached. The resin was filtered off and washed with methanol ($3 \times 10 \mathrm{~mL}$). The combined filtrate was concentrated in vacuo and dried. The resultant solid was dissolved in dry DMF (24 mL) and benzyl bromide ($2.4 \mathrm{~mL}, 20.27 \mathrm{mmol}$). Then the reaction mixture was cooled down to $0^{\circ} \mathrm{C}$ and NaH was added ($0.73 \mathrm{~g}, 30.41 \mathrm{mmol}$) portionwise. The reaction mixture was allowed to warm up gradually. After stirring for 1 h at rt , the reaction was quenched by stirring with ice water (50 mL). The organic phase was extracted with ethyl acetate/diethyl ether $1: 1(\mathrm{v} / \mathrm{v}, 3 \times 40 \mathrm{~mL})$ and the combined organic extract was washed with water ($3 \times 20 \mathrm{~mL}$). The organic phase was separated, dried with MgSO_{4} and concentrated in vacuo. The residue was purified by column chromatography on silica gel (ethyl acetate/hexanes gradient elution) to afford the title compound ($2.6 \mathrm{~g}, 98 \%$) as a white solid. Analytical data for 1d: $R_{\mathrm{f}} 0.80$ (ethyl acetate/hexanes $2: 3, \mathrm{v} / \mathrm{v}$); $[\alpha]_{\mathrm{D}}{ }^{24}-22.3$ (c 1.0, CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR: $\delta 3.39-3.50\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{PhCH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), 3.60-3.71(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}-3$, H-4, H-6a, H-6b), 3.97 (m, 1H, H-5), 4.15 (dd, 1H, $\mathrm{J}_{2,3}=8.3 \mathrm{~Hz}, \mathrm{H}-2$), 4.43 (dd, 2H, J= $11.6 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Ph}$), $4.66\left(\mathrm{~d}, 1 \mathrm{H},{ }^{2} \mathrm{~J}=8.4 \mathrm{~Hz}, 1 / 2 \times \mathrm{CH}_{2} \mathrm{Ph}\right), 4.72-4.80\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right)$, 4.88-5.05 (m, 6H, $\left.\mathrm{J}_{1,2}=7.8 \mathrm{~Hz}, \mathrm{H}-1, \mathrm{PhCH}_{2} \mathrm{CH}^{2}=\mathrm{CH}_{2}, 1.5 \times \mathrm{CH}_{2} \mathrm{Ph}\right), 5.96-6.01(\mathrm{~m}, 1 \mathrm{H}$, $\left.\mathrm{PhCH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), 6.96-7.34$ (m, 24H, aromatic) ppm; ${ }^{13} \mathrm{C}$ NMR: $\delta 34.2,69.1,73.1,73.2$,
73.3, 73.8, 74.1, 74.5, 74.7, 75.7, 79.2, 82.7, 101.8, 115.1, 115.4, 116.0, 116.2, 127.7, 127.8, 127.9, 128.1, 128.2 (×2), 128.3, 128.4, 128.5 (×2), 128.6 ($\times 3$), 128.7 ($\times 2$), 129.7, 130.0, 136.9, 138.1, 138.5, 138.6, 138.7, 155.2 ppm; HRMS-MS (m/z): [M + Na] ${ }^{+}$calcd for $\mathrm{C}_{43} \mathrm{H}_{44} \mathrm{O}_{6} \mathrm{Na}^{+} 679.3036$, found 679.3019.

Ethyl 2,3,4,6-tetra-O-benzyl-1-thio- β-D-glucopyranoside (24). Analytical data for the title compound was essentially the same as previously described [2].

Thiazolinyl 2,3,4,6-tetra-O-benzyl-1-thio- β-D-glucopyranoside (27). Analytical data for the title compound was essentially the same as previously described [3].

Tolyl 2,3,4,6-tetra-O-benzyl-1-thio- β-D-glucopyranoside (28). Analytical data for the title compound was essentially the same as previously described [4].

Phenyl 2,3,4,6-tetra-O-benzyl-1-thio- β-D-glucopyranoside (29). Analytical data for the title compound was essentially the same as previously described [5].

Synthesis of glycosyl acceptors

 compound was essentially the same as previously described [1,6].
 compound was essentially the same as previously described $[1,7]$.
 compound was essentially the same as previously described $[7,8]$.
 compound was essentially the same as previously described $[7,8]$.

Allylphenyl 2,3,4-tri-O-benzoyl- β-D-glucopyranoside (13). To a stirred solution of 2allylphenyl $2,3,4-$ tri- O-benzoyl-6-O-triphenylmethyl- β-D-glucopyranoside (see below for the synthesis, $1.1 \mathrm{~g}, 1.22 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$, water (0.2 mL) followed by trifluoroacetic acid $(1.8 \mathrm{~mL})$ were added until a persistent yellow color was obtained. The resultant mixture was stirred at it for 45 min, diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$, and washed with water $(10 \mathrm{~mL})$, sat. aq. $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$, and water $(3 \times 10 \mathrm{~mL})$. The organic layer was separated, dried with MgSO_{4}, and concentrated in vacuo. The residue was purified by column chromatography on silica gel (ethyl acetate/hexanes gradient elution) to afford the title compound ($0.7 \mathrm{~g}, 90 \%$) as a white solid. Analytical data for 13: $R_{\mathrm{f}} 0.56$ (ethyl acetate/hexanes 2:5, v/v); [$\alpha]_{\mathrm{D}}{ }^{23}+15.6\left(c 1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR: $\delta 3.13(\mathrm{t}, J=$
$6.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OH}), 3.35\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=6.5 \mathrm{~Hz}, \mathrm{PhCH}_{2} \mathrm{CH}_{=} \mathrm{CH}_{2}\right), 3.87-4.02(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-6 \mathrm{a}, \mathrm{H}-$ 6b), 4.08-4.13 (m, 1H, H-5), $4.89\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{PhCH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), 5.57\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}_{1,2}=7.9 \mathrm{~Hz}, \mathrm{H}-\right.$ 1), 5.73 (dd, $\left.1 \mathrm{H}, \mathrm{J}_{3,4}=9.7 \mathrm{~Hz}, \mathrm{H}-4\right), 5.77-5.90\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{PhCH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), 5.99(\mathrm{dd}, 1 \mathrm{H}$, $\left.J_{2,3}=9.8 \mathrm{~Hz}, \mathrm{H}-2\right), 6.20\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}_{3,4}=9.7 \mathrm{~Hz}, \mathrm{H}-3\right), 7.08-7.56$ (m, 13H, aromatic), 7.958.09 (m, 6H, aromatic) ppm; ${ }^{13} \mathrm{C}$ NMR: $\delta 33.9,61.6,69.6,71.7,72.9,75.1,77.6,99.6$, $114.9,115.7,123.3,127.6,128.5(\times 3), 128.7(\times 3), 128.9(\times 2), 129.3,129.9(\times 2), 129.9$ (×2), 130.1 (×2), 130.4, 133.5 (x2), 133.9, 136.5, 154.7, 165.2, 165.9, 166.1 ppm;

