Supporting Information File 1

for

Tandem dinucleophilic cyclization of cyclohexane-1,3-diones with pyridinium salts.

Mostafa Kiamehr^{1,2,3}, Firouz Matloubi Moghaddam^{2*}, Satenik Mkrtchyan¹, Volodymyr Semeniuchenko⁴, Linda Supe¹, Alexander Villinger¹, Peter Langer^{1,5*}, Viktor O. laroshenko^{1,4,§,*}

Address: ¹Institut für Chemie der Universität Rostock, Albert-Einstein-Straße 3a, D-18059 Rostock, Fax: (+49-381-498-6411), ²Laboratory of Organic Synthesis and Natural Products, Department of Chemistry, Sharif University of Technology, P. O. Box 11155-9516 Tehran, Iran, ³Department of Chemistry, Faculty of Science, University of Qom, Qom, Iran, ⁴National Taras Shevchenko University, Volodymyrska st 62, Kyiv-33, 01033, Ukraine and ⁵Leibniz Institut für Katalyse e.V. an der Universität Rostock, Albert-Einstein-Straße 29a, D-18059 Rostock.

Email: Firouz Matloubi Moghaddam* - <u>Matloubi@sharif.edu</u>, Peter Langer* – <u>peter.langer@uni-rostock.de</u>, Viktor O. laroshenko* - <u>viktor.iaroshenko@uni-rostock.de</u>

Details on synthetic procedures, list of pyridinium salts, characterization of new compounds, copies of NMR spectra, X-ray structures of compounds **6d**, **7c** and **8**.

[§]further email address iva108@gmail.com

Table of Contents

General information	S3
List of pyridinium salts used	S4
NMR, HRMS and IR spectral data	S5
Copies of ¹ H and ¹³ C NMR spectra for compounds 3 , 4 , 5 , 6 , 7 and 8	S16
X-ray structures of compounds 6d , 7c , 8	S80

General information

Chemical shifts of the ¹H and ¹³C NMR are reported in parts per million using the solvent internal standard (CDCl₃ 7.26 ppm and 77.0 ppm, DMSO-*d*₆ 2.49 ppm and 39.7 ppm). Infrared spectra were recorded in an ATR apparatus. Mass spectrometric data (MS) were obtained by electron ionization (EI, 70 eV), chemical ionization (CI, isobutane) or electrospray ionization (ESI). Melting points are uncorrected. The solvents were purchased directly from ACROS and used without further purification. Analytical thin-layer chromatography was performed on 0.20 mm 60 A silica gel plates. Column chromatography was performed using 60 A silica gel (60–200 mesh).

General procedure for the synthesis of pyridinium salts.

Alkyl bromide or iodide (0.2 mol) was added dropwise to the acetone solution (150–200 mL) of the corresponding pyridine derivative (0.1 mol). The mixture was stirred under argon for 2–3 days (progress of alkylation was controlled by TLC). After completion, the formed precipitate was filtered, washed with acetone and dried in vacuum at room temperature (heating caused decomposition). The obtained pyridinium salt was used without further purification or characterization.

General Procedures for the synthesis of compounds 3–8.

Procedure (A):

In a 25 mL Schlenk flask, under argon flow, 2.0 mmol of diketone, 1.0 mmol of the appropriate pyridinium salt, and 1.0 mmol (138 mg) of K_2CO_3 were loaded. The flask was covered with a septum stopper and 7 mL of absolute CH_3CN was added by syringe. The reaction mixture was left under intensive stirring at room temperature for 24 hours. Then the solvent was removed under reduced pressure and the crude material was subjected to column chromatography.

Procedure (B):

In the case of the 3-cyanopyrdinium salt NaHCO₃ (2.0 mmol, 168 mg) was used as a base and the reaction mixture was left over 4 days.

Procedure (C):

In the case of 2-cyanopyridinium salts the reaction was completed within 1 hour.

List of pyridinium salts used

$$R^4$$
 R^3
 R^3
 R^4
 R^3
 R^2
 R^3
 R^4
 R^3
 R^3

Figure S1

Table 1

Entry	2	R ¹	\mathbb{R}^2	\mathbb{R}^3	R ⁴	X	Known	Reactivity
1	2a	Me	Н	COMe	Н	I	Yes	Yes
2	2b	Me	Н	COPh	Н	I	Yes	Yes
3	2c	Me	Н	CO ₂ Et	Н	I	Yes	Yes
4	2d	Me	Н	CN	Н	I	Yes	Yes
5	2e	Et	Н	COMe	Н	Br	Yes	Yes
6	2f	Et	Н	COPh	Н	Br	No	Yes
7	2g	Allyl	Н	COMe	Н	Br	No	Yes
8	2h	Allyl	Н	COPh	Н	Br	Yes	Yes
9	2i	Allyl	Н	CN	Н	Br	No	Yes
10	2j	Bn	Н	COMe	Н	Br	Yes	Yes
11	2k	Bn	Н	COPh	Н	Br	No	Yes
12	21	Bn	Н	CN	Н	Br	Yes	Yes
13	2m	Me	CN	Н	Н	I	Yes	Yes
14	2n	Allyl	CN	Н	Н	Br	No	Yes
15	20	Bn	CN	Н	Н	Br	Yes	Yes
16	2p	Me	Н	Н	Н	I	Yes	No
17	2 q	Me	COMe	Н	Н	I	Yes	No
18	2r	Me	Me	Н	Н	I	Yes	No
19	2s	Me	Н	СНО	Н	I	Yes	No
20	2t	Me	Н	NO_2	Н	I	Yes	No
21	2u	Me	Н	Me	Н	I	Yes	No
22	2v	Me	Н	Н	CN	I	Yes	No
23	2w	Me	Н	Н	COMe	I	Yes	No
24	2x	Propargyl	CN	Н	Н	Br	No	No
25	2y	Propargyl	Н	CN	Н	Br	No	No

NMR, HRMS and IR spectral data

12-Acetyl-5,5,10-trimethyl-8-oxa-10-aza-tricyclo[7.3.1.0^{2,7}]trideca-2(7),11-dien-3-one (3a) Following General Procedure (A); yellow solid, mp 120–122 °C, yield 85% (233 mg).

¹H NMR (300 MHz, CDCl₃) δ = 0.98 (s, 3H, Me), 0.99 (s, 3H, Me), 1.67 (dt, 1H, 2J = 13.1 Hz, 3J = 2.5 Hz, CHC H_2 CH), 1.85 (dt, 1H, 2J = 13.4 Hz, 3J = 2.6 Hz, CHC H_2 CH), 2.14 (s, 3H, COMe), 2.19 (d, 2H, 2J = 3.4 Hz, CC H_2), 2.25 (d, 2H, 2J = 8.0 Hz, CC H_2), 3.24 (s, 3H, NMe), 4.45-4.46 (m, 1H, COCCH), 5.61 (s, 1H, NCHO), 7.35 (s, 1H, MeNCHC).

¹³C NMR (62.9 MHz, CDCl₃): δ = 24.3 (CH), 25.6 (CH₂), 27.3, 29.1 (CH₃), 32.2 (C), 41.9 (CH₂), 42.7, 44.6 (CH₃), 50.4 (CH₂), 65.7 (CH), 109.4, 111.3 (C), 149.0 (CH), 172.5, 192.0, 196.9 (C). MS (GC, 70 eV): m/z (%) = 275 (M⁺, 55), 260 (100), 232 (20), 139 (94). HRMS (EI): calcd for C₁₆H₂₁NO₃ (M⁺) 275.15160, found 275.151294. IR (ATR, cm⁻¹): \tilde{V} = 2958 (w), 1637 (m), 1592 (s), 1567 (s), 1415 (w), 1380 (s), 1351 (m), 1325 (s), 1305 (s), 1210 (m), 1169 (s), 1121 (s), 1058 (m), 1035 (s), 1008 (m), 964 (m), 935 (m), 919 (m), 840 (s), 801 (m), 770 (w), 712 (m), 684 (w), 613 (s), 593 (m).

12-Benzoyl-5,5,10-trimethyl-8-oxa-10-aza-tricyclo $[7.3.1.0^{2,7}]$ trideca-2(7),11-dien-3-one (3b)

Following General Procedure (A); light orange solid, mp 117–118 °C, yield 72% (243 mg).
¹H NMR (300 MHz, CDCl₃) δ = 1.02 (s, 6H, 2 x Me), 1.81 (m, 2H, CHC H_2 CH), 2.22 (d, 2H, 2J = 3.3 Hz, CC H_2), 2.34 (d, 2H, 2J = 5.2 Hz, CC H_2), 3.19 (s, 3H, NMe), 4.50 (s, 1H, COCC H_2), 5.83 (q, 1H, 3J = 2.5 Hz, NC H_2 O), 7.15 (s, 1H, MeNC H_2 C), 7.35-7.46 (m, 5H, CH_{Ar}).
¹³C NMR (75.5 MHz, CDCl₃): δ = 25.5 (CH₂), 27.7, 28.7 (CH₃), 32.4 (C), 42.0 (CH₂), 42.9, 44.9 (CH), 50.4 (CH₂), 65.8 (CH₃), 108.7, 111.2 (C), 128.0, 128.1, 129.8 (CH, Ar), 140.5 (C), 152.3 (CH), 172.8, 191.6, 196.8 (C). MS (GC, 70 eV): m/z (%) = 337 (M⁺, 45), 322 (59), 198 (100), 105 (28), 83 (24). HRMS (ESI): calcd for C₂₁H₂₄NO₃ (M + H) 338.17507, found 338.17489. IR (ATR, cm⁻¹): \tilde{V} = 2952 (w), 1631 (m), 1615 (m), 1588 (s), 1563 (s), 1444 (w), 1379 (s), 1326 (s), 1307 (s), 1229 (w), 1212 (s), 1197 (m), 1128 (s), 1047 (s), 1026 (s), 979 (m), 964 (m), 896 (m), 842 (m), 829 (m), 801 (m), 782 (m), 766 (m), 742 (s), 699 (s), 670 (s), 644 (s), 611 (s), 573 (m).

5,5,10-Trimethyl-3-oxo-8-oxa-10-aza-tricyclo[$7.3.1.0^{2,7}$]trideca-2(7),11-diene-12-carboxylic acid ethyl ester (3c)

Following General Procedure (A); light orange solid, mp 107–109 °C, yield 90% (275 mg).

¹H NMR (300 MHz, CDCl₃) δ = 0.97 (s, 3H, CH₃), 0.99 (s, 3H, CH₃), 1.24 (t, 3H, ${}^{3}J$ = 7.0 Hz, OCH₂CH₃), 1.64-1.84 (m, 2H, CHCH₂CH), 2.10-2.34 (m, 4H, CCH₂), 3.17 (s, 3H, NMe), 4.14 (m, 2H, OCH₂CH₃), 4.41-4.42 (m, 1H, CCHC), 5.46 (q, 1H, ${}^{3}J$ = 2.8 Hz, NCHO), 7.41 (s, 1H, MeNCHC).

¹³C NMR (62.9 MHz, CDCl₃): δ = 14.6 (CH₃), 25.6 (CH₂), 27.2, 29.1, (CH₃), 32.2 (C), 41.9 (CH₂), 42.3, 44.3 (CH), 50.4, 59.2 (CH₂), 67.0 (NCH₃), 96.2, 111.3 (C), 148.1 (CH), 167.1, 172.3 (C). MS (GC, 70 eV): m/z (%) = 305 (M⁺, 51), 290 (100), 276 (22), 262 (16), 232 (12), 166 (96), 138 (27). HRMS (ESI): calcd for C₁₇H₂₄NO₄ (M + H) 306.16998, found 306.16976.

IR (ATR, cm⁻¹): $\tilde{V} = 2961$ (w), 1668 (m), 1603 (s), 1495 (w), 1445 (w), 1376 (s), 1326 (m), 1291 (s), 1272 (s), 1211 (m), 1165 (s), 1130 (m), 1099 (m), 1069 (s), 1028 (s), 978 (m), 908 (m), 835 (m), 802 (m), 771 (m), 698 (m), 657 (m), 609 (m).

5,5,10-Trimethyl-3-oxo-8-oxa-10-aza-tricyclo[$7.3.1.0^{2,7}$]trideca-2(7),11-diene-12-carbonitrile (3d)

Following General Procedure (A); yellow solid, mp 139–141 °C, yield 63% (163 mg).

¹H NMR (300 MHz, CDCl₃) δ = 1.01 (s, 6H, 2 x Me), 1.71-1.87 (m, 2H, CHC H_2 CH), 2.22 (dd, 4H, 2J = 10.0 Hz, 4J = 1.8 Hz, CC H_2), 3.08 (s, 3H, NMe), 3.68-3.69 (m, 1H, CNCCH), 5.21 (q, 1H, 3J = 2.3 Hz, NCHO), 6.67 (s, 1H, MeNCHC).

¹³C NMR (62.9 MHz, CDCl₃): δ = 20.4 (CH), 25.2 (CH₂), 27.7, 28.8 (CH₃), 32.1 (C), 40.4, 41.5 (CH₂), 50.1 (CH₃), 81.8 (CH), 84.2, 115.6, 119.9 (C), 145.1 (CH), 167.1, 195.2 (C). MS (GC, 70 eV): m/z (%) = 258 (M⁺, 79), 241 (52), 174 (56), 159 (14), 146 (49), 119 (100). HRMS (ESI): calcd for C₁₅H₁₉N₂O₂ (M + H) 259.1441, found 259.14452. IR (ATR, cm⁻¹): \tilde{V} = 2925 (w), 2184 (w), 1649 (m), 1618 (s), 1470 (w), 1440 (w), 1413 (w), 1387 (s), 1331 (s), 1231 (w), 1203 (m), 1114 (m), 1090 (m), 1035 (s), 979 (m), 904 (w), 866 (w), 826 (m), 792 (m), 769 (m), 721 (m), 649 (w), 622 (m), 577 (m).

12-Acetyl-10-ethyl-5,5-dimethyl-8-oxa-10-aza-tricyclo[7.3.1.0^{2,7}]trideca-2(7),11-dien-3-one (3e)

Following General Procedure (A); yellow solid, mp 88–90 °C, yield 57% (165 mg).

¹H NMR (300 MHz, CDCl₃) δ = 0.98 (s, 6H, 2 x Me), 1.26 (t, 3H, ${}^{3}J$ = 7.3 Hz, NCH₂CH₃), 1.58-1.63 (m, 1H, CHCH₂CH), 1.88 (dt, 1H, ${}^{2}J$ = 13.3 Hz, ${}^{3}J$ = 3.0 Hz, CHCH₂CH), 2.16 (s, 3H, COMe), 2.17-2.27 (m, 4H, CCH₂), 3.24-3.36 (m, 1H, NCH₂CH₃), 3.72-3.83 (m, 1H, NCH₂CH₃), 4.56-4.57 (m, 1H, COCCH), 5.62 (s, 1H, NCHO), 7.42 (s, 1H, MeNCHC).

¹³C NMR (62.9 MHz, CDCl₃): δ = 15.2 (CH₃), 24.4 (CH), 26.2 (CH₂), 27.3, 29.1 (CH₃), 32.2 (C), 42.0 (CH₂), 42.8 (CH₃), 49.9, 50.4 (CH₂), 66.0 (CH), 109.4, 111.4 (C), 147.8 (CH), 172.4, 192.1, 196.9 (C). MS (GC, 70 eV): m/z (%) = 289 (M⁺, 71), 260 (100), 246 (31), 204 (27), 150 (64). HRMS (EI): calcd for C₁₇H₂₃NO₃ (M⁺) 289.16725, found 289.166641. IR (ATR, cm⁻¹): \tilde{V} = 2961 (w), 2873 (w), 1642 (w), 1596 (s), 1574 (s), 1428 (w), 1380 (s), 1348 (s), 1302 (s), 1258 (s), 1222 (m), 1207 (m), 1163 (s), 1111 (m), 1033 (s), 981 (m), 946 (s), 931 (m), 917 (m), 836 (s), 800 (m), 766 (m), 710 (m), 681 (m), 611 (m), 591 (m), 562 (m).