HRMS-MS $(\mathrm{m} / \mathrm{z}):[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{36} \mathrm{H}_{32} \mathrm{O}_{9} \mathrm{Na} 631.1944$, found 631.1937

Ethyl 2,3,4-tri-O-benzyl-1-thio- β-D-glucopyranoside (15). Analytical data for the title compound was essentially the same as previously described [9].

Tolyl 2,3,4-tri-O-benzoyl-1-thio- β-D-glucopyranoside (17). Analytical data for the title compound was essentially the same as previously described [10].

Phenyl 2,3,4-tri-O-benzyl-1-thio- β-D-glucopyranoside (19). Analytical data for the title compound was essentially the same as previously described [11].

Phenyl 2,3,4-tri-O-benzoyl-1-thio- β-D-glucopyranoside (21). Analytical data for the title compound was essentially the same as previously described [12].

2-Allylphenyl 2,3,4-tri-O-benzyl- β-D-glucopyranoside (25). A solution of 2-allylphenyl 6-O-acetyl-2,3,4-tri-O-benzyl- β-D-glucopyranoside (see below for the synthesis, 0.42 g , $0.69 \mathrm{mmol})$ was dissolved in methanol $(3.2 \mathrm{~mL})$ and the pH was adjusted to pH 9 by
careful addition of a 1 M solution of NaOCH_{3} in $\mathrm{MeOH}(\sim 0.1 \mathrm{~mL})$. The reaction mixture was kept for 1 h at rt , then Dowex $\left(\mathrm{H}^{+}\right)$was added until a neutral pH was reached. The resin was filtered off and washed with methanol $(3 \times 5 \mathrm{~mL})$. The combined filtrate was concentrated in vacuo and dried. The residue was purified by column chromatography on silica gel (ethyl acetate/hexanes gradient elution) to afford the title compound (0.270 $\mathrm{g}, 69 \%$) as a white solid. Analytical data for 25: $R_{\mathrm{f}} 0.56$ (ethyl acetate/hexanes $2: 5 \mathrm{v} / \mathrm{v}$); $[\alpha]^{23}-15.1$ (c 1.0, CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR: $\delta 1.82(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 3.35-3.44(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-4$, $\mathrm{PhCH}_{2} \mathrm{CH}=\mathrm{CH}_{2}$), 3.55-3.75 (m, 4H, $\mathrm{J}_{2,3}=8.7 \mathrm{~Hz}, \mathrm{H}-2, \mathrm{H}-3, \mathrm{H}-5, \mathrm{H}-6 \mathrm{a}$), 3.80 (dd, 1 H , $\left.J_{6 \mathrm{a}, 6 \mathrm{~b}}=12.1 \mathrm{~Hz}, J_{5,6 \mathrm{~b}}=2.6 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{~b}\right), 4.59\left(\mathrm{~d},{ }^{2} \mathrm{~J}=10.9 \mathrm{~Hz}, 1 \mathrm{H}, 1 / 2 \mathrm{CH}_{2} \mathrm{Ph}\right), 4.74-4.98$ ($\mathrm{m}, 7 \mathrm{H}, \mathrm{PhCH}_{2} \mathrm{CH}=\mathrm{CH}_{2}, 2.5 \times \mathrm{CH}_{2} \mathrm{Ph}$), $5.04\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}_{1,2}=7.2 \mathrm{~Hz}, \mathrm{H}-1\right), 5.83-5.96(\mathrm{~m}$, $1 \mathrm{H}, \mathrm{PhCH}_{2} \mathrm{CH}=\mathrm{CH}_{2}$), 6.91-7.24 (m, 19H, aromatic) ppm; ${ }^{13} \mathrm{C}$ NMR: ס 34.2, 62.2, 75.3, 75.5, 75.9, 82.3, 84.9, 101.1, 114.9, 116.2, 122.9, 127.7, 127.9 (×3), 128.0 (×2), 128.1 $(\times 3), 128.3(\times 3), 128.6(\times 3), 128.7(\times 3), 129.7,130.4,136.9,138.0,138.3,138.6,154.8$ ppm; HRMS-MS $(\mathrm{m} / \mathrm{z}):[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{36} \mathrm{H}_{38} \mathrm{O}_{6} \mathrm{Na} 589.2668$, found 589.2676.

Synthesis of additional building blocks

2-Allylphenyl 2,3,4,6-tetra-O-acetyl- β-D-glucopyranoside (S1).

2-Allylphenol ($1.37 \mathrm{~mL}, 10.25 \mathrm{mmol}), \mathrm{BF}_{3} . \mathrm{OEt}_{2}(1.6 \mathrm{~mL}, 12.8 \mathrm{mmol})$, and triethylamine $(0.36 \mathrm{~mL}, 2.56 \mathrm{mmol})$ were added to a stirred solution of 1,2,3,4,6-penta-O-acetyl- β-Dglucopyranoside $(2.00 \mathrm{~g}, 5.13 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(40 \mathrm{~mL})$. The reaction mixture was kept for 16 h at rt , then it was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$ and washed with water (10 mL), sat. aq. $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$, and water $(3 \times 10 \mathrm{~mL})$. The organic phase was separated, dried over MgSO_{4}, and concentrated in vacuo. The residue was purified by column chromatography on silica gel (ethyl acetate/hexane gradient elution) to afford the title compound ($1.9 \mathrm{~g}, 90 \%$ yield) as white crystals. Analytical data for $\mathbf{S 1}$: $R_{\mathrm{f}} 0.50$ (ethyl acetate/hexane $1: 5, \mathrm{v} / \mathrm{v}$); mp $145-148{ }^{\circ} \mathrm{C}$ (diethyl ether/hexanes); $[\alpha]_{\mathrm{D}}{ }^{23}-25.8$ (c 1.0, $\left.\mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR: $\delta 2.02\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 2.03\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 2.04\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 2.06(\mathrm{~s}$, $3 \mathrm{H}, \mathrm{OCH}_{3}$), 3.23-3.38 (m, 2H, $\mathrm{PhCH}_{2} \mathrm{CH}=\mathrm{CH}_{2}$), 3.81-3.87 (m, 1H, H-5), 4.16 (dd, 1 H , $\left.J_{6 \mathrm{a}, 6 \mathrm{~b}}=12.2 \mathrm{~Hz}, J_{5,6 \mathrm{~b}}=2.5 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{~b}\right), 4.27\left(\mathrm{dd}, 1 \mathrm{H}, J_{5,6 \mathrm{a}}=5.5 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{a}\right), 4.95-5.05(\mathrm{~m}$, $\left.3 \mathrm{H}, \mathrm{H}-2, \mathrm{PhCH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), 5.12-5.19(\mathrm{~m}, 1 \mathrm{H} ; \mathrm{H}-4), 5.24-5.35\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{J}_{1,2}=8.7 \mathrm{~Hz}, \mathrm{H}-1\right.$, $\mathrm{H}-3$), $5.83-5.96\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{PhCH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), 6.97-7.18\left(\mathrm{~m}, 4 \mathrm{H}\right.$, aromatic) ppm; ${ }^{13} \mathrm{C}$ NMR: δ $20.7,20.8,20.9,21.0,33.9,62.1,68.5,71.2,72.1,72.9,99.3,115.4,115.9,123.5$, 127.5, 130.0, 130.5, 136.6, 154.6, 169.3, 169.5, 170.4, $170.7 \mathrm{ppm} ; \mathrm{HRMS}-\mathrm{MS}(\mathrm{m} / \mathrm{z})$: $[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{23} \mathrm{H}_{28} \mathrm{O}_{10} \mathrm{Na}^{+}, 487.1580$; found, 487.1562.

2-Allylphenyl 2,3,4,6-tetra-O-acetyl- β-D-galactopyranoside (S2).

2-Allylphenol ($1.37 \mathrm{~mL}, 10.25 \mathrm{mmol}), \mathrm{BF}_{3} . \mathrm{OEt}_{2}(1.6 \mathrm{~mL}, 12.8 \mathrm{mmol})$, and triethylamine ($0.36 \mathrm{~mL}, 2.56 \mathrm{mmol}$) were added to a stirred solution of 1,2,3,4,6-penta-O-acetyl- β-Dgalactopyranoside ($2.00 \mathrm{~g}, 5.13 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(40 \mathrm{~mL})$. The reaction mixture was kept for 16 h at rt , then it was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$ and washed with water (10 mL), sat. aq. $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$, and water $(3 \times 10 \mathrm{~mL})$. The organic phase was separated, dried over MgSO_{4}, and concentrated in vacuo. The residue was purified by column chromatography on silica gel (ethyl acetate/hexane gradient elution) to afford the title compound ($1.8 \mathrm{~g}, 89 \%$ yield) as white crystals. Analytical data for $\mathbf{S 2}$: $R_{\mathrm{f}} 0.51$ (ethyl acetate/hexane 2:3, v/v); mp 98-101 (diethyl ether/hexanes); $[\alpha]_{\mathrm{D}}{ }^{24}-13.0\left(c 1.0, \mathrm{CHCl}_{3}\right)$; ${ }^{1} \mathrm{H}$ NMR: $\delta, 2.23-2.42\left(\mathrm{~m}, 12 \mathrm{H}, 4 \times \mathrm{OCH}_{3}\right), 3.55-3.63\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{PhCH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), 4.33(\mathrm{~m}$, $1 \mathrm{H}, \mathrm{H}-5), 4.40\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}_{6 \mathrm{a}, 6 \mathrm{~b}}=11.3 \mathrm{~Hz}, \mathrm{~J}_{5,6 \mathrm{a}}=6.1 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{a}\right), 4.48\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}_{5,6 \mathrm{~b}}=\right.$ $7.2 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{~b}), 5.23\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}_{1,2}=8.0 \mathrm{~Hz}, \mathrm{H}-1\right), 5.28\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{PhCH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), 5.36$ (dd, $1 \mathrm{H}, \mathrm{J}_{3,4}=3.4 \mathrm{~Hz}, \mathrm{H}-3$), $5.70(\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}-4), 5.78\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}_{2,3}=10.4 \mathrm{~Hz}, \mathrm{H}-2\right), 6.12-6.24$ (m, 1H, $\mathrm{PhCH}_{2} \mathrm{CH}=\mathrm{CH}_{2}$), 7.10-7.29 (m, 4H; aromatic) ppm; ${ }^{13} \mathrm{C}$ NMR: $\delta 20.6,20.7,20.8$, $20.9,33.8,61.5,67.0,68.6,70.9,71.0,99.6,115.1,115.7,123.3,127.4,129.8,130.3$, 136.6, 154.6, 169.3, 170.1, 170.3, 170.5 ppm; HRMS-MS (m/z): $[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{23} \mathrm{H}_{28} \mathrm{O}_{10} \mathrm{Na}^{+}, 487.1580$; found, 487.1573.

2-Allylphenyl 2,3,4-tri-O-benzoyl-6-O-triphenylmethyl- β-D-glucopyranoside (S3).