$12-Benzoyl-10-ethyl-5, 5-dimethyl-8-oxa-10-aza-tricyclo [7.3.1.0^{2,7}] trideca-2 (7), 11-dien-3-one \ (3f)$

Following General Procedure (A); pale orange solid, mp 147–149 °C, yield 64% (225 mg).
¹H NMR (300 MHz, CDCl₃) δ = 1.02 (s, 6H, 2 x Me), 1.19 (t, 3H, ${}^{3}J$ = 7.1 Hz, NCH₂CH₃), 1.67 (dt, 1H, ${}^{2}J$ = 13.3 Hz, ${}^{3}J$ = 2.4 Hz, CHCH₂CH), 1.95 (dt, 1H, ${}^{2}J$ = 13.3 Hz, ${}^{3}J$ = 2.6 Hz, CHCH₂CH), 2.21 (d, 2H, ${}^{2}J$ = 2.2 Hz, CCH₂), 2.33 (d, 2H, ${}^{2}J$ = 3.7 Hz, CCH₂), 3.17-3.79 (m, 2H, NCH₂CH₃), 4.61 (s, 1H, COCCH), 5.84 (br. q, 1H, ${}^{3}J$ = 2.0 Hz, NCHO), 7.23 (s, 1H, MeNCHC), 7.34-7.47 (m, 5H, CH_{Ar}).
¹³C NMR (75.5 MHz, CDCl₃): δ = 15.1 (CH₃), 26.2 (CH₂), 27.7, 28.7 (CH₃), 32.4 (C), 42.1 (CH₂), 43.1 (CH), 50.0, 50.5 (CH₂), 66.1 (CH), 108.7, 111.4 (C), 128.0, 128.1, 129.8 (CH, Ar), 140.6 (C), 151.0 (CH), 172.7, 191.6, 196.8 (C). MS

(GC, 70 eV): m/z (%) = 351 (M⁺, 38), 322 (56), 246 (15), 212 (100), 184 (26), 105 (72). HRMS (ESI): calcd for $C_{22}H_{26}NO_3$ (M + H) 352.19072, found 352.19132. IR (ATR, cm⁻¹): $\tilde{V} = 2945$ (w), 1639 (m), 1592 (s), 1565 (s), 1443 (w), 1402 (m), 1379 (s), 1363 (s), 1316 (m), 1286 (m), 1260 (s), 1229 (m), 1211 (m), 1191 (m), 1130 (s), 1035 (s), 980 (m), 946 (m), 897 (m), 834 (s), 800 (m), 765 (m), 746 (m), 705 (s), 669 (m), 647 (m), 615 (m), 566 (m).

12-Acetyl-10-allyl-5,5-dimethyl-8-oxa-10-aza-tricyclo[$7.3.1.0^{2,7}$]trideca-2(7),11-dien-3-one (3g)

Following General Procedure (A); yellow solid, mp 106–108 °C, yield 65% (196 mg).

¹H NMR (300 MHz, CDCl₃) δ = 0.99 (s, 3H, Me), 1.00 (s, 3H, Me), 1.64 (dt, 1H, 2J = 13.3 Hz, 3J = 2.5 Hz, CHC H_2 CH), 1.88 (dt, 1H, 2J = 13.3 Hz, 3J = 2.8 Hz, CHC H_2 CH), 2.16 (s, 3H, COMe), 2.18-2.27 (m, 4H, CC H_2), 3.82-3.89 (m, 1H, NC H_2 CHCH₂), 4.30-4.38 (m, 1H, NC H_2 CHCH₂), 4.53-4.54 (m, 1H, COCC H_2), 5.25-5.37 (m, 2H, NC H_2 CHCH₂), 5.64 (s, 1H, NC H_2 C), 5.75-5.88 (m, 1H, NC H_2 CHCH₂), 7.40 (s, 1H, NC H_2 CO).

¹³C NMR (75.5 MHz, CDCl₃): δ = 26.0 (CH₂), 27.3 (CH₃), 29.1 (CH), 28.2 (CH₃), 32.3 (C), 41.9 (CH₂), 43.0 (CH₃), 50.4, 57.5 (CH₂), 66.0 (CH), 109.9, 111.5 (C), 119.0 (CH₂), 133.2, 148.2 (CH), 172.5, 192.5, 196.9 (C). MS (GC, 70 eV): m/z (%) = 301 (M⁺, 81), 260 (73), 204 (29), 162 (69), 43 (100). HRMS (EI): calcd for C₁₈H₂₃NO₃ (M⁺) 301.16725, found 301.166587. IR (ATR, cm⁻¹): \tilde{V} = 2955 (w), 1644 (w), 1600 (s), 1571 (s), 1451 (w), 1421 (m), 1380 (s), 1353 (s), 1303 (m), 1238 (m), 1208 (s), 1160 (m), 1116 (s), 1033 (m), 956 (m), 937 (m), 915 (s), 837 (m), 774 (w), 715 (m), 609 (m).

$10\text{-}Allyl\text{-}12\text{-}benzoyl\text{-}5,5\text{-}dimethyl\text{-}8\text{-}oxa\text{-}10\text{-}aza\text{-}tricyclo[7.3.1.0^{2,7}]trideca\text{-}2(7),}11\text{-}dien\text{-}3\text{-}one~(3h)$

Following General Procedure (A); pale orange solid, mp 106–108 °C, yield 62% (225 mg).

¹H NMR (300 MHz, CDCl₃) δ = 1.01 (s, 3H, Me), 1.02 (s, 3H, Me), 1.69 (dt, 1H, 2J = 13.6 Hz, 3J = 2.6 Hz, CHC 4 CH), 1.94 (dt, 1H, 2J = 13.4 Hz, 3J = 2.9 Hz, CHC 4 CH), 2.21 (d, 2H, 2J = 2.1 Hz, CC 4 CH₂), 2.32 (d, 2H, 2J = 4.0 Hz, CC 4 CH₂), 3.72-3.80 (m, 1H, NC 4 CHCH₂), 4.27-4.35 (m, 1H, NC 4 CHCH₂), 4.57 (q, 1H, 4J = 2.1 Hz, CC 4 CHCH₂), 5.20-5.32 (m, 2H, NCH₂CHC 4 CHCH₂), 5.67-5.81 (m, 1H, NCH₂CHCH₂), 5.85 (q, 1H, 4J = 2.6 Hz, NCHO), 7.21 (s, 1H, NCHC), 7.34-7.46 (m, 5H, Ph).

¹³C NMR (75.5 MHz, CDCl₃): δ = 25.9 (CH₂), 27.6, 28.7 (CH₃), 32.3 (C), 42.0 (CH₂), 43.1 (CH), 50.4, 57.6 (CH₂), 66.0 (CH), 108.9, 111.4 (C), 119.0 (CH₂), 128.0, 128.1, 130.0, 133.0 (CH), 140.4 (C), 151.4 (CH), 172.7, 191.7, 196.8 (C). MS (GC, 70 eV): $^{m/2}$ C(%) = 363 (M⁺, 63), 322 (36), 258 (45), 224 (51), 105 (100). HRMS (ESI): calcd for C₂₃H₂₆NO₃ (M + H) 364.19072, found 364.19069. IR (ATR, cm⁻¹): 7 = 2959 (w), 1738 (w), 1640 (m), 1597 (s), 1566 (s), 1445 (w), 1416 (m), 1378 (s), 1349 (s), 1327 (m), 1220 (s), 1180 (m), 1134 (m), 1104 (s), 1034 (s), 992 (m), 949 (m), 935 (m), 888 (m), 842 (m), 807 (w), 783 (m), 741 (m), 699 (s), 646 (s), 622 (m).

10-Allyl-5,5-dimethyl-3-oxo-8-oxa-10-aza-tricyclo $[7.3.1.0^{2,7}]$ trideca-2(7),11-diene-12-carbonitrile (3i)

Following General Procedure (B); yellow solid, mp 125–127 °C, yield 72% (204 mg).

¹H NMR (250 MHz, CDCl₃) δ = 1.01 (s, 3H, Me), 1.02 (s, 3H, Me), 1.70-1.91 (m, 2H, CHC H_2 CH), 2.21 (s, 2H, CC H_2), 2.22 (s, 2H, CC H_2), 3.70-3.71 (m, 1H, CCHCH $_2$), 3.77-3.98 (m, 2H, NC H_2 CHCH $_2$), 5.15-5.32 (m, 3H, NCH $_2$ CHC H_2 , NC H_2 0), 5.70-5.86 (m, 1H, NCH $_2$ CHCH $_2$), 6.72 (s, 1H, NCHCCN). ¹³C NMR (62.9 MHz, CDCl₃): δ = 20.7 (CH), 25.4 (CH $_2$), 27.8, 28.8 (CH $_3$), 32.1 (C), 41.6, 50.1, 55.9 (CH $_2$), 80.6 (CH), 84.7, 115.5, 118.7 (CH $_2$), 119.9 (C), 133.0, 144.3 (CH), 167.2, 195.4 (C). MS (GC, 70 eV): m/z (%) = 284 (M $_2$ +, 54), 267 (27), 243 (100), 200 (27), 172 (24), 145 (54), 104 (15), 83 (31). HRMS (ESI): calcd for C₁₇H₂₁N₂O₂ (M + H) 285.15975, found 285.16023. IR (ATR, cm $_2$ -1): \tilde{V} = 2956 (w), 2925 (w), 2193 (m), 1623 (s), 1449 (w), 1383 (s), 1285 (w), 1235 (m), 1208 (m), 1106 (m), 1044 (s), 1033 (s), 994 (w), 948 (m), 922 (m), 837 (m), 794 (w), 728 (w), 668 (w), 604 (w).

12-Acetyl-10-benzyl-5,5-dimethyl-8-oxa-10-aza-tricyclo[$7.3.1.0^{2,7}$]trideca-2(7),11-dien-3-one (3j)

Following General Procedure (A); orange solid, mp 156–158 °C, yield 73% (324 mg).

¹H NMR (300 MHz, CDCl₃) δ = 0.98 (s, 3H, Me), 1.01 (s, 3H, Me), 1.50 (dt, 1H, 2J = 13.5 Hz, 3J = 2.5 Hz, CHC H_2 CH), 1.78 (dt, 1H, 2J = 13.3 Hz, 3J = 3.0 Hz, CHC H_2 CH), 2.17 (s, 3H, CH₃), 2.19-2.28 (m, 4H, CC H_2), 4.39 (d, 1H, 2J = 14.8 Hz, PhCH₂), 4.48 (s, 1H, OCCCH), 4.90 (d, 1H, 2J = 14.8 Hz, PhCH₂), 5.62 (s, 1H, NCHO), 7.28-7.37 (m, 5H, CH_{Ar}), 7.54 (s, 1H, NCHC).

¹³C NMR (62.9 MHz, CDCl₃): δ = 24.4 (CH₃), 26.0 (CH₂), 27.2, 29.2 (CH₃), 32.3 (C), 42.0 (CH₂), 42.5 (CH), 50.4, 58.9 (CH₂), 66.0 (CH), 109.7, 111.4 (C), 128.0, 128.1, 128.9 (Ar), 136.6 (C), 148.4 (CH), 172.6, 192.4, 197.1 (C). MS (GC, 70 eV): m/z (%) = 351 (M⁺, 41), 308 (20), 260 (96), 204 (14), 106 (18), 91 (100). HRMS (EI): calcd for C₂₂H₂₅NO₃ (M⁺) 351.18290, found 351.183121. IR (ATR, cm⁻¹): \tilde{V} = 2957 (w), 1642 (w), 1597 (s), 1573 (s), 1431 (w), 1382 (s), 1351 (s), 1300 (m), 1207 (s), 1154 (m), 1115 (s), 1046 (s), 1033 (s), 981 (w), 936 (m), 918 (m), 838 (m), 799 (w), 750 (w), 699 (m), 603 (m).

12-Benzoyl-10-benzyl-5,5-dimethyl-8-oxa-10-aza-tricyclo[7.3.1. $0^{2,7}$]trideca-2(7),11-dien-3-one (3k)

Following General Procedure (A); orange solid, mp 156–158 °C, yield 73% (324 mg). 1 H NMR (250 MHz, CDCl₃) δ = 1.02 (s, 3H, Me), 1.05 (s, 3H, Me), 1.55 (dt, 1H, ^{2}J = 13.5 Hz, ^{3}J = 2.4 Hz, CHC H_{2} CH), 1.85 (dt, 1H, ^{2}J = 13.5 Hz, ^{3}J = 2.3 Hz, CHC H_{2} CH), 2.25 (d, 2H, ^{2}J = 5.3 Hz, CC H_{2}), 2.34 (d, 2H, ^{2}J = 6.8 Hz, CC H_{2}), 4.32 (d, 1H, ^{2}J = 14.5 Hz, NCH₂), 4.52-4.53 (m, 1H, OCCC H_{2}), 4.87 (d, 1H, ^{2}J = 14.5 Hz, NCH₂), 5.84 (q, 1H, ^{3}J = 2.4 Hz, NC H_{2}), 7.26-7.47 (m, 11H, NCHC, CH_{Ar}). 13 C NMR (62.9 MHz, CDCl₃): δ = 25.9 (CH₂), 27.6, 28.8 (CH₃), 32.4 (C), 42.0 (CH₂), 42.7 (CH), 50.4, 59.0 (CH₂), 66.0 (CH), 108.8, 111.3 (C), 128.0, 128.0, 128.1, 128.3, 129.9 (CH, Ar), 136.3, 140.4 (C), 151.7 (CH), 172.9, 191.8, 197.0 (C). MS (GC, 70 eV): m/z (%) = 413 (M⁺, 53), 322 (75), 308 (22), 275 (16), 183 (31), 105 (79), 91 (100). HRMS (ESI): calcd for C₂₇H₂₈NO₃ (M + H) 414.20637, found 414.20648. IR (ATR, cm⁻¹): \tilde{V} = 2928 (w), 1644 (w), 1598 (s), 1557 (s), 1443 (w), 1378 (s), 1303 (m), 1210 (s), 1107 (m), 1047 (m), 1021 (m), 956 (w), 890 (w), 831 (w), 791 (w), 727 (m), 697 (s), 617 (m).

10-Benzyl-5,5-dimethyl-3-oxo-8-oxa-10-aza-tricyclo $[7.3.1.0^{2,7}]$ trideca-2(7),11-diene-12-carbonitrile (3l)

Following General Procedure (B); light pink solid, mp 139–141 °C, yield 70% (234 mg).
¹H NMR (250 MHz, CDCl₃) δ = 0.98-1.00 (m, 6H, 2 x Me), 1.71-1.88 (m, 2H, CHC H_2 CH), 2.05-2.19 (m, 4H, 2 x CC H_2), 3.71 (s, 1H, CNCCH), 4.35-4.55 (m, 2H, NCH₂), 5.31 (s, 1H, NCHO), 6.83 (s, 1H NCHCCN), 7.19-7.33 (m, 5H, CH_{Ar}).
¹³C NMR (62.9 MHz, CDCl₃): δ = 20.7 (CH), 25.4 (CH₂), 27.9, 28.6 (CH₃), 32.0 (C), 41.4, 50.0, 57.3 (CH₂), 80.6 (CH), 84.8, 115.4, 119.9 (C), 127.6, 128.2, 128.9 (CH, Ar), 136.3 (C), 144.7 (CH), 167.2, 195.4 (C). MS (GC, 70 eV): m/z (%) = 334 (M⁺, 31), 243 (100), 222 (12), 91 (96). HRMS (ESI): calcd for C₂₁H₂₃N₂O₂ (M + H) 335.1754, found 335.17541. IR (ATR, cm⁻¹): \tilde{V} = 2956 (w), 2188 (m), 1615 (s), 1467 (w), 1414 (m), 1383 (s), 1357 (m), 1318 (m), 1290 (w), 1223 (m), 1179 (m), 1105 (m), 1046 (s), 1024 (m), 979 (m), 947 (m), 844 (m), 794 (w), 755 (m), 696 (s), 668 (m), 645 (m), 613 (m).

5,5,10-Trimethyl-3-oxo-8-oxa-10-aza-tricyclo $[7.3.1.0^{2,7}]$ trideca-2(7),11-diene-11-carbonitrile (4a)

Following General Procedure (C); yellow solid, mp 84–86 °C, yield 82% (212 mg).

¹H NMR (300 MHz, CDCl₃) δ = 1.01 (s, 3H, Me), 1.02 (s, 3H, Me), 1.81 (t, 2H, ³J = 2.6 Hz, CHCH₂CH), 2.18 (s, 2H, CCH₂), 2.26 (s, 2H, CCH₂), 3.04 (s, 3H, NMe), 3.55-3.58 (m, 1H, CCHCH), 5.29 (q, 1H, ³J = 2.2 Hz, NCHO), 5.88 (d, 1H, ³J = 7.1 Hz, NCCCH).

¹³C NMR (62.9 MHz, CDCl₃): δ = 19.9 (CH), 25.0 (CH₂), 27.8, 28.6 (CH₃), 32.1 (C), 37.5 (CH₃), 41.8, 50.2 (CH₂), 83.6 (CH), 114.9, 115.0, 118.8 (C), 119.6 (CH), 169.2, 195.6 (C). MS (GC, 70 eV): m/z (%) = 258 (M⁺, 44), 243 (28), 201 (11), 119 (100). HRMS (ESI): calcd for C₁₅H₁₉N₂O₂ (M + H) 259.1441, found 259.14439. IR (ATR, cm⁻¹): \tilde{V} = 2968 (w), 2878 (w), 2226 (w), 1649 (s), 1620 (s), 1450 (w), 1407 (w), 1379 (s), 1342 (m), 1322 (s), 1278 (m), 1231 (w), 1202 (w), 1172 (m), 1155 (m), 1105 (m), 1075 (m), 1052 (s), 1030 (m), 980 (s), 917 (w), 901 (w), 830 (s), 815 (m), 761 (s), 605 (s), 593 (s).

10-Allyl-5,5-dimethyl-3-oxo-8-oxa-10-aza-tricyclo $[7.3.1.0^{2,7}]$ trideca-2(7),11-diene-11-carbonitrile (4b)

Following General Procedure (C); yellow solid, mp 95–97 °C, yield 77% (219 mg).

¹H NMR (300 MHz, CDCl₃) δ = 1.01 (s, 3H, Me), 1.03 (s, 3H, Me), 1.72-1.88 (m, 2H, CHC H_2 CH), 2.19 (s, 2H, CC H_2), 2.25 (s, 2H, CC H_2), 3.56-3.59 (m, 1H, CCHCH), 3.95-4.00 (m, 2H, NC H_2 CHCH₂), 5.20-5.28 (m, 2H, NCH₂CHC H_2), 5.39 (m, 1H, NCHO), 5.75-5.86 (m, 1H, NCH₂CHCH₂), 5.90 (dd, 1H, 3J = 7.4 Hz, 4J = 1.4 Hz, NCCCH).

¹³C NMR (62.9 MHz, CDCl₃): δ = 20.0 (CH), 25.1 (CH₂), 28.0, 28.6 (CH₃), 32.1 (C), 41.8, 50.2, 53.1 (CH₂), 81.9 (CH), 114.7, 115.0, 118.1 (C), 118.5 (CH₂), 119.6, 133.5 (CH), 168.9, 195.7 (C). MS (GC, 70 eV): m/z (%) = 284 (M⁺, 11), 243 (100), 145 (10). HRMS (ESI): calcd for C₁₇H₂₁N₂O₂ (M + H) 285.15975, found 285.1594. IR (ATR, cm⁻¹): $\tilde{\nu}$ = 2957 (w), 2874 (w), 2225 (w), 1643 (m), 1617 (s), 1455 (w), 1420 (m), 1382 (s), 1368 (m), 1344 (m), 1327 (w), 1290 (m), 1213 (w), 1185 (w), 1167 (m), 1118 (m), 1105 (m), 1046 (m), 1009 (w), 990 (m), 962 (m), 916 (m), 891 (w), 833 (m), 819 (m), 791 (m), 767 (m), 654 (m), 611 (m), 594 (m).

10-Benzyl-5,5-dimethyl-3-oxo-8-oxa-10-aza-tricyclo $[7.3.1.0^{2,7}]$ trideca-2(7),11-diene-11-carbonitrile (4c)

Following General Procedure (C); pale yellow solid, mp 129–131 °C, yield 67% (224 mg).
¹H NMR (300 MHz, CDCl₃) δ = 0.97 (s, 3H, Me), 1.00 (s, 3H, Me), 1.69-1.83 (m, 2H, CHC H_2 CH), 2.04-2.25 (m, 4H, 2 x CC H_2), 3.58-3.60 (m, 1H, CCHCH), 4.48-4.60 (m, 2H, NCH₂), 5.30 (q, 1H, 3J = 2.6 Hz, NCHO), 5.93 (dd, 1H, 3J = 7.2 Hz, 4J = 1.1 Hz, NCCCH), 7.27-7.38 (m, 5H, CH_{Ar}). ¹³C NMR (75.5 MHz, CDCl₃): δ = 20.1 (CH), 25.1 (CH₂), 27.9, 28.6 (CH₃), 32.0 (C), 41.6, 50.2, 53.9 (CH₂), 81.2 (CH), 114.5, 115.2, 118.6 (C), 119.5 (CH), 127.8, 128.0, 128.7 (CH, Ar), 137.0, 168.9, 195.7 (C). MS (GC, 70 eV): m/z (%) = 334 (M⁺, 7), 243 (100), 91 (81). HRMS (ESI): calcd for C₂₁H₂₃N₂O₂ (M + H) 335.1754, found 335.17563. IR (ATR, cm⁻¹): \tilde{V} = 2955 (w), 2868 (w), 2223 (w), 1650 (s), 1618 (s), 1495 (w), 1449 (w), 1418 (w), 1382 (s), 1282 (w), 1199 (m), 1107 (s), 1055 (m), 1031 (m), 1002 (m), 964 (m), 917 (w), 835 (m), 770 (m), 729 (s), 696 (s), 591 (m).

5,5,12-Trimethyl-3-oxo-8-oxa-12-aza-tricyclo[$7.3.1.0^{2,7}$]trideca-2(7),10-diene-10-carbonitrile (5)

Following General Procedure (A); yellow solid, mp 117–119 °C, yield 20% (52 mg).

¹H NMR (300 MHz, CDCl₃) δ = 1.00 (s, 3H, Me), 1.03 (s, 3H, Me),1.70-1.86 (m, 2H, CHC H_2 CH), 2.20-2.38 (m, 4H, CC H_2), 3.16 (s, 3H, NMe), 4.44-4.45 (m, 1H, NC H_2), 5.02 (q, 1H, 3J = 2.7 Hz, NCCC H_2 0), 6.89 (s, 1H, MeNC H_2 0).

¹³C NMR (62.9 MHz, CDCl₃): δ = 25.2 (CH₂), 27.4, 28.9 (CH₃), 32.3 (C), 41.7 (CH₂), 42.4 (CH₃), 44.0 (CH), 50.4 (CH₂), 84.2, 68.1 (CH), 75.0, 111.0, 121.7 (C), 149.4 (CH), 171.5, 196.9 (C). MS (GC, 70 eV): m/z (%) = 258 (M⁺, 41), 243 (100), 119 (71). HRMS (ESI): calcd for C₁₅H₁₉N₂O₂ (M + H) 259.1441, found 259.14412. IR (ATR, cm⁻¹): \tilde{V} = 2961 (w), 2187 (s), 1642 (m), 1612 (s), 1467 (w), 1414 (w), 1391 (s), 1381 (s), 1336 (s), 1319 (m), 1206 (m), 1163 (w), 1122 (s), 1082 (w), 1038 (s), 981 (m), 958 (m), 922 (w), 843 (m), 798 (w), 772 (w), 709 (m), 681 (m), 605 (m), 570 (m).

$12 - Acetyl - 10 - methyl - 8 - oxa - 10 - aza - tricyclo [7.3.1.0^{2,7}] trideca - 2(7), 11 - dien - 3 - one~(6a)$

Following General Procedure (A); yellow solid, mp 108–110 °C, yield 90% (222 mg).

¹H NMR (300 MHz, CDCl₃) δ = 1.65-1.93 (m, 4H, CH₂), 2.13 (s, 3H, COMe), 2.28-2.40 (m, 4H, CCH₂), 3.24 (s, 3H, NMe), 4.42-4.43 (m, 1H, COCCH), 5.60 (s, 1H, NCHO), 7.34 (s, 1H, MeNCHC).

¹³C NMR (75.5 MHz, CDCl₃): δ = 20.6 (CH₂), 24.2 (CH), 25.5, 28.3, 36.4 (CH₂), 42.8, 44.7 (CH₃), 65.6 (CH), 109.2, 112.5 (C), 149.2 (CH), 174.0, 192.0, 197.2 (C).

MS (GC, 70 eV): m/z (%) = 247 (M⁺, 67), 232 (79), 204 (24), 136 (100). HRMS (EI): calcd for C₁₄H₁₇NO₃ (M⁺) 247.12029, found 247.120569. IR (ATR, cm⁻¹): \tilde{V} = 2939 (w), 1636 (m), 1593 (s), 1574 (s), 1415 (m), 1381 (s), 1341 (s), 1298 (m), 1172 (s), 1126 (s), 1065 (m), 1025 (s), 971 (m), 958 (m), 933 (m), 915 (m), 860 (m), 826 (s), 713 (m), 867 (m), 601 (m).

12-Benzoyl-10-methyl-8-oxa-10-aza-tricyclo[7.3.1.0^{2,7}]trideca-2(7),11-dien-3-one (6b) Following General Procedure (A); yellow solid, mp 108–110 °C, yield 75% (232 mg). ¹H NMR (300 MHz, CDCl₃) δ = 1.70-2.02 (m, 4H, 2 x CH₂), 2.35 (t, 2H, ³J = 6.3 Hz, CH₂CH₂CH₂), 2.46 (t, 2H, ³J = 6.3 Hz, CH₂CH₂CH₂), 3.20 (s, 3H, NMe), 4.49 (br. q, 1H, ${}^3J = 2.1 \text{ Hz}, \text{COCC}H$), 5.81 (br. q, 1H, ${}^3J = 2.3 \text{ Hz}, \text{NC}H\text{O}$), 7.16 (s, 1H, MeNCH), 7.35-7.47 (m, 5H, CH_{Ar}). ${}^{13}\text{C NMR}$ (62.9 MHz, CDCl₃): $\delta = 20.7$, 25.4, 28.4, 36.5 (CH₂), 42.9, 44.9 (CH), 65.7 (CH₃), 108.4, 112.4 (C), 128.0, 128.1, 129.7 (CH, Ar), 140.4 (C), 152.4 (CH), 174.3, 191.6, 197.1 (C). MS (GC, 70 eV): m/z (%) = 309 (M⁺, 25), 294 (25), 198 (100), 105 (18). HRMS (ESI): calcd for C₁₉H₂₀NO₃ (M + H) 310.14377, found 310.14336. IR (ATR, cm⁻¹): $\tilde{V} = 2943$ (w), 1592 (s), 1556 (s), 1413 (m), 1376 (s), 1329 (s), 1306 (s), 1198 (m), 1181 (m), 1124 (s), 1032 (s), 968 (m), 909 (m), 895 (m), 838 (m), 816 (m), 793 (w), 724 (s), 699 (s), 644 (m), 592 (m).

10-Methyl-3-oxo-8-oxa-10-aza-tricyclo $[7.3.1.0^{2,7}]$ trideca-2(7),11-diene-12-carboxylic acid ethyl ester (6c)

Following General Procedure (A); light orange solid, mp 99–101 °C, yield 88% (244 mg).
¹H NMR (300 MHz, CDCl₃) δ = 1.25 (t, 3H, ³J = 7.1 Hz, OCH₂CH₃), 1.63-1.94 (m, 4H, CH₂), 2.29-2.42 (m, 4H, CCH₂), 3.19 (s, 3H, NMe), 4.15 (m, 2H, OCH₂CH₃), 4.41-4.42 (m, 1H, COCCH), 5.46-5.49 (m, 1H, NCHO), 7.43 (s, 1H, MeNCHC).
¹³C NMR (63 MHz, CDCl₃): δ = 14.6 (CH₃), 20.7, 25.6, 28.4, 36.5 (CH₂), 42.5, 44.5 (CH), 59.2 (CH₂), 66.9 (CH₃), 96.1, 112.6 (C), 148.2 (CH), 167.2, 173.9, 197.3 (C). MS (GC, 70 eV): m/z (%) = 277 (M⁺, 59), 262 (81), 248 (23), 232 (20), 166 (100), 138 (37). HRMS (EI): calcd for C₁₅H₁₉NO₄ (M⁺) 277.13086, found 277.131066. IR (ATR, cm⁻¹): \tilde{V} = 3451 (w), 2941 (w), 1976 (m), 1643 (m), 1603 (s), 1388 (s), 1376 (s), 1325 (m), 1293 (s), 1277 (s), 1221 (w), 1163 (s), 1125 (s), 1066 (s), 1032 (s), 963 (m), 859 (w), 822 (m), 769 (m), 695 (w).

10-Methyl-3-oxo-8-oxa-10-aza-tricyclo[7.3.1.0^{2,7}]trideca-2(7),11-diene-12-carbonitrile (6d) Following General Procedure (A); light pink solid, mp 150–152 °C, yield 61% (140 mg).

¹H NMR (300 MHz, CDCl₃) δ = 1.79-1.95 (m, 4H, 2 x CH₂), 2.30-2.38 (m, 4H, 2 x CH₂), 3.08 (s, 3H, NMe), 3.66 (s, 1H, CNCC*H*), 5.21 (s, 1H, NC*H*O), 6.67 (s, 1H, MeNC*H*).

¹³C NMR (62.9 MHz, CDCl₃): δ = 20.4 (CH), 20.5, 25.1, 27.7, 36.1 (CH₂), 40.4 (CH₃), 81.7 (CH), 84.0, 116.8, 120.0 (C), 145.2 (CH), 168.7, 1956 (C). MS (GC, 70 eV): m/z (%) = 230 (M⁺, 53), 213 (43), 174 (46), 146 (29), 119 (100). HRMS (EI): calcd for C₁₃H₁₄N₂O₂ (M⁺) 230.104526, found 230.10498. IR (ATR, cm⁻¹): \tilde{V} = 2952 (w), 2187 (m), 1651 (m), 1622 (s), 1491 (w), 1434 (w), 1384 (s), 1331 (m), 1316 (m), 1288 (w), 1219 (w), 1190 (m), 1120 (s), 1094 (m), 1057 (m), 1028 (s), 966 (s), 930 (m), 911 (m), 870 (m), 811 (s), 744 (m), 723 (m), 661 (m), 622 (s), 593 (m), 573 (s).