Compound S1 ($1.00 \mathrm{~g}, 2.16 \mathrm{mmol}$) was dissolved in methanol (8 mL) and the pH was adjusted to pH 9 by careful addition of a 1 M solution of NaOCH_{3} in $\mathrm{MeOH}(\sim 0.1 \mathrm{~mL})$. The reaction mixture was kept for 1 h at rt , then Dowex $\left(\mathrm{H}^{+}\right)$was added until neutral pH was reached. The resin was filtered off and rinsed with methanol $(3 \times 5 \mathrm{~mL})$. The combined filtrate ($\sim 30 \mathrm{~mL}$) was concentrated in vacuo and dried. The resultant solid was dissolved in pyridine (5.3 mL), and triphenylmethyl chloride ($1.9 \mathrm{~g}, 6.76 \mathrm{mmol}$) was added and the resulting reaction mixture was stirred for 16 h . After that, the reaction mixture was cooled to $0^{\circ} \mathrm{C}$ and benzoyl chloride ($1.6 \mathrm{~mL}, 13.5 \mathrm{mmol}$) was added dropwise. The reaction mixture was allowed to gradually warm to rt and stirred for an additional 3 h at rt . The reaction was quenched by addition of methanol (10 mL), evaporated under reduced pressure and coevaporated with toluene $(3 \times 20 \mathrm{~mL})$. The residue was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ and washed with water (10 mL), sat. aq. $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$ and water ($3 \times 10 \mathrm{~mL}$). The organic layer was separated, dried with MgSO_{4}, and concentrated in vacuo. The residue was purified by column chromatography on silica gel (ethyl acetate/hexanes gradient elution) to afford the title compound ($1.5 \mathrm{~g}, 86 \%$) as a white solid. Analytical data for S3: $R_{\mathrm{f}} 0.50$ (ethyl acetate/hexanes 2:5, v/v); ${ }^{1} \mathrm{H}$ NMR: $\delta 3.33\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=6.5 \mathrm{~Hz}, \mathrm{PhCH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right.$), 3.43 (dd, $\left.1 \mathrm{H}, J_{5,6 \mathrm{a}}=2.2 \mathrm{~Hz}, \mathrm{~J}_{6 \mathrm{~b}, 6 \mathrm{a}}=10.7 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{a}\right), 3.52\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}_{5,6 \mathrm{~b}}=6.1 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{~b}\right), 4.03-4.09$ ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-5$), $4.80-4.92\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{PhCH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), 5.40-5.43\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}_{1,2}=7.6 \mathrm{~Hz}, \mathrm{H}-1\right)$, 5.65-5.72 (m, 1H, H-4), 5.76-5.89 (m, 1H, PhCH ${ }_{2} \mathrm{CH}_{=}=\mathrm{CH}_{2}$), 5.93-6.01 (m, 2H, H-2, H-
3), 7.09-8.04 (m, 34H, aromatic) ppm; ${ }^{13} \mathrm{C}$ NMR: $\delta 34.1,60.6,62.6,69.6,71.9,73.3$, 74.5, 74.6, 87.2 (×2), 100.0, 115.6, 115.7, 115.9, 123.4 (×2), 127.2, 127.6 (×5), 127.9, 128.4, 128.5, 128.7 (×6), 129.0, 129.1, 129.2, 129.4, 129.9, 129.9, 130.0 (×2), 130.1, 130.2, 133.4, 133.4, 136.6, 143.7 (×5), 155.1, 165.1 (×2), 165.3 (×2), $166.0(\times 2) \mathrm{ppm}$; HRMS-MS $(\mathrm{m} / \mathrm{z}):[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{55} \mathrm{H}_{46} \mathrm{O}_{9} \mathrm{Na} 873.3072$, found 873.3064.

2-Allylphenyl 6-O-acetyl-2,3,4-tri-O-benzyl- β-D-glucopyranoside (S4).

To a stirred solution of a $\mathbf{1 a}(0.1 \mathrm{~g}, 0.15 \mathrm{mmol})$ in $\mathrm{Ac}_{2} \mathrm{O} / \mathrm{AcOH} 2: 1(\mathrm{v} / \mathrm{v}, 0.9 \mathrm{~mL})$ was added freshly prepared $\mathrm{ZnCl}_{2}(166 \mathrm{mg}, 1.22 \mathrm{mmol})$ solution in $\mathrm{Ac}_{2} \mathrm{O} / \mathrm{AcOH} 2: 1(\mathrm{v} / \mathrm{v}$, 0.86 mL). The reaction mixture was stirred under argon for 4 h at rt . Upon completion, the reaction was quenched with $\mathrm{H}_{2} \mathrm{O}$, diluted with ethyl acetate (50 mL), and washed with water $(20 \mathrm{~mL})$, sat. aq. $\mathrm{NaHCO}_{3}(20 \mathrm{~mL})$ and water $(3 \times 20 \mathrm{~mL})$. The organic phase was separated, dried over MgSO_{4}, and concentrated in vacuo. The residue was purified by column chromatography on silica gel (ethyl acetate/toluene gradient elution) to afford the title compound ($98 \mathrm{mg}, 99 \%$) as a clear form. Analytical data for $\mathbf{S 4}$: $R_{\mathrm{f}} 0.51$ (ethyl acetate/toluene 1:10, v/v); [a]d ${ }^{23}-5.8$ (c 1.0, CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR: $\delta 1.92\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right)$, 3.29-3.45 (m, 2H, PhCH $2 \mathrm{CH}=\mathrm{CH}_{2}$), 3.48-3.65 (m, 2H, H-4, H-5), 3.67-3.71 (m, 2H, H-2, $\mathrm{H}-3), 4.14\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}_{6 \mathrm{a}, 6 \mathrm{~b}}=11.8 \mathrm{~Hz}, \mathrm{~J}_{5,6 \mathrm{a}}=5.1 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{a}\right), 4.24\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}_{5,6 \mathrm{~b}}=1.7 \mathrm{~Hz}, \mathrm{H}-\right.$ 6b), 4.51 ($\mathrm{d},{ }^{2} \mathrm{~J}=10.9 \mathrm{~Hz}, 1 / 2 \mathrm{CH}_{2} \mathrm{Ph}$), 4.74-5.01 (m, 8H, H-1, $\mathrm{PhCH}_{2} \mathrm{CH}=\mathrm{CH}_{2}, 2.5 \times$ $\mathrm{CH}_{2} \mathrm{Ph}$), 5.83-5.93 (m, 1H, PhCH ${ }_{2} \mathrm{CH}=\mathrm{CH}_{2}$), 6.87-7.27 (m, 19H, aromatic) ppm; ${ }^{13} \mathrm{C}$ NMR: $\delta 20.9,34.2,63.3,73.1,75.2,75.3,75.9,82.1,85.0,101.3,115.5,116.1$,
$123.0,127.5,127.9,128.0,128.1,128.2,128.3,128.4(\times 3), 128.5,128.6(\times 3), 128.6$, 128.7 (×3), 129.9, 130.2, 136.8, 137.7, 138.2, 138.4, 154.9, 170.8 ppm; HRMS-MS $(\mathrm{m} / \mathrm{z}):[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{38} \mathrm{H}_{40} \mathrm{O}_{7} \mathrm{Na}, 631.2674$; found, 631.2665.

Data for di- and trisaccharides

Methyl 6-O-(2,3,4,6-tetra-O-benzyl-a/ß-D-glucopyranosyl)-2,3,4-tri-O-benzyl-a-Dglucopyranoside (6a). Analytical data for the title compound was similar to that previously described [13].

Methyl 6-O-(2,3,4,6-tetra-O-benzoyl- β-D-glucopyranosyl)-2,3,4-tri-O-benzyl- α-Dglucopyranoside (6b). Analytical data for the title compound was essentially the same as previously described [13].

Methyl 6-O-(2-O-benzoyl-3,4,6-tri-O-benzyl- β-D-glucopyranosyl)-2,3,4-tri-O-benzyl-α-D-glucopyranoside (6c). Analytical data for the title compound was essentially the same as previously described [14].

Methyl 6-O-(2,3,4,6-tetra-O-benzyl-D-galactopyranosyl)-2,3,4-tri-O-benzyl- $\alpha-D-$ glucopyranoside (6d). Analytical data for the title compound was essentially the same as previously described [15].

Methyl 4-O-(2,3,4,6-tetra-O-benzyl- $\alpha / \beta-D-g l u c o p y r a n o s y l)-2,3,6-t r i-O-b e n z y l-\alpha-D-$ glucopyranoside (7a). Analytical data for the title compound was similar to that previously described [13].

Methyl 4-O-(2,3,4,6-tetra-O-benzyl-D-galactopyranosyl)-2,3,6-tri-O-benzyl- $\alpha-D-$ glucopyranoside (7d). Analytical data for the title compound was similar to that previously described [16].

Methyl 3-O-(2,3,4,6-tetra-O-benzyl- $\alpha / \beta-D-g l u c o p y r a n o s y l)-2,4,6-t r i-O-b e n z y l-\alpha-D-$ glucopyranoside (8a). Analytical data for the title compound was similar to that previously described [17].

Methyl 3-O-(2,3,4,6-tetra-O-benzyl-D-galactopyranosyl)-2,4,6-tri-O-benzyl- $\alpha-D-$ glucopyranoside (8d). Analytical data for the title compound was similar to that previously described [18].

Methyl 2-O-(2,3,4,6-tetra-O-benzyl- $\alpha / \beta-D-g l u c o p y r a n o s y l)-3,4,6-t r i-O-b e n z y l-\alpha-D-$ glucopyranoside (9a). Analytical data for the title compound was similar to that previously described [19].

Methyl 2-O-(2,3,4,6-tetra-O-benzoyl- β-D-glucopyranosyl)-3,4,6-tri-O-benzyl- α-Dglucopyranoside (9b). Analytical data for the title compound was essentially the same as previously described [19].

Methyl 2-O-(2,3,4,6-tetra-O-benzyl-D-galactopyranosyl)-3,4,6-tri-O-benzyl- $\alpha-D-$

 glucopyranoside (9d). The title compound was obtained as a clear film from 1d and 5 by Method C in 80% yield ($\alpha / \beta=3.0 / 1$). Selected analytical data for $\alpha-9 d$: ${ }^{1} H$ NMR: δ 3.91 (dd, 1H, $J_{2,3}=7.6 \mathrm{~Hz}, \mathrm{H}-2$), 4.02 (dd, $1 \mathrm{H}, \mathrm{J}_{2}, 3^{\prime}=9.6 \mathrm{~Hz}, \mathrm{H}^{\prime}-2$), $4.93\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}_{1,2}=\right.$ $3.4 \mathrm{~Hz}, \mathrm{H}-1), 4.97\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}^{\prime} 2^{\prime}=3.5 \mathrm{~Hz}, \mathrm{H}^{\prime}-1\right) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR: $\delta 94.9(\mathrm{C}-1), 96.7\left(\mathrm{C}^{\prime}-1\right)$ ppm; HRMS-MS (m/z): [M + Na] ${ }^{+}$calcd for $\mathrm{C}_{62} \mathrm{H}_{66} \mathrm{O}_{11} \mathrm{Na}^{+}$, 1009.4503; found, 1009.4510.
2-[3-lodo-2-(methyl 2,3,4-tri-O-benzyl- α-D-glucopyranosid-6-yl)propyl]oxyphenyl

 2,3,4,6-tetra-O-benzyl- β-D-glucopyranoside (12). The title compound was isolated as a by-product from the synthesis of $\mathbf{6 a}$ from $\mathbf{1 a}$ and $\mathbf{2}$ by Method B in $\mathbf{1 5 \%}$ yield. Selected analytical data for 12: ${ }^{1} \mathrm{H}$ NMR: $\delta 3.74$ (dd, $1 \mathrm{H}, \mathrm{J}_{2,3^{\prime}}=7.9 \mathrm{~Hz}, \mathrm{H}^{\prime}-2$), $4.53\left(\mathrm{~d}, \mathrm{~J}_{1,2}=\right.$ $4.1 \mathrm{~Hz}, \mathrm{H}-1), 5.02\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}^{\prime}, 2^{\prime}=8.0 \mathrm{~Hz}, \mathrm{H}^{\prime}-1\right) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR: $\delta 10.6,35.9,55.3,68.0$, $68.8,70.4,73.5,73.6,73.7,74.8,75.2,75.3,75.4,75.5,75.8,75.9,77.4,77.8,77.9$, 79.4, 79.9, 80.1, 82.2, 82.3, 82.4, 85.1, 85.2, 98.2, 101.8, 115.8, 122.8, 122.9, 127.1, 127.6, 127.7, 127.8, 127.9 ($\times 2$), 128.0 ($\times 2$), 128.1 ($\times 2$), 128.1 ($\times 2$), 128.2 ($\times 2$), 128.3, 128.4 ($\times 2$), 128.5 ($\times 2$), 128.6 ($\times 4$), 128.7 ($\times 4$), 128.9, 129.2, 132.2, 138.1, 138.2, 138.3, 138.4, 138.5, 138.6, 138.7, 138.8, 155.5 ppm ; HRMS-MS (m / z): $[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{71} \mathrm{H}_{75} \mathrm{IO}_{12} \mathrm{Na}^{+}, 1269.4201$; found, 1269.4214.
2-Allylphenyl 6-O-(2,3,4,6-tetra-O-benzyl- $\alpha / \beta-D-g l u c o p y r a n o s y l)-2,3,4-t r i-O-$