12-Acetyl-10-ethyl-8-oxa-10-aza-tricyclo[7.3.1.0^{2,7}]trideca-2(7),11-dien-3-one (6e)

Following General Procedure (A); yellow solid, mp 82–84 °C, yield 74% (193 mg).
¹H NMR (250 MHz, CDCl₃) δ = 1.26 (t, 3H, ³J = 7.0 Hz, NCH₂CH₃), 1.56-1.94 (m, 1H, CHC H_2 CH), 1.85-1.94 (m, 3H, CHC H_2 CH, CH₂), 2.16 (s, 3H, COMe), 2.28-2.41 (m, 4H, 2 x C H_2), 3.23-3.38 (m, 1H, NC H_2 CH₃), 3.74-3.88 (m, 1H, NC H_2 CH₃), 4.55 (s, 1H, COCC H_3), 5.62 (s, 1H, NC H_3 O), 7.42 (s, 1H, MeNC H_3 C).
¹³C NMR (62.9 MHz, CDCl₃): δ = 15.2 (CH₃), 20.7 (CH₂), 24.4 (CH), 26.1, 28.3, 36.5 (CH₂), 42.9 (CH₃), 49.9 (CH₂), 66.2 (CH), 100.4, 112.6 (C), 147.6 (CH), 173.9, 192.0, 197.2 (C). MS (GC, 70 eV): m/z (%) = 261 (M⁺, 63), 232 (100), 218 (26), 190 (11), 176 (20), 150 (50), 122 (16). HRMS (ESI): calcd for

 $C_{15}H_{20}NO_3$ (M + H) 262.14377, found 262.14352. IR (ATR, cm⁻¹): $\tilde{V} = 2932$ (w), 1640 (w), 1593 (s), 1573 (s), 1427 (w), 1380 (s), 1350 (s), 1301 (m), 1263 (m), 1220 (m), 1194 (m), 1163 (s), 1128 (m), 1063 (m), 1027 (s), 974 (m), 930 (m), 913 (m), 858 (w), 819 (m), 732 (w), 711 (w), 684 (w), 607 (m).

12-Benzoyl-10-ethyl-8-oxa-10-aza-tricyclo[7.3.1.0^{2,7}]trideca-2(7),11-dien-3-one (6f)

Following General Procedure (A); yellow solid, mp 135–137 °C, yield 45% (145 mg).
¹H NMR (300 MHz, CDCl₃) δ = 1.19 (t, 3H, ³J = 7.2 Hz, NCH₂CH₃), 1.62-1.68 (m, 1H, CH₂), 1.90-1.98 (m,3H, CH₂), 2.32-2.36 (m, 2H, CH₂), 2.43-2.47 (m, 2H, CH₂), 3.16-3.27 (m, 1H, NCH₂CH₃), 3.71-3.83 (m, 1H, NCH₂CH₃), 4.58-4.59 (m, 1H, COCCH), 5.82 (br. q, 1H, ⁴J = 2.9 Hz, NCHO), 7.24 (s, 1H, EtNCH), 7.35-7.47 (m, 5H, Ph). ¹³C NMR (62.9 MHz, CDCl₃): δ = 15.0 (CH₃), 20.7, 26.0, 28.4, 36.5 (CH₂), 43.0 (CH), 50.0 (CH₂), 65.9 (CH₃), 108.4, 112.5 (C), 128.0, 128.1, 129.7 (Ph), 140.5 (C), 151.1 (CH), 174.2, 191.5, 197.1 (C). MS (GC, 70 eV): m/z (%) = 323 (M⁺, 67), 294 (84), 212 (100), 184 (24), 105 (92). HRMS (EI): calcd for C₂₀H₂₁NO₃ (M⁺) 323.15160, found 323.151205. IR (ATR, cm⁻¹): $\tilde{\nu}$ = 2935 (w), 1735 (w), 1643 (w), 1592 (s), 1557 (s), 1443 (w), 1427 (w), 1377 (s), 1357 (m), 1304 (m), 1261 (s), 1223 (m), 1196 (m), 1131 (s), 1102 (m), 1061 (m), 1030 (s), 971 (m), 901 (m), 859 (m), 812 (s), 795 (m), 728 (s), 699 (s), 655 (s).

12-Acetyl-10-allyl-8-oxa-10-aza-tricyclo[7.3.1.0^{2,7}]trideca-2(7),11-dien-3-one (6g)

Following General Procedure (A); yellow solid, mp 97–99 °C, yield 58% (158 mg).

¹H NMR (300 MHz, CDCl₃) δ = 1.58-1.93 (m, 4H, CH₂), 2.15 (s, 3H, COMe), 2.28-2.40 (m, 4H, 2 x CH₂), 3.82-3.89 (m, 1H, NCH₂CHCH₂), 4.32-4.51 (m, 1H, NCH₂CHCH₂), 4.50-4.51 (m, 1H, COCCH), 5.24-5.35 (m, 2H, NCH₂CHCH₂), 5.62 (s, 1H, NCHO), 5.74-5.87 (m, 1H, NCH₂CHCH₂), 7.39 (s, 1H, NCHCCO).

¹³C NMR (62.9 MHz, CDCl₃): δ = 20.6 (CH₂), 24.3 (CH), 25.9, 28.3, 36.4 (CH₂), 43.1 (CH₃), 57.6 (CH₂), 65.7 (CH), 109.6, 112.7 (C), 118.8 (CH₂), 133.2, 148.3 (CH), 174.0, 192.3, 197.2 (C). MS (GC, 70 eV): m/z (%) = 273 (M⁺, 100), 232 (71), 176 (19), 162 (45), 135 (18). HRMS (EI): calcd for C₁₆H₁₉NO₃ (M⁺) 273.13594, found 273.135508. IR (ATR, cm⁻¹): \tilde{V} = 2937(w), 1638 (m), 1595 (s), 1567 (s), 1435 (m), 1380 (s), 1351 (s), 1301 (m), 1236 (m), 1213 (s), 1182 (s), 1154 (s), 1115 (s), 1066 (m), 1028 (s), 1001 (m), 971 (m), 939 (s), 911 (s), 864 (m), 823 (s), 761 (m), 661 (m).

$10 - Allyl - 12 - benzoyl - 8 - oxa - 10 - aza - tricyclo[7.3.1.0^{2,7}] trideca - 2(7), 11 - dien - 3 - one~(6h)$

Following General Procedure (A); yellow solid, mp 97–99 °C, yield 50% (168 mg). 1 H NMR (300 MHz, CDCl₃) δ = 1.67-1.73 (m, 1H, CH₂), 1.90-1.99 (m, 3H, 2 x CH₂), 2.34-2.50 (m, 4H, 2 x CH₂), 3.74-3.81 (m, 1H, NCH₂CHCH₂), 4.32-4.39 (m, 1H, NCH₂CHCH₂), 4.58-4.59 (m, 1H, CCHCH₂), 5.21-5.34 (m, 2H, NCH₂CHCH₂), 5.70-5.87 (m, 2H, NCH₂CHCH₂, NCHO), 7.24 (s, 1H, NCHC), 7.34-7.49 (m, 5H, CH_{Ar}). 13 C NMR (62.9 MHz, CDCl₃): δ = 20.7, 25.8, 28.4, 36.5 (CH₂), 43.1 (CH), 57.6 (CH₂), 65.9 (CH), 108.8, 112.6 (C), 118.9 (CH₂), 128.0, 128.1, 129.8 (CH, Ar), 133.0 (CH), 140.3 (C), 151.6 (CH), 174.2, 191.7, 197.2 (C). MS (GC, 70 eV): m/z (%) = 335 (M⁺, 82), 294 (43), 224 (59), 184 (23), 105 (100). HRMS (ESI): calcd for C₂₁H₂₂NO₃ (M + H) 336.15942, found 336.15971. IR (ATR, cm⁻¹): \tilde{V} = 2942 (w), 2240 (w), 1640 (w), 1592 (s), 1556 (s), 1427 (w), 1377 (s), 1344 (m),

1305 (m), 1218 (s), 1196 (m), 1119 (m), 1102 (m), 1062 (w), 1032 (s), 962 (w), 916 (m), 860 (w), 818 (m), 724 (s), 700 (s), 643 (m).

10-Allyl-3-oxo-8-oxa-10-aza-tricyclo[7.3.1.0^{2,7}]trideca-2(7),11-diene-12-carbonitrile (6i) Following General Procedure (B); yellow solid, mp 118–120 °C, yield 75% (192 mg). ¹H NMR (250 MHz, CDCl₃) δ = 1.68-1.96 (m, 4H, 2 x CH₂), 2.30-2.38 (m, 4H, 2 x CH₂), 3.69-3.70 (m, 1H, NCCCH), 3.77-3.98 (m, 2H, NCH₂CHCH₂), 5.14-5.32 (m, 3H,

NCH₂CHC H_2 , NC H_0), 5.70-5.86 (m, 1H, NCH₂C H_0 CH₂), 6.72 (s, 1H, NC H_0 C). ¹³C NMR (62.9 MHz, CDCl₃): δ = 20.5 (CH), 20.8, 25.3, 27.7, 36.1, 55.8 (CH₂), 80.3 (CH), 84.6, 116.7 (C), 118.6 (CH₂), 120 (C), 133.0, 144.4 (CH), 168.8, 195.6 (C). MS (GC, 70 eV): m/z (%) = 256 (M⁺, 37), 239 (24), 215 (100), 200 (15), 172 (17), 145 (26). HRMS (ESI): calcd for C₁₅H₁₇N₂O₂ (M + H) 257.12845, found 257.12873. IR (ATR, cm⁻¹): \tilde{V} = 2943 (w), 2193 (m), 1625 (s), 1603 (s), 1415 (m), 1385 (s), 1319 (m), 1284 (w), 1232 (m), 1197 (s), 1122 (m), 1060 (m), 1027 (s), 972 (m), 936 (s), 913 (s), 870 (m), 820 (s), 740 (m), 681 (m), 659 (m), 624 (m).

12-Acetyl-10-benzyl-8-oxa-10-aza-tricyclo[7.3.1.0^{2,7}]trideca-2(7),11-dien-3-one (6j)

Following General Procedure (A); yellow solid, mp 58–60 °C, yield 50% (162 mg).

¹H NMR (300 MHz, CDCl₃) δ = 1.46-1.52 (m, 1H, CH₂), 1.79 (t, 1H, ³J = 7.2 Hz, CH₂), 1.85-1.97 (m, 2H, CH₂), 2.18 (s, 3H, CH₃), 2.23-2.42 (m, 4H, 2 x CH₂), 4.40 (d, 1H, ²J = 14.8 Hz, CH₂Ph), 4.46-4.47 (m, 1H, COCCH), 4.93 (d, 1H, ²J = 14.8 Hz, CH₂Ph), 5.61 (s, 1H, NCHO), 7.30-7.37 (m, 5H, CH_{Ar}), 7.54 (s, 1H, NCHC).

¹³C NMR (62.9 MHz, DMSO): δ = 20.4 (CH₂), 24.3 (CH), 25.4, 27.6, 35.9 (CH₂), 41.6 (CH₃), 57.4 (CH₂), 65.0 (CH), 108.9, 112.2 (C), 127.6, 127.7, 128.7 (CH, Ar), 137.5 (c), 149.5 (CH), 173.2, 190.7, 196.2 (C). MS (GC, 70 eV): m/z (%) = 323 (M⁺, 36), 301 (33), 260 (30), 232 (72), 176 (13), 162 (36), 106 (28), 91 (93), 41 (100). HRMS (EI): calcd for C₂₀H₂₁NO₃ (M⁺) 323.1516, found 323.151743. IR (ATR, cm⁻¹): \tilde{V} = 2938 (w), 1640 (w), 1595 (s), 1573 (s), 1428 (w), 1382 (s), 1352 (s), 1300 (m), 1194 (s), 1153 (m), 1119 (m), 1062 (m), 1028 (s), 971 (m), 932 (m), 914 (m), 859 (w), 821 (m), 740 (m), 699 (m), 602 (m).

12-Benzoyl-10-benzyl-8-oxa-10-aza-tricyclo[$7.3.1.0^{2,7}$]trideca-2(7),11-dien-3-one (6k)

Following General Procedure (A); orange solid, mp 153–155 °C, yield 55% (212 mg).

¹H NMR (300 MHz, CDCl₃) δ = 1.55 (dt, 1H, ²J = 13.4 Hz, ³J = 2.7 Hz, CHC H_2 CH), 1.86 (dt, 1H, ²J = 13.4 Hz, ³J = 2.8 Hz, CHC H_2 CH), 1.92-2.01 (m, 2H, CH₂C H_2 CH₂), 2.38 (t, 2H, ³J = 7.1 Hz, C H_2), 2.48 (t, 2H, ³J = 6.4 Hz, C H_2), 4.31 (d, 1H, ²J = 14.4 Hz, NCH₂), 4.51-4.52 (m, 1H, OCCCH), 4.90 (d, 1H, ²J = 14.4 Hz, NCH₂), 5.83 (q, 1H, ³J = 2.7 Hz, NCHO), 7.27-7.50 (m, 11H, NCHC, CH_{Ar}). ¹³C NMR (62.9 MHz, CDCl₃): δ = 20.8, 25.9, 28.4, 36.5 (CH₂), 42.8 (CH), 59.1 (CH₂), 65.9 (CH), 108.7, 112.6 (C), 127.9, 128.0, 128.1, 128.2, 128.9, 129.9 (CH, Ar), 136.4, 140.4 (C), 151.8 (CH), 174.4, 191.8, 197.3 (C). MS (GC, 70 eV): m/z (%) = 385 (M⁺, 43), 294 (50), 280 (15), 183 (30), 105 (62), 91 (100). HRMS (ESI): calcd for C₂₅H₂₄NO₃ (M + H) 386.17507, found 386.17549. IR (ATR, cm⁻¹): \tilde{V} = 2945 (w), 1738 (w), 1636 (w), 1592 (s), 1556 (s), 1493 (w), 1431 (m), 1377 (s), 1346 (s), 1305 (m), 1232 (m),

1220 (s), 1196 (m), 1113 (s), 1064 (m), 1033 (s), 993 (m), 970 (m), 914 (m), 888 (m), 842 (m), 820 (m), 800 (m), 728 (s), 704 (s), 658 (m).

10-Benzyl-3-oxo-8-oxa-10-aza-tricyclo[7.3.1.0^{2,7}]trideca-2(7),11-diene-12-carbonitrile (6l) Following General Procedure (B); light pink solid, mp 145–147 °C, yield 64% (196 mg).

¹H NMR (250 MHz, CDCl₃) δ = 1.69-1.95 (m, 4H, 2 x CH₂), 2.16-2.36 (m, 4H, 2 x CH₂), 3.71 (s, 1H, CNCCH), 4.35-4.56 (m, 2H, NCH₂), 5.28-5.31 (m, 1H, NCHO), 6.84 (s, 1H NCHCCN), 7.16-7.19 (m, 2H, CH_{Ar}), 7.31-7.36 (m, 3H, CH_{Ar}).

¹³C NMR (62.9 MHz, CDCl₃): δ = 20.5 (CH), 20.9, 25.4, 27.6, 36.2, 57.2 (CH₂), 80.4 (CH), 85.0, 116.7, 119.9 (C), 127.5, 128.2, 128.9 (CH, Ar), 136.3 (C), 144.7 (CH), 168.7, 195.6 (C). MS (GC, 70 eV): m/z (%) = 306 (M⁺, 19), 222 (12), 215 (73), 91 (100). HRMS (ESI): calcd for C₁₉H₁₉N₂O₂ (M + H) 307.1441, found 307.14387. IR (ATR, cm⁻¹): \tilde{V} = 2976 (w), 2193 (m), 1625 (s), 1448 (w), 1420 (m), 1386 (s), 1315 (w), 1222 (w), 1195 (m), 1117 (m), 1063 (m), 1034 (s), 982 (m), 957 (w), 916 (m), 872 (w), 827 (s), 756 (m), 740 (m), 699 (s), 633 (s), 588 (m).