 benzoyl- β-D-glucopyranoside (14). The title compound was obtained as a clear film from 1a and $\mathbf{1 3}$ by Method B in 78% yield ($\alpha / \beta=1.0 / 1$). Selected analytical data for $\alpha-14$: ${ }^{1} \mathrm{H}$ NMR: $\delta 4.58\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}_{1}{ }^{\prime} 2^{\prime}=4.6 \mathrm{~Hz}, \mathrm{H}^{\prime}-1\right), 5.28\left(\mathrm{~d}, \mathrm{~J}_{1,2}=7.8 \mathrm{~Hz}, \mathrm{H}-1\right) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR: δ 80.4 (C-1), 98.4 (C'-1) ppm; Selected analytical data for β-14: ${ }^{1} \mathrm{H}$ NMR: $\delta 4.42$ (d, 1 H , $J_{1^{\prime}, 2^{\prime}}=11.0 \mathrm{~Hz}, \mathrm{H}^{\prime}-1$) ppm; ${ }^{13} \mathrm{C}$ NMR: $\delta 82.2(\mathrm{C}-1)$, 100.1 (C'-1) ppm; $\operatorname{HRMS}-\mathrm{MS}(\mathrm{m} / \mathrm{z}):$ $[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{70} \mathrm{H}_{68} \mathrm{O}_{14} \mathrm{Na}^{+}, 1155.4609$; found, 1155.4623.
Ethyl 6-O-(2,3,4,6-tetra-O-benzyl-a/ß-D-glucopyranosyl)-2,3,4-tri-O-benzyl-1-thio- β -

 D-glucopyranoside (16). Analytical data for the title compound was essentially the same as previously described [2].Tolyl 6-O-(2,3,4,6-tetra-O-benzyl- $\alpha / \beta-D-g l u c o p y r a n o s y l)-2,3,4-t r i-O-b e n z o y l-1-t h i o-~$ β-D-glucopyranoside (18). The title compound was obtained as a clear film from 6 and 15 by Method A in 75% yield ($\alpha / \beta=2.4 / 1$). Selected analytical data for $\alpha-18$: ${ }^{1} H$ NMR: δ $4.67\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}_{1,2}, 2^{\prime}=3.7 \mathrm{~Hz}, \mathrm{H}^{\prime}-1\right), 4.85\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}_{1,2}=9.3 \mathrm{~Hz}, \mathrm{H}-1\right) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR: $\delta 86.1$ (C-1), 97.6 (C'-1) ppm. Selected analytical data for β-18: ${ }^{1} \mathrm{H}$ NMR: $\delta 4.52\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}^{1}, 2^{\prime}=\right.$ $10.8 \mathrm{~Hz}, \mathrm{H}^{\prime}-1$) ppm; ${ }^{13} \mathrm{C}$ NMR: $\delta 87.2(\mathrm{C}-1)$, 103.9 ($\mathrm{C}^{\prime}-1$) ppm; HRMS-MS (m / z): $[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{68} \mathrm{H}_{64} \mathrm{O}_{13} \mathrm{SNa}^{+}, 1143.3965$; found, 1143.3970.

Phenyl 6-O-(2,3,4,6-tetra-O-benzyl- α / β-D-glucopyranosyl)-2,3,4-tri-O-benzyl-1-thio-

 β-D-glucopyranoside (20). The title compound was obtained as a clear film from 1a and 19 by Method B in 90% yield ($\alpha / \beta=1.0 / 1$). Selected analytical data for $\alpha-20$: ${ }^{1} H$ NMR: $\delta 3.95\left(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}_{2,3}=9.0 \mathrm{~Hz}, \mathrm{H}-3\right), 4.57\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}_{1,2}=9.3 \mathrm{~Hz}, \mathrm{H}-1\right), 5.00(\mathrm{~d}, 1 \mathrm{H}$,$\left.J_{1^{\prime}, 2^{\prime}}=3.5 \mathrm{~Hz}, \mathrm{H}^{\prime}-1\right) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR: $\delta 89.2(\mathrm{C}-1), 96.6\left(\mathrm{C}^{\prime}-1\right)$ ppm. Selected analytical data for $\beta-20$: ${ }^{1} \mathrm{H}$ NMR: $\delta 4.37$ ($\mathrm{d}, 1 \mathrm{H}, \mathrm{J}^{1}, 2^{\prime}=7.8 \mathrm{~Hz}, \mathrm{H}^{\prime}-1$); ${ }^{13} \mathrm{C}$ NMR: $\delta 95.2$ (C-1), 103.4 (C'-1) ppm. HRMS-MS $(\mathrm{m} / \mathrm{z}):[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{67} \mathrm{H}_{68} \mathrm{O}_{10} \mathrm{SNa}^{+}, 1087.4433$; found, 1087.4406.

Phenyl 6-O-(2,3,4,6-tetra-O-benzyl- $/ \beta$-D-glucopyranosyl)-2,3,4-tri-O-benzoyl-1-

 thio- β-D-glucopyranoside (22). Analytical data for the title compound was essentially the same as previously described [19].
Phenyl 6-O-(2-benzoyl-3,4,6-tri-O-benzyl- β-D-glucopyranosyl)-2,3,4-tri-O-benzoyl-

 1-thio- β-D-glucopyranoside (23). The title compound was obtained as a clear film from donors 1c and acceptor $\mathbf{2 1}$ by Method B in 75% yield. Selected analytical data for $\mathbf{2 3}$: ${ }^{1} \mathrm{H}$ NMR: $\delta 3.65$ (dd, 1H, $\mathrm{J}_{6 \mathrm{a}, 6 \mathrm{~b}}=9.3 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{a}$), 3.81 (dd, 1H, $\mathrm{J}_{5,6 \mathrm{~b}}=3.2 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{~b}$), $3.87-$ 3.99 ($\mathrm{m}, 4 \mathrm{H}, \mathrm{H}-5, \mathrm{H}^{\prime}-5, \mathrm{H}^{\prime}-6 \mathrm{a}, \mathrm{H}^{\prime}-6 \mathrm{~b}$), 4.08-4.14 (m, 2H, H'3, H'-4), 4.59 (d, 1H, ${ }^{2} \mathrm{~J}=$ $12.2 \mathrm{~Hz}, 1 / 2 \mathrm{CH}_{2} \mathrm{Ph}$), $4.70\left(\mathrm{~d}, 1 \mathrm{H},{ }^{2} \mathrm{~J}=11.6 \mathrm{~Hz}, 1 / 2 \mathrm{CH}_{2} \mathrm{Ph}\right), 4.78-4.88(\mathrm{~m}, 4 \mathrm{H}, 2 \times$ $\left.\mathrm{CH}_{2} \mathrm{Ph}\right), 4.93\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}_{1}^{\prime}, 2^{\prime}=6.2 \mathrm{~Hz}, \mathrm{H}^{\prime}-1\right), 4.96\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}_{1,2}=5.2 \mathrm{~Hz}, \mathrm{H}-1\right), 5.39-5.49(\mathrm{~m}$, $3 \mathrm{H}, \mathrm{H}-2, \mathrm{H}-4, \mathrm{H}^{\prime}-2$), 5.88 (dd, $1 \mathrm{H}, \mathrm{J}_{2,3}=9.4 \mathrm{~Hz}, \mathrm{H}-3$), 7.27-8.12 (m, 40H, aromatic) ppm; ${ }^{13} \mathrm{C}$ NMR: $\delta 68.8,69.5,70.5,71.2,73.7,74.6,74.9,75.3,77.6,78.1,78.5,83.2,101.3$, 127.7, 127.9, 128.1 ($\times 3$), 128.3 ($\times 3$), 128.4 ($\times 3$), $128.5(\times 3)$, $128.6(\times 4)$, 128.9, 129.0, 129.1 ($\times 3$), 129.2 ($\times 3$), 129.3 ($\times 2$), 129.4 ($\times 3$), 129.5 ($\times 2$), $129.9(\times 2), 130.0(\times 3), 130.1$ (×4), 130.2, 131.8, 133.2, 133.4, 133.5, 138.0, 138.1, 138.2, 165.2, 165.5, 165.6, 165.9 ppm; HRMS-MS (m/z): [M + Na] ${ }^{+}$calcd for $\mathrm{C}_{67} \mathrm{H}_{60} \mathrm{O}_{14} \mathrm{SNa}, 1143.3604$; found, 1143.3636
2-Allylphenyl 6-O-(2,3,4,6-tetra-O-benzyl- $\alpha / \beta-D-g l u c o p y r a n o s y l)-2,3,4-t r i-O-b e n z y l-$

 β-D-glucopyranoside (26). The title compound was obtained as a clear film from donors 24, 27-29 and acceptor 25 by Method A in 82-90\% yield. Selected analytical data for $\alpha-26:{ }^{1} \mathrm{H}$ NMR: $\delta 4.37\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}^{\prime}, 2^{2}=2.7 \mathrm{~Hz}, \mathrm{H}^{\prime}-1\right.$) ppm; ${ }^{13} \mathrm{C}$ NMR: $\delta 97.6$ (C-1), 100.6 (C'-1) ppm. Selected analytical data for $\beta-26$: ${ }^{1} \mathrm{H}$ NMR: $\delta 4.34\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}_{1}, 2^{2}=\right.$ $5.6 \mathrm{~Hz}, \mathrm{H}^{\prime}-1$) ppm; ${ }^{13} \mathrm{C}$ NMR: $\delta 101.6$ (C-1), 104.2 ($\mathrm{C}^{\prime}-1$) ppm; HRMS-MS (m / z): $[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{70} \mathrm{H}_{72} \mathrm{O}_{11} \mathrm{Na}^{+}, 1111.5057$; found, 1111.4980.
Methyl O-(2,3,4,6-tetra-O-benzyl- α / β-D-glucopyranosyl)-(1-6)-O-(2,3,4-tri-O-

 benzyl- α / β-D-glucopyranosyl)-($1 \rightarrow 6$)-2,3,4-tri-O-benzyl- β-D-glucopyranoside (S5).The title compound was obtained from 2 and $\mathbf{2 6}$ by Method C in 80% yield and from 2 and 16 by Method C in 89% yield. Analytical data for the title compound was in accordance with that previously described [20].

Phenyl O-(2,3,4,6-tetra-O-benzyl- $\alpha / \beta-D-g l u c o p y r a n o s y l)-(1 \rightarrow 6)-O-(2,3,4-t r i-O-$ benzyl- $\alpha / \beta-D-g l u c o p y r a n o s y l)-(1 \rightarrow 6)-2,3,4-t r i-O-b e n z o y l-1-t h i o-\beta-D-$

 glucopyranoside (30). The title compound was obtained as a clear film from 26 and 21 by method B in 90% yield. Selected analytical data for $\alpha-30$: ${ }^{1} H$ NMR: $\delta 4.69(d, 1 H$, $J_{1^{\prime}, 2^{\prime}}=3.1 \mathrm{~Hz}, \mathrm{H}^{\prime}-1$), $4.96\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}_{1^{\prime \prime}, 2^{\prime \prime}}=2.3 \mathrm{~Hz}, \mathrm{H}^{\prime \prime}-1\right.$) ppm; ${ }^{13} \mathrm{C}$ NMR: $\delta 97.4$ (C-1), 97.5 (C'-1), 97.6 (C"-1) ppm. Selected analytical data for β-31: ${ }^{1} \mathrm{H}$ NMR: $\delta 5.27$ ($\mathrm{d}, 1 \mathrm{H}, \mathrm{J}_{1,2}=$ $7.9 \mathrm{~Hz}, \mathrm{H}-1$) ppm; ${ }^{13} \mathrm{C}$ NMR: $\delta 99.7$ (C-1), 99.8 (C'-1), 103.8 (C"-1) ppm; HRMS-MS $(m / z):[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{94} \mathrm{H}_{90} \mathrm{O}_{18} \mathrm{SNa}^{+}, 1561.5745$; found, 1561.5731 .2-Allylphenyl O-(2,3,4,6-tetra-O-benzyl- α / β-D-glucopyranosyl)-(1 $\rightarrow 6$)-O-(2,3,4-tri-O-benzyl- α / β-D-glucopyranosyl)-($1 \rightarrow 6$)-2,3,4-tri-O-benzyl- β-D-glucopyranoside (31). The title compound was obtained as a colorless syrup from 16 and 25 by method A in 50% yield. Selected analytical data for $\beta-31$: ${ }^{1} \mathrm{H}$ NMR: $\delta 4.27\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}_{1}, 2^{\prime}=9.0 \mathrm{~Hz}, \mathrm{H}^{\prime}-1\right.$), 4.37 (d, 1H, $J_{1^{\prime \prime}, 2^{\prime \prime}}=7.1 \mathrm{~Hz}, \mathrm{H}^{\prime \prime}-1$), $5.25\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}_{1,2}=6.9 \mathrm{~Hz}, \mathrm{H}-1\right) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR: $\delta 98.2$ (C-1), $102.0\left(\mathrm{C}^{\prime}-1\right)$, $103.8\left(\mathrm{C}^{\prime \prime}-1\right)$ ppm; HRMS-MS (m / z): $[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{97} \mathrm{H}_{100} \mathrm{O}_{16} \mathrm{Na}^{+}$, 1543.6909; found, 1543.6936.