10-Methyl-3-oxo-8-oxa-10-aza-tricyclo[7.3.1.0^{2,7}]trideca-2(7),11-diene-11-carbonitrile (7a) Following General Procedure (C); pale yellow solid, mp 116–117 °C, yield 68% (156 mg).

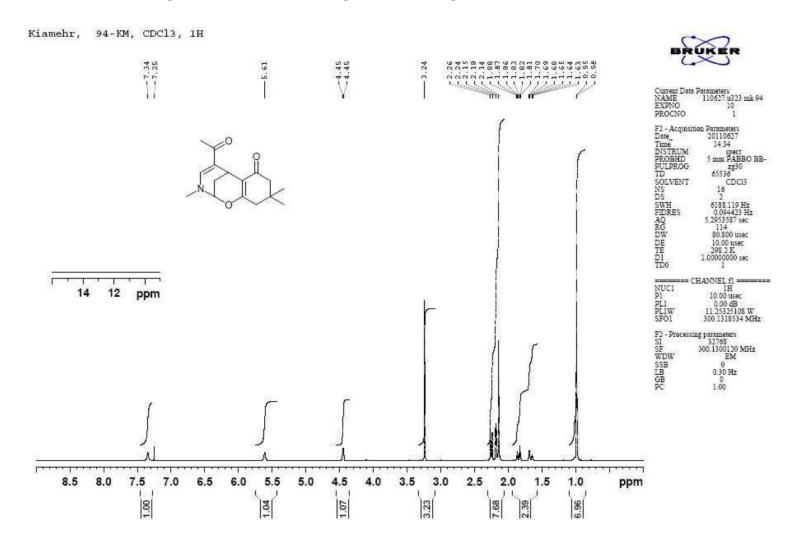
¹H NMR (300 MHz, CDCl₃) δ = 1.79-1.80 (m, 2H, CHC 4 CH), 1.93 (quintet, 2H, $^{3}J = 6.7$ Hz, CH₂CH₂CH₂), 2.29-2.34 (m, 2H, CH₂), 2.39 (t, 2H, $^{3}J = 6.0$ Hz, CH₂), 3.05 (s, 3H, NMe), 3.55-3.58 (m, 1H, CCHCH), 5.29 (q, 1H, $^{3}J = 2.3$ Hz, NCHO), 5.87 (d, 1H, $^{3}J = 7.2$ Hz, NCCCH).

¹³C NMR (62.9 MHz, CDCl₃): δ = 20.0 (CH), 20.6, 25.0, 27.9, 36.2 (CH₂), 37.6 (CH₃), 83.6 (CH), 115.0, 116.3, 118.8 (C), 119.6 (CH), 170.8, 195.9 (C). MS (GC, 70 eV): m/z (%) = 230 (M⁺, 70), 215 (29), 174 (10), 119 (100). HRMS (ESI): calcd for C₁₃H₁₅N₂O₂ (M + H) 231.1128, found 231.1133. IR (ATR, cm⁻¹): \tilde{v} = 2950 (w), 2227 (w), 1636 (s), 1614 (s), 1597 (w), 1470 (w), 1433 (w), 1381 (m), 1326 (m), 1284 (w), 1235 (w), 1201 (w), 1171 (m), 1114 (m), 1081 (m), 1047 (m), 1019 (m), 978 (m), 951 (w), 912 (m), 810 (m), 767 (s), 711 (m), 605 (m), 589 (s).

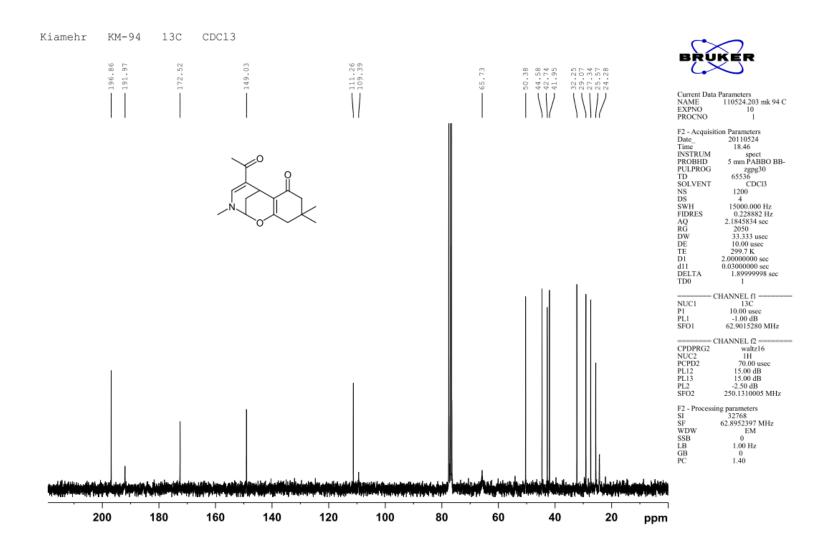
10-Allyl-3-oxo-8-oxa-10-aza-tricyclo[7.3.1.0^{2.7}]trideca-2(7),11-diene-11-carbonitrile (7b) Following General Procedure (C); pale yellow solid, mp 90–92 °C, yield 62% (160 mg).

¹H NMR (300 MHz, CDCl₃) δ = 1.70-1.87 (m, 2H, CH₂), 1.92 (quintet, 2H, ³*J* = 6.4 Hz, CH₂CH₂CH₂), 2.29-2.40 (m, 4H, 2 x CH₂), 3.56-3.59 (m, 1H, CCHCH), 3.97-3.99 (m, 2H, NCH₂CHCH₂), 5.20-5.27 (m, 2H, NCH₂CHCH₂), 5.37-5.39 (m, 1H, NCHO), 5.75-5.86 (m, 1H, NCH₂CHCH₂), 5.89 (dd, 1H, ³*J* = 7.2 Hz, ⁴*J* = 1.3 Hz, NCCCH).

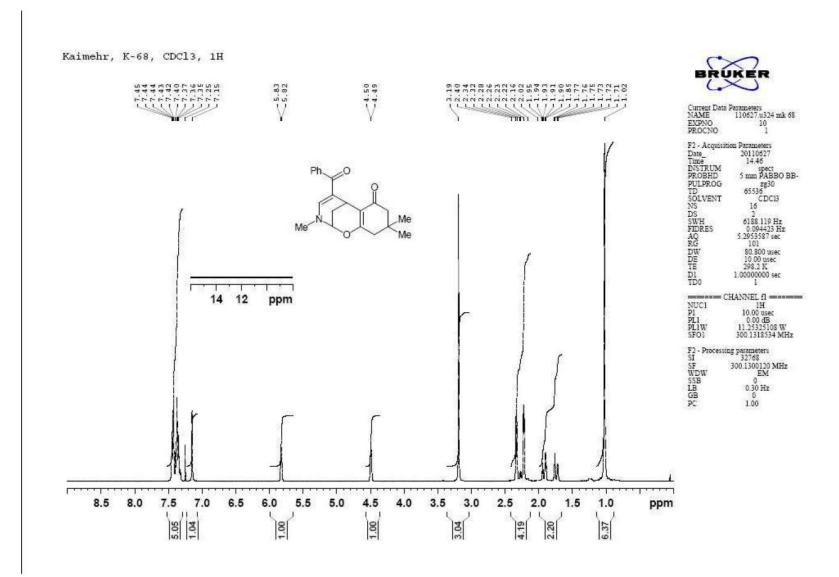
¹³C NMR (75.5 MHz, CDCl₃): δ = 20.2 (CH), 20.6, 25.0, 28.0, 36.2, 52.9 (CH₂), 81.7 (CH), 115.0, 116.0, 118.1 (C), 118.3 (CH₂), 119.4, 133.5 (CH), 170.5, 196.0 (C). MS (GC, 70 eV): m/z (%) = 256 (M⁺, 13), 215 (100), 145 (12). HRMS (ESI): calcd for C₁₅H₁₇N₂O₂ (M + H) 257.12845, found 257.12833. IR (ATR, cm⁻¹): \tilde{V} = 2942 (w), 2226 (w), 1644 (s), 1614 (s), 1446 (w), 1432 (w), 1383 (s), 1328 (m), 1285 (m), 1236 (w), 1195 (m), 1162 (m), 1141 (m), 1104 (m), 1048 (m), 1025 (m), 967 (m), 934 (s), 914 (s), 808 (s), 790 (s), 770 (s), 630 (m), 606 (m), 587 (s).

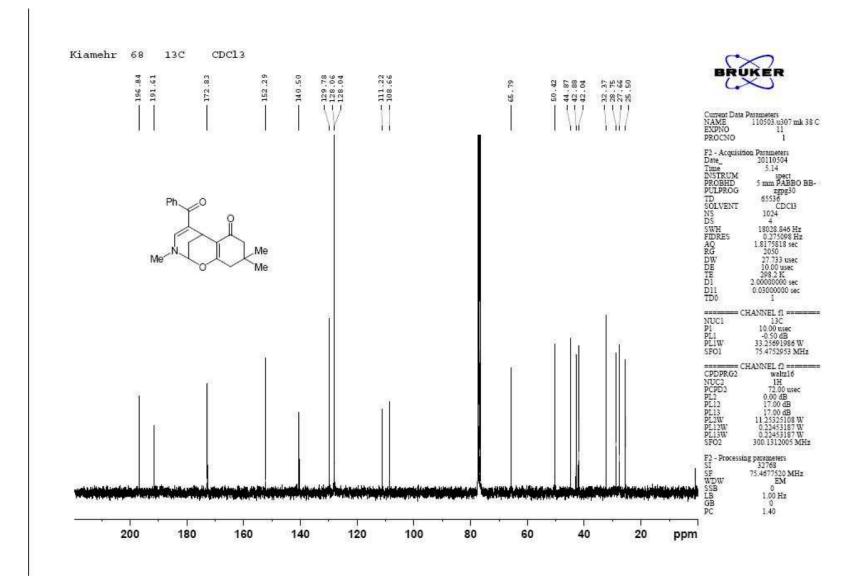

10-Benzyl-3-oxo-8-oxa-10-aza-tricyclo[7.3.1.0^{2,7}]trideca-2(7),11-diene-11-carbonitrile (7c) Following General Procedure (C); yellow solid, mp 127–128 °C, yield 74% (227 mg).

¹H NMR (300 MHz, CDCl₃) δ 1.69-1.93 (m, 4H, 2 x CH₂), 2.11-2.37 (m, 4H, 2 x CH₂), 3.57-3.60 (m, 1H, CCHCH), 4.49-4.61 (m, 2H, NCH₂), 5.30 (q, 1H, 3J = 2.6 Hz, NCHO), 5.95 (dd, 1H, 3J = 7.4 Hz, 4J = 1.1 Hz, NCCCH), 7.25-7.38 (m, 5H, CH_{Ar}).

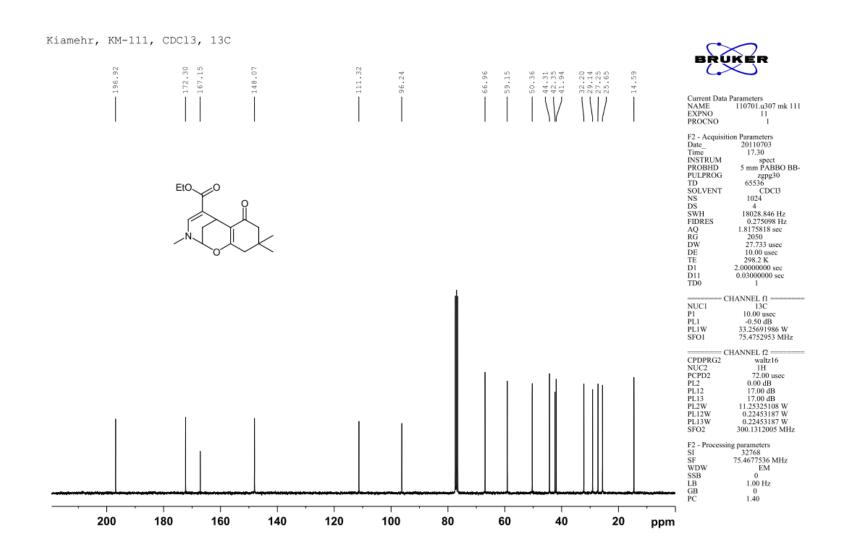

¹³C NMR (75.5 MHz, CDCl₃): δ = 20.2 (CH), 20.6, 25.1, 27.8, 36.2, 53.9 (CH₂), 81.1 (CH), 115.2, 115.6, 118.7 (C), 119.6 (CH), 127.8, 127.9, 128.7 (CH, Ar), 137.2, 170.5, 196.0 (C). MS (GC, 70 eV): m/z (%) = 306 (M⁺, 8), 215 (100), 91 (82). HRMS (ESI): calcd for C₁₉H₁₉N₂O₂ (M + H) 307.1441, found 307.14459. IR (ATR, cm⁻¹): \tilde{V} = 2928 (w), 2224 (w), 1650 (m), 1616 (s), 1495 (w), 1450 (w), 1418 (m), 1384 (m), 1358 (w), 1282 (w), 1192 (w), 1170 (w), 1123 (m), 1060 (m), 1026 (m), 999 (m), 968 (m), 942 (w), 913 (m), 813 (m), 785 (m), 736 (s), 694 (s), 607 (m), 589 (m).

12-Methyl-3-oxo-8-oxa-12-aza-tricyclo[7.3.1.0^{2,7}]trideca-2(7),10-diene-10-carbonitrile (8) Following General Procedure (A); yellow solid, mp 95–97 °C, yield 32% (74 mg).
¹H NMR (300 MHz, CDCl₃) δ = 1.64-2.02 (m, 4H, 2 x C H_2), 2.32-2.47 (m, 4H, C H_2), 3.18 (s, 3H, NMe), 4.43-4.44 (m, 1H, NCHC), 5.02 (q, 1H, 3J = 2.8 Hz, NCCCHO), 6.90 (s, 1H, MeNCHC).
¹³C NMR (62.9 MHz, CDCl₃): δ = 20.6, 25.5, 28.1, 36.4 (CH₂), 68.0 (CH₃), 74.8, 112.3, 121.7 (C), 149.5 (CH), 173.0, 197.2 (C). MS (GC, 70 eV): m/z (%) = 230 (M $^+$, 61), 215 (100), 119 (63). HRMS (EI): calcd for C₁₃H₁₄N₂O₂ (M $^+$) 230.10498, found 230.104576. IR (ATR, cm $^{-1}$): \tilde{V} = 2936 (w), 2184 (s), 1645 (m), 1612 (s), 1455 (w), 1411 (m), 1389 (s), 1331 (s), 1240 (w), 1196 (w), 1181 (m), 1125 (s), 1060 (m), 1025 (s), 960 (m), 914 (m), 856 (m), 825 (s), 746 (m), 712 (m), 675 (m), 647 (m).

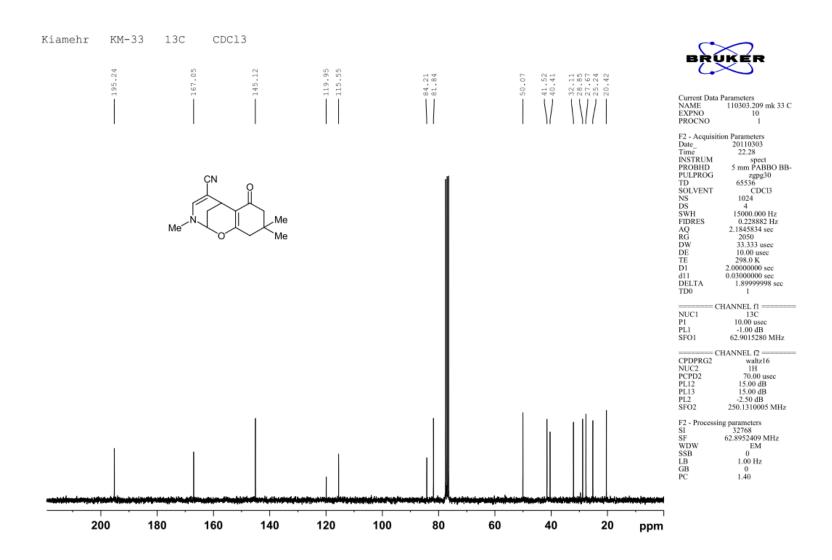

Copies of ¹H and ¹³C NMR spectra for compounds 3, 4, 5, 6, 7 and 8

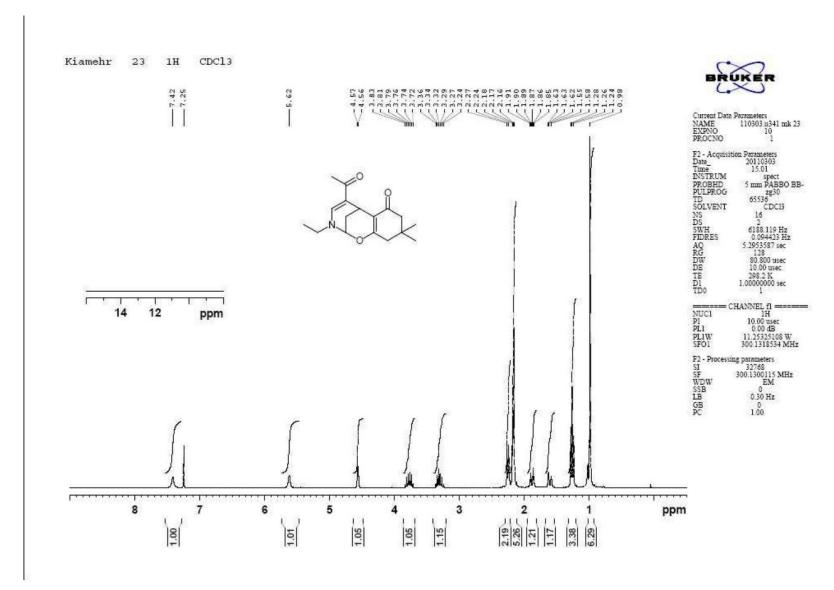

¹H NMR spectra for compound 3a

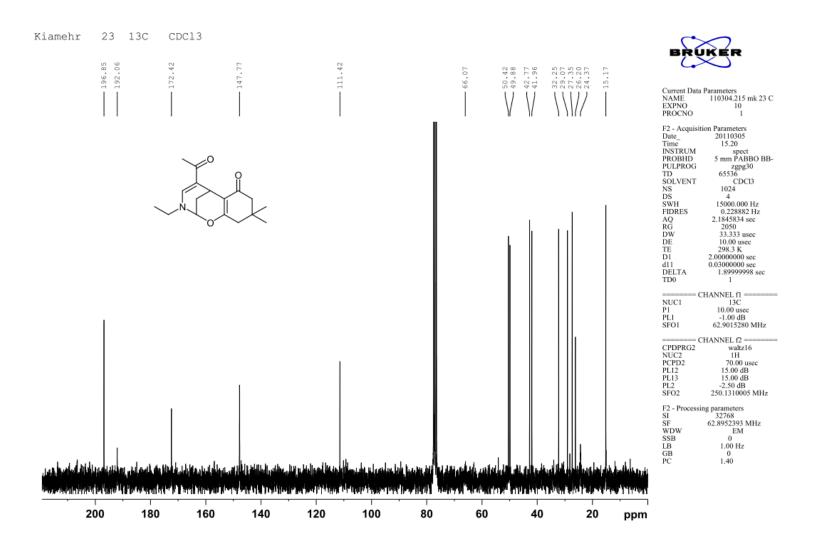
¹³C NMR spectra for compound 3a

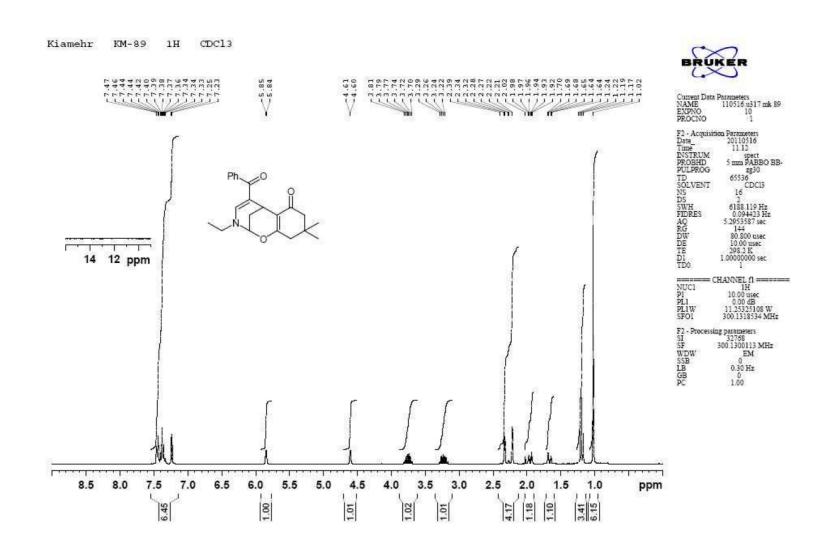

¹H NMR spectra for compound 3b

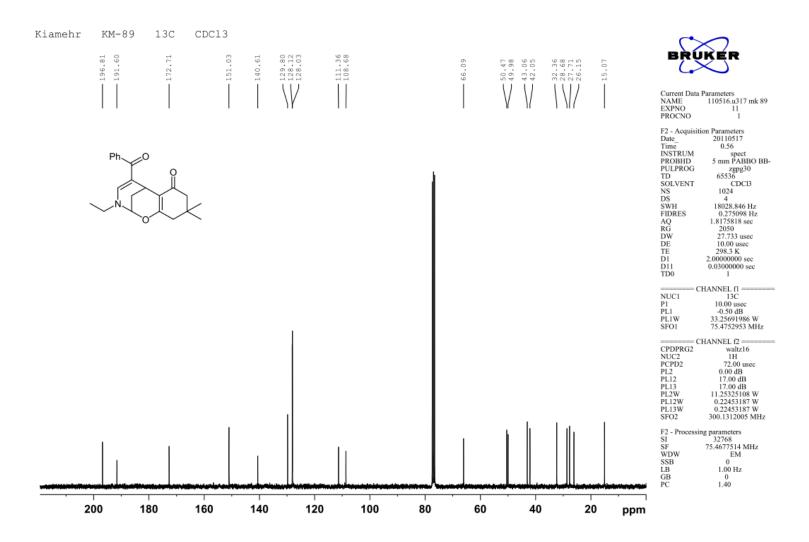
¹³C NMR spectra for compound 3b

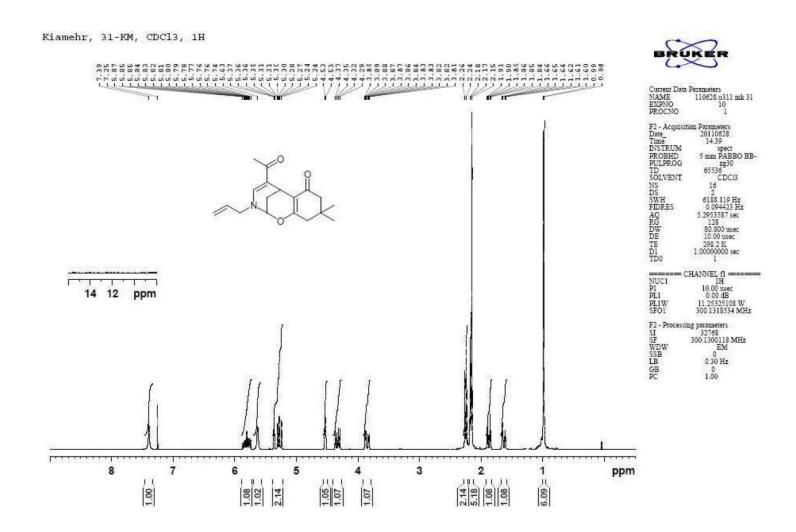

¹H NMR spectra for compound 3c

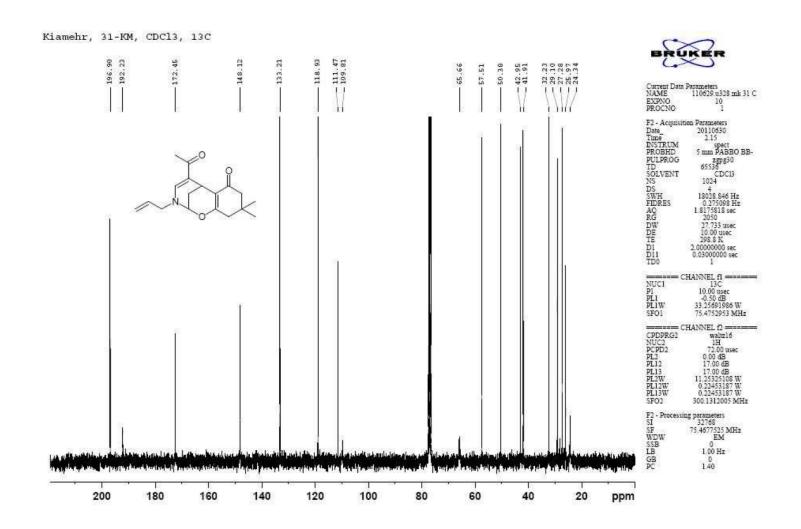

¹³C NMR spectra for compound 3c

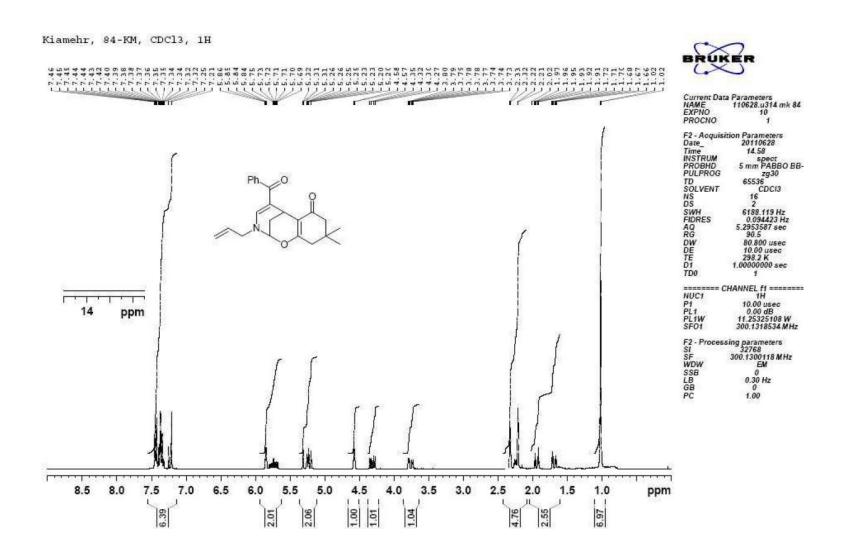

¹H NMR spectra for compound 3d

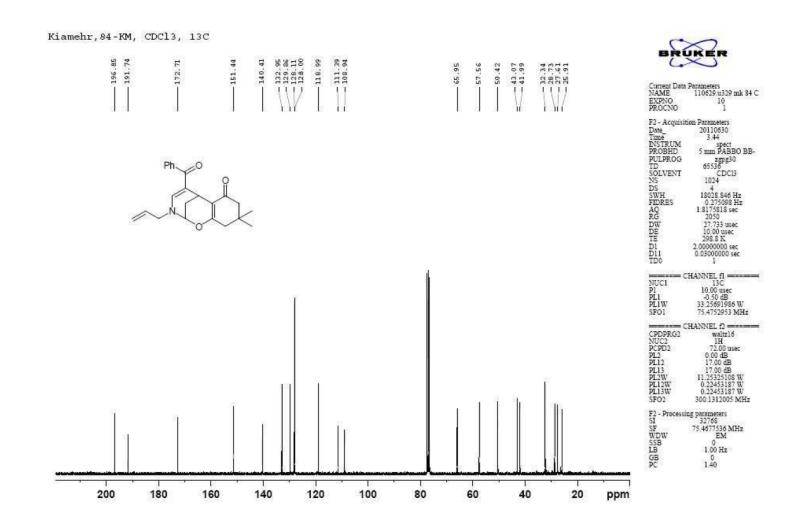

 $^{13}\mathrm{C}$ NMR spectra for compound 3d

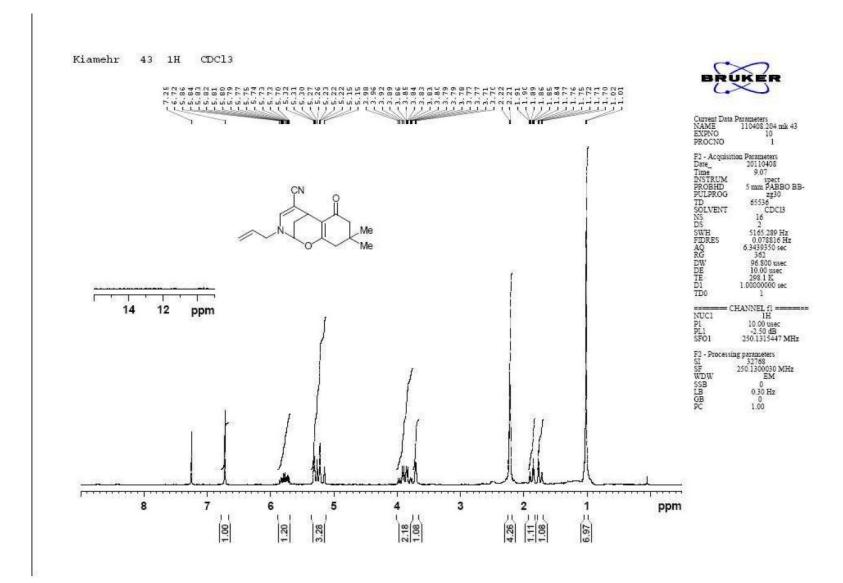

¹H NMR spectra for compound 3e

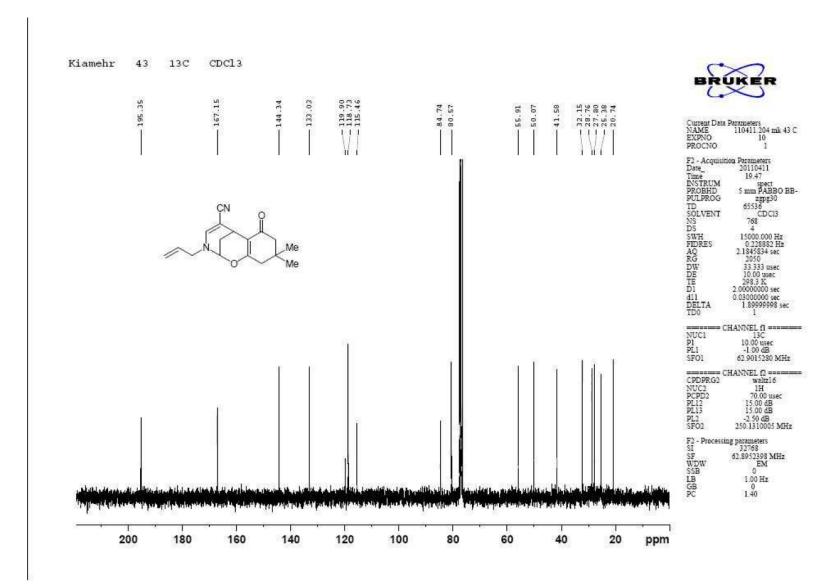

¹³C NMR spectra for compound 3e

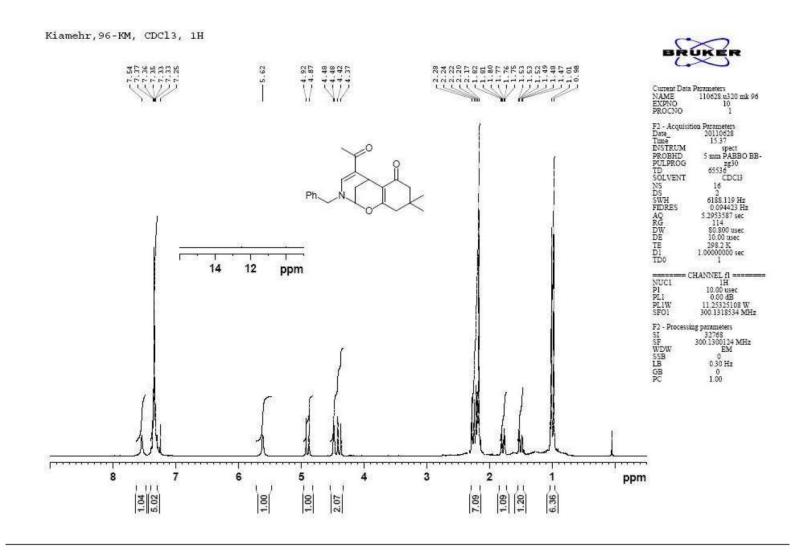

¹H NMR spectra for compound 3f


 $^{13}\mathrm{C}\ \mathrm{NMR}\ \mathrm{spectra}\ \mathrm{for\ compound}\ \mathrm{3f}$