2-Allylphenyl O-(2,3,4,6-tetra-O-benzyl- α / β-D-glucopyranosyl)-($1 \rightarrow 6$)-O-(2,3,4-tri-O-benzyl- α / β-D-glucopyranosyl)-($1 \rightarrow 6$)-2,3,4-tri-O-benzoyl- β-D-glucopyranoside (32).

The title compound was obtained as a colorless syrup from 16 and 13 by method A in 80% yield. Selected analytical data for $\alpha-32$: ${ }^{1} \mathrm{H}$ NMR: $\delta 4.67\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}^{\prime}, 2^{2}=3.2 \mathrm{~Hz}, \mathrm{H}^{\prime}-1\right.$), $4.90\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}^{\prime \prime}, 2^{\prime \prime}=2.5 \mathrm{~Hz}, \mathrm{H}^{\prime \prime}-1\right) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR: $\delta 97.4(\mathrm{C}-1)$, 97.5 (C'-1), 97.6 (C"-1) ppm; Selected analytical data for β-33: ${ }^{1} \mathrm{H}$ NMR: $\delta 5.27$ (d, $1 \mathrm{H}, \mathrm{J}_{1,2}=7.8 \mathrm{~Hz}, \mathrm{H}-1$) ppm; ${ }^{13} \mathrm{C}$ NMR: $\delta 99.7$ (C-1), 99.8 (C'-1), 103.8 (C"-1) ppm; HRMS-MS (m/z): [M + Na] ${ }^{+}$calcd for $\mathrm{C}_{97} \mathrm{H}_{94} \mathrm{O}_{19} \mathrm{Na}^{+}$, 1585.7729; found, 1585.7762.

NMR spectra

CDCl_{3} at 300 MHz

CDCl_{3} at 300 MHz

CDCl_{3} at 75 MHz

CDCl_{3} at 75 MHz

S2

CDCl_{3} at 300 MHz

CDCl_{3} at 75 MHz

S2

1d

CDCl_{3} at 300 MHz

1d

CDCl_{3} at 300 MHz

CDCl_{3} at 75 MHz

CDCl_{3} at 75 MHz

CDCl_{3} at 300 MHz

12

CDCl_{3} at 300 MHz

CDCl_{3} at 75 MHz

CDCl_{3} at 75 MHz

CDCl_{3} at 75 MHz

CDCl_{3} at 125 MHz

CDCl_{3} at 300 MHz

CDCl_{3} at 125 MHz

CDCl_{3} at 75 MHz

CDCl_{3} at 75 MHz

CDCl_{3} at 300 MHz

CDCl_{3} at 125 MHz

CDCl_{3} at 75 MHz

CDCl_{3} at 300 MHz

CDCl_{3} at 75 MHz

References

[1] G. Ekborg and C. P. J. Glaudemans, Carbohydr. Res. 1984, 129, 287-292.
[2] S. Kaeothip, P. Pornsuriyasak and A. V. Demchenko, Tetrahedron Lett. 2008, 49, 1542-1545.
[3] A. V. Demchenko, P. Pornsuriyasak, C. De Meo and N. N. Malysheva, Angew. Chem. Int. Ed. 2004, 43, 3069-3072.
[4] G. Balavoine, S. Berteina, A. Gref, J. C. Fischer and A. Lubineau, J. Carbohydr. Chem. 1995, 14, 1217-1236.
[5] J. Dinkelaar, A. R. de Jong, R. van Meer, M. Somers, G. Lodder, H. S. Overkleeft, J.
D. C. Codee and G. A. van der Marel, J. Org. Chem. 2009, 74, 4982-4991.
[6] J. T. Smoot, P. Pornsuriyasak and A. V. Demchenko, Angew. Chem. Int. Ed. 2005, 44, 7123-7126.
[7] J. M. Kuester and I. Dyong, Justus Liebigs Ann. Chem. 1975, 2179-2189.
[8] S. C. Ranade, S. Kaeothip and A. V. Demchenko, Org. Lett. 2010, 12, 5628-5631.
[9] C. Fei and T. H. Chan, Acta Chimica Sinica, Engl. Edit. 1989, 258-264.
[10] X. Huang, L. Huang, H. Wang and X. S. Ye, Angew. Chem. Int. Ed. 2004, 43, 52215224.
[11] P. J. Pfaeffli, S. H. Hixson and L. Anderson, Carbohydr. Res. 1972, 23, 195-206.
[12] L. A. J. M. Sliedregt, G. A. van der Marel and J. H. van Boom, Tetrahedron Lett. 1994, 35, 4015-4018.
[13] B. A. Garcia and D. Y. Gin, J. Am. Chem. Soc. 2000, 122, 4269-4279.
[14] H. M. Nguyen, Y. N. Chen, S. G. Duron and D. Y. Gin, J. Am. Chem. Soc. 2001, 123, 8766-8772.
[15] Y. D. Vankar, P. S. Vankar, M. Behrendt and R. R. Schmidt, Tetrahedron 1991, 47, 9985-9992.
[16] B. Wegmann and R. R. Schmidt, J. Carbohydr. Chem. 1987, 6, 357-375.
[17] H. Chiba, S. Funasaka and T. Mukaiyama, Bull. Chem. Soc. Jpn. 2003, 76, 16291644.
[18] Y. Kobashi and T. Mukaiyama, Bull. Chem. Soc. Jpn. 2005, 78, 910-916.
[19] P. Pornsuriyasak and A. V. Demchenko, Chem. Eur. J. 2006, 12, 6630-6646.
[20] S. Kaeothip, P. Pornsuriyasak, N. P. Rath and A. V. Demchenko, Org. Lett. 2009, 11, 799-802.