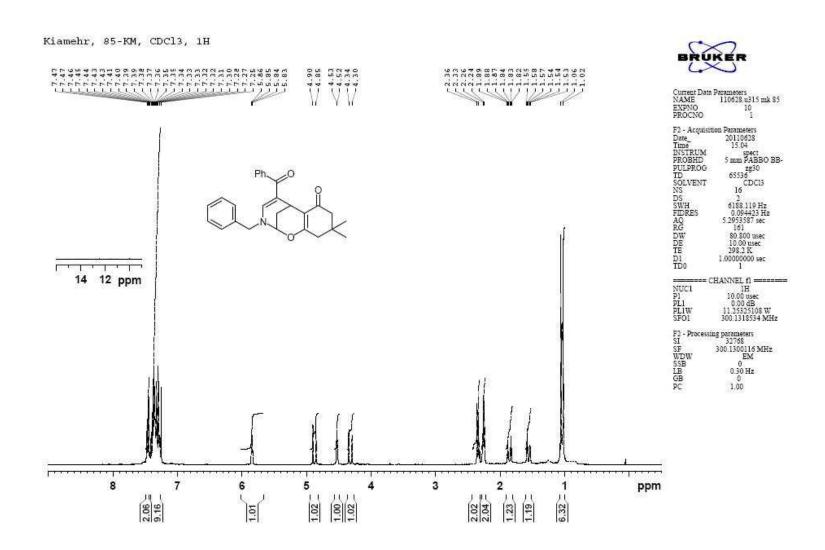

¹H NMR spectra for compound 3g


¹³C NMR spectra for compound 3g

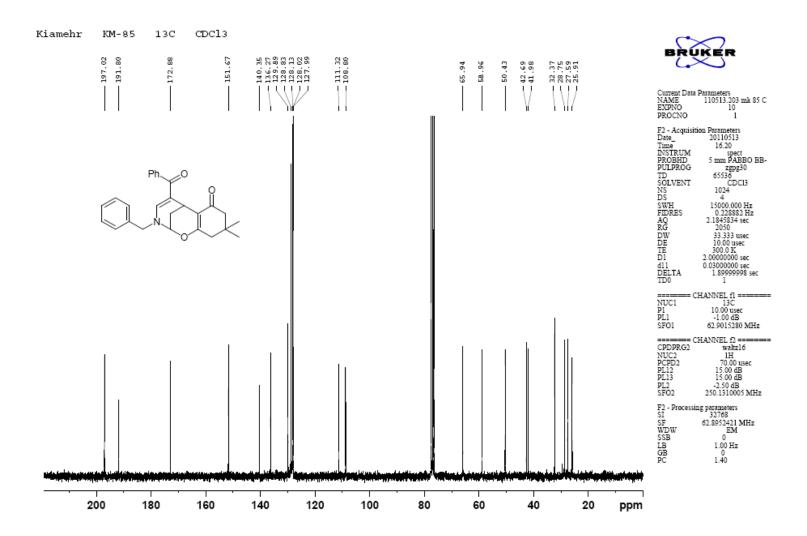

¹H NMR spectra for compound 3h


¹³C NMR spectra for compound 3h

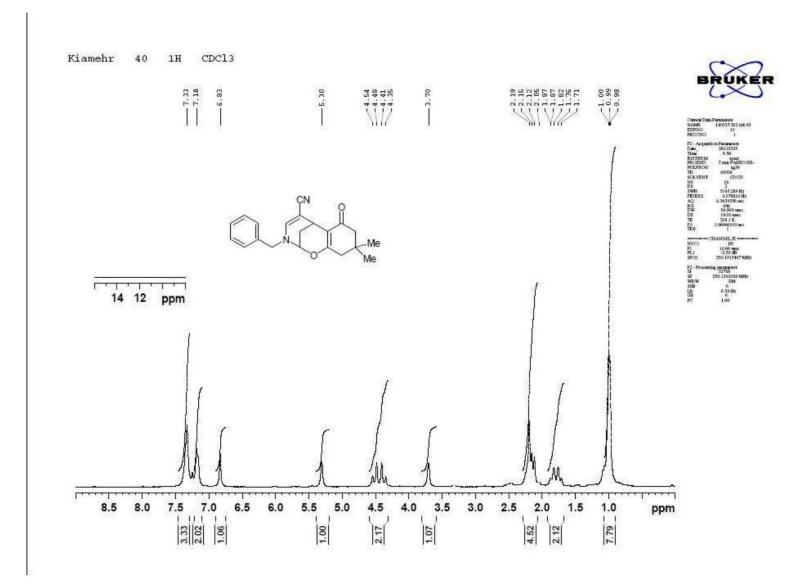

¹H NMR spectra for compound 3i

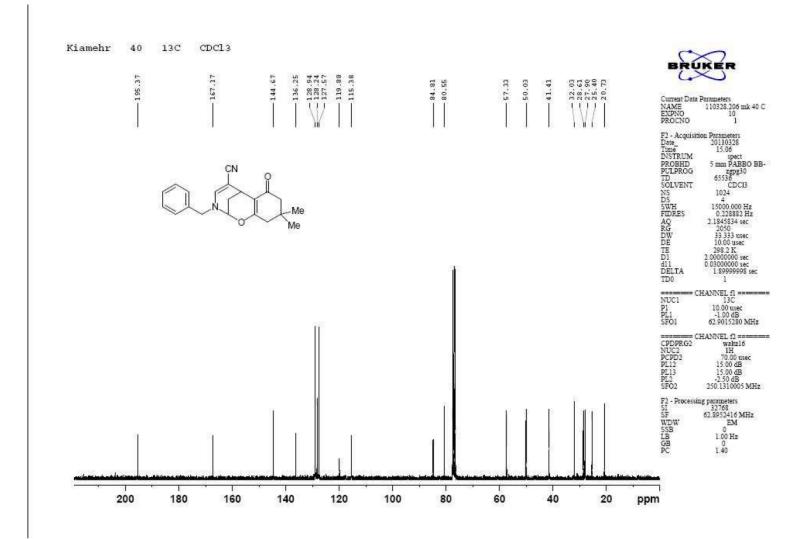


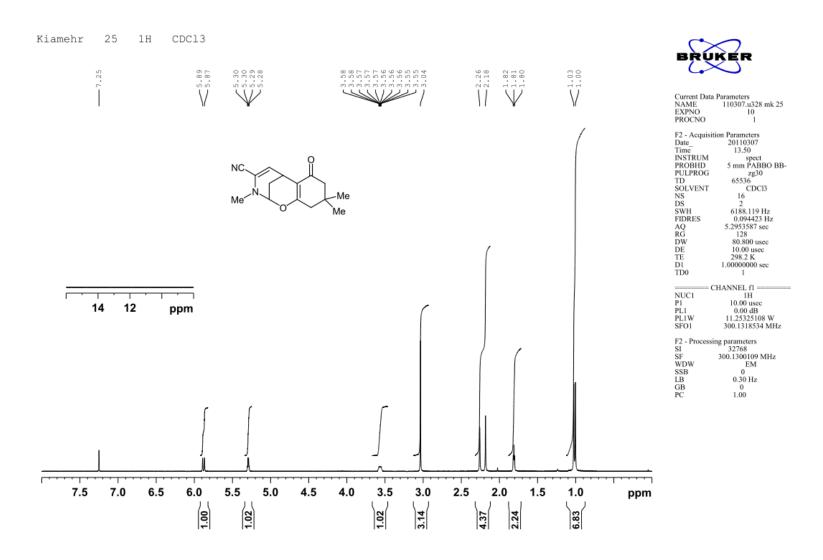
¹³C NMR spectra for compound 3i

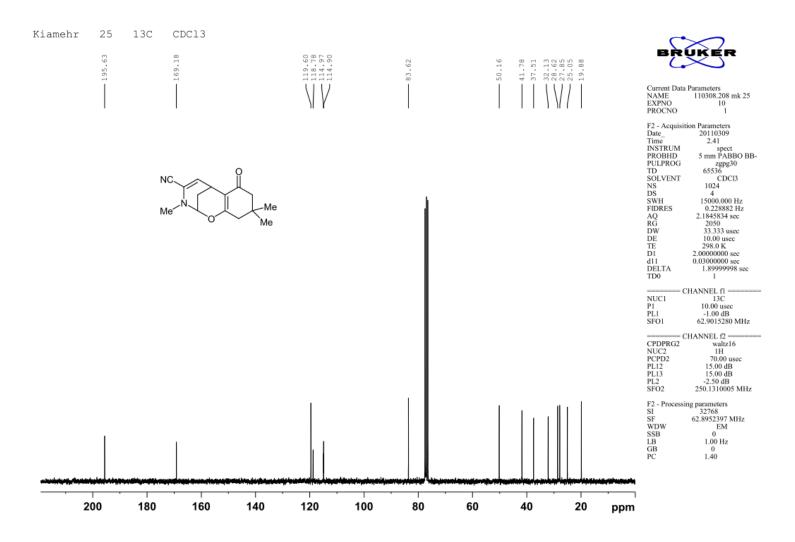


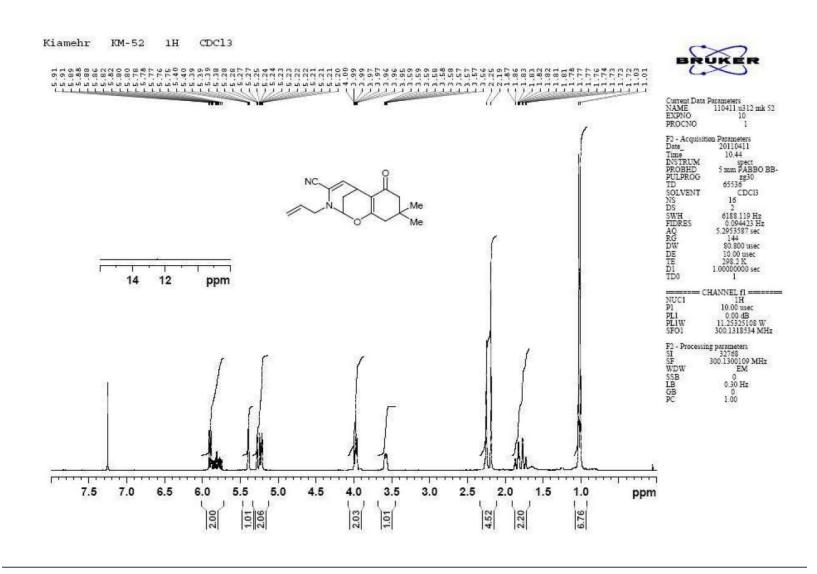
¹H NMR spectra for compound 3j

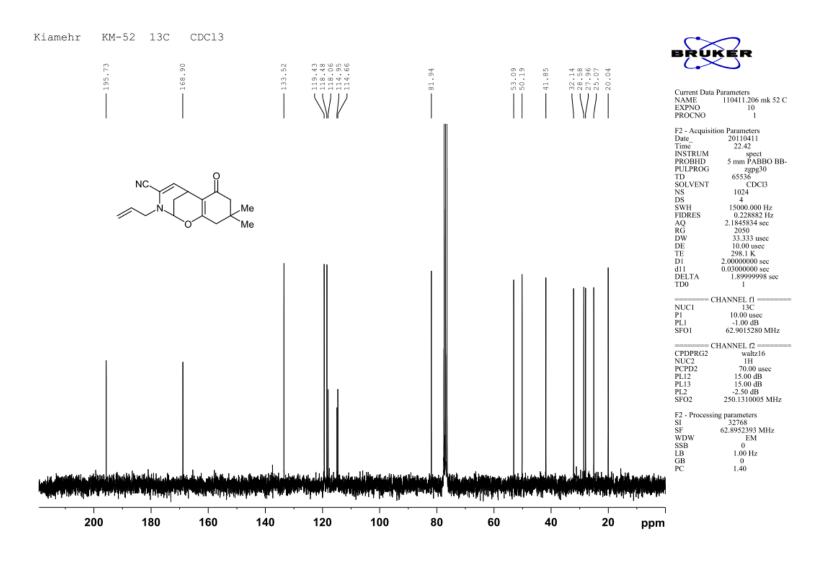


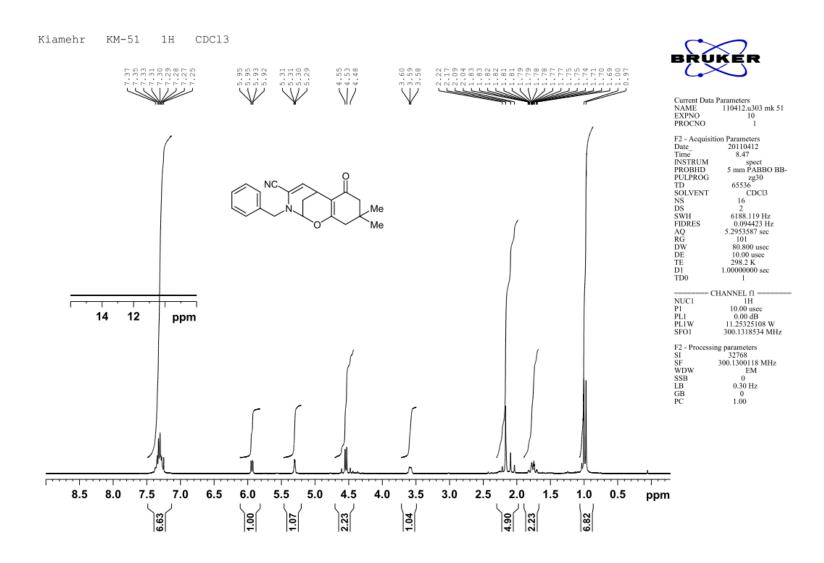

¹H NMR spectra for compound 3k

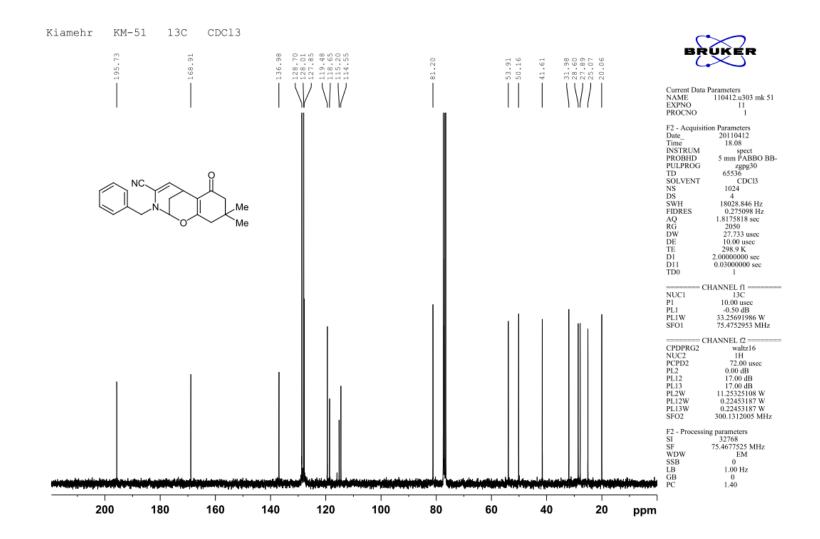

¹³C NMR spectra for compound 3k

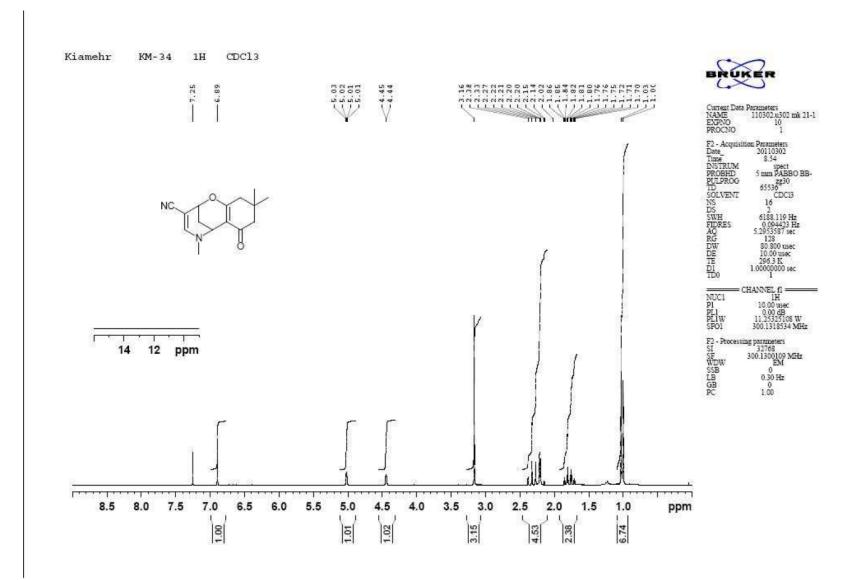

¹H NMR spectra for compound 3l

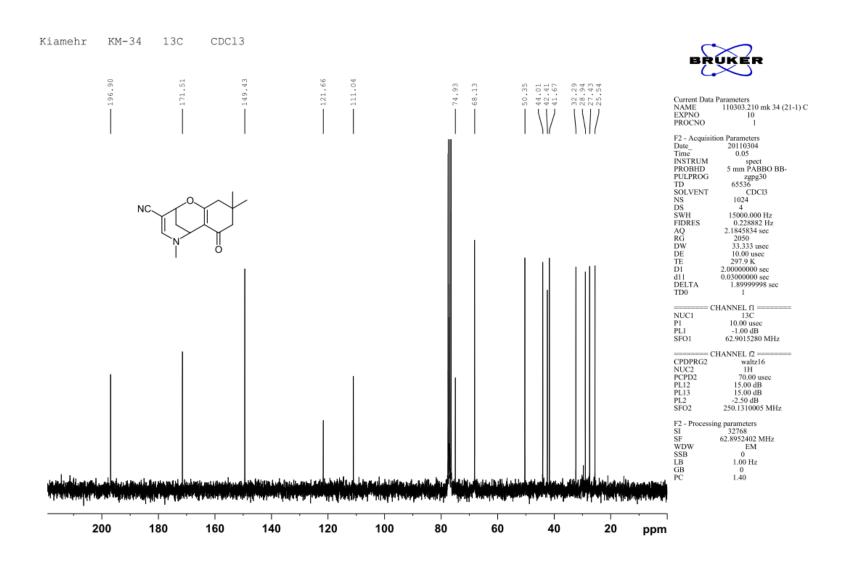

 ^{13}C NMR spectra for compound 3l

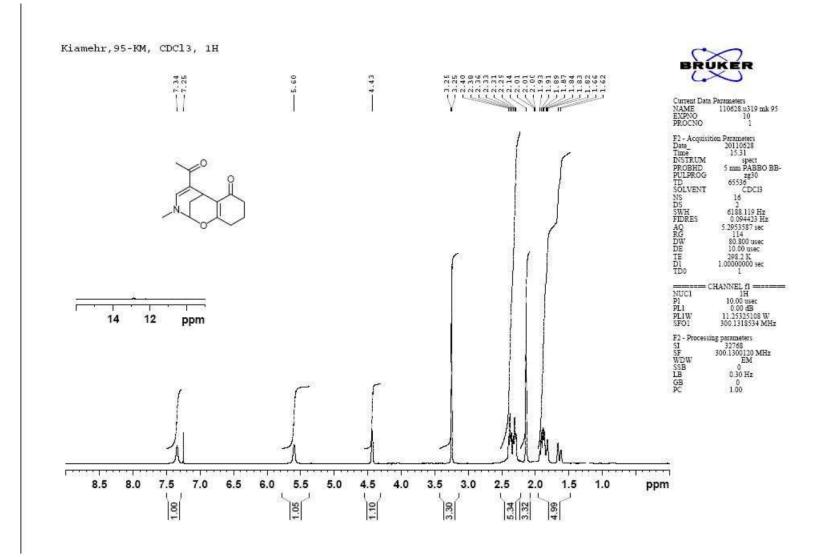

¹H NMR spectra for compound 4a

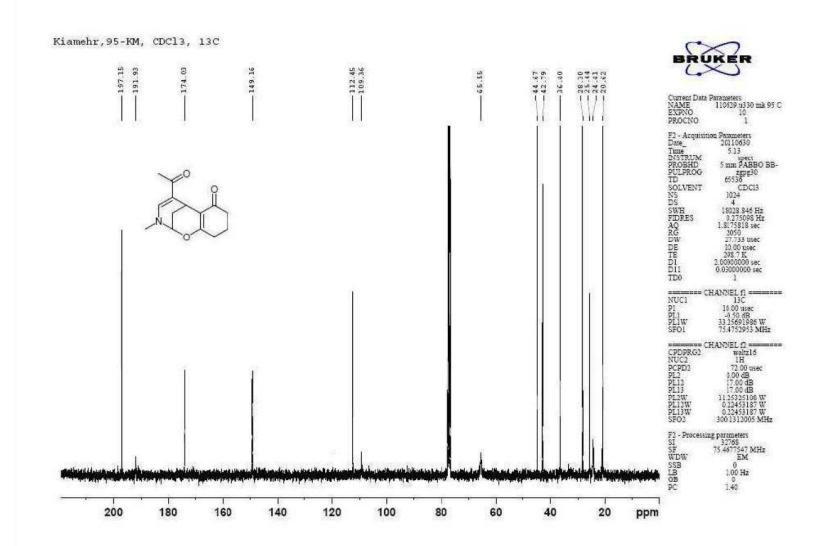

¹³C NMR spectra for compound 4a

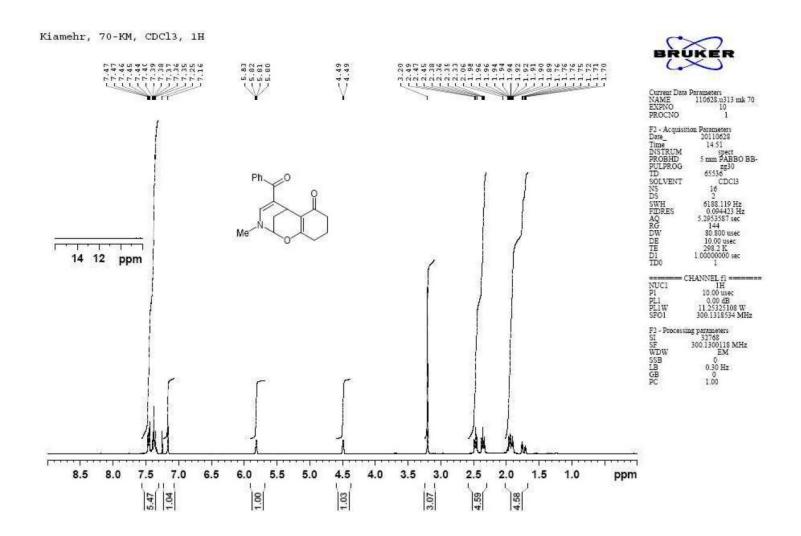

¹H NMR spectra for compound 4b

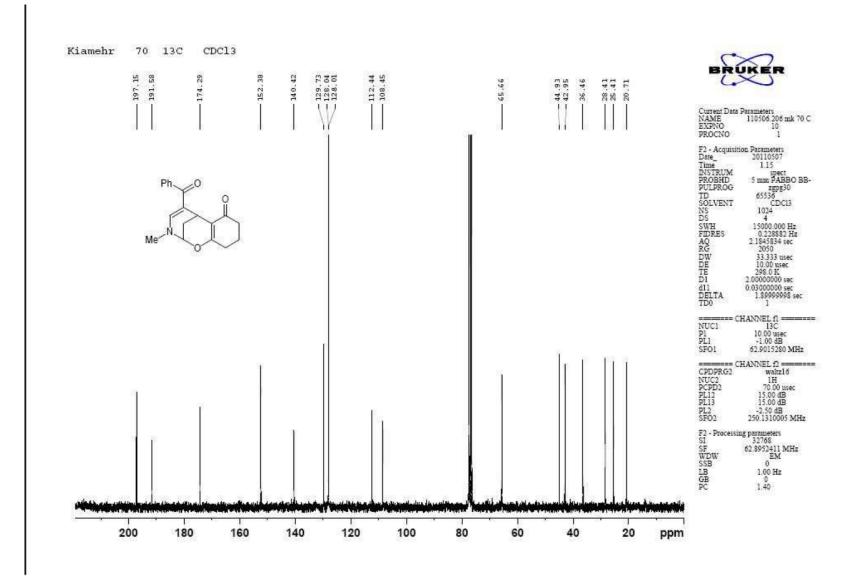

¹³C NMR spectra for compound 4b

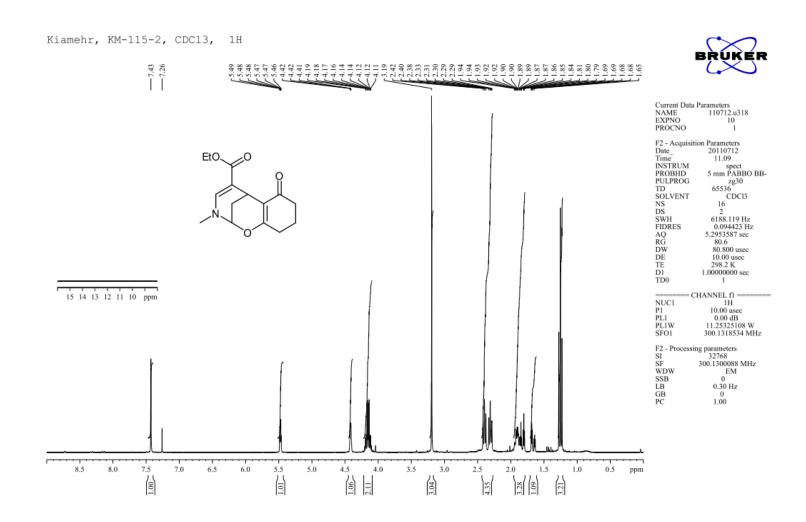

¹H NMR spectra for compound 4c

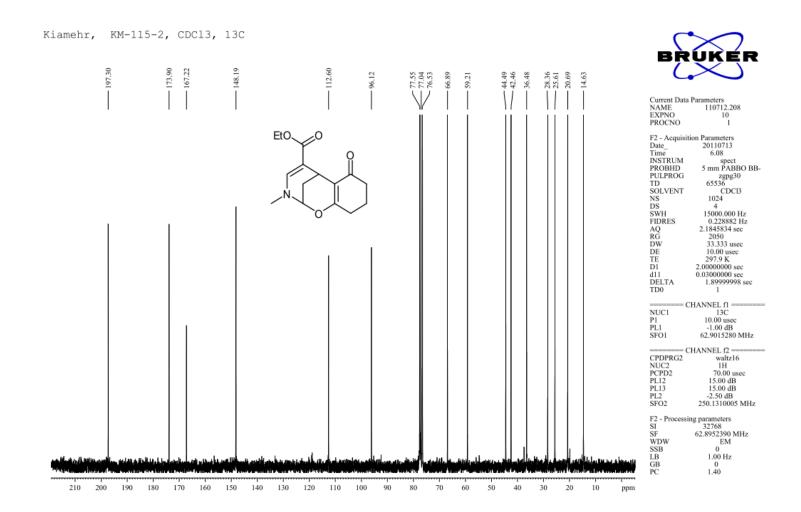

¹³C NMR spectra for compound 4c

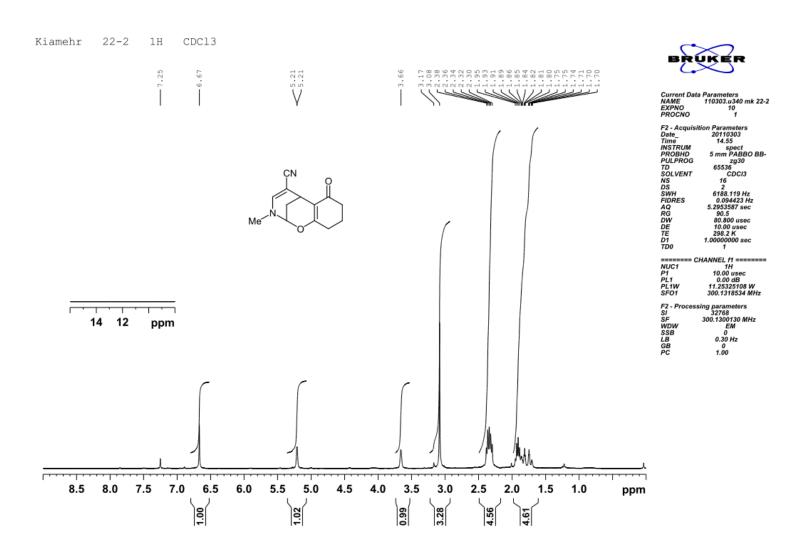

¹H NMR spectra for compound 5

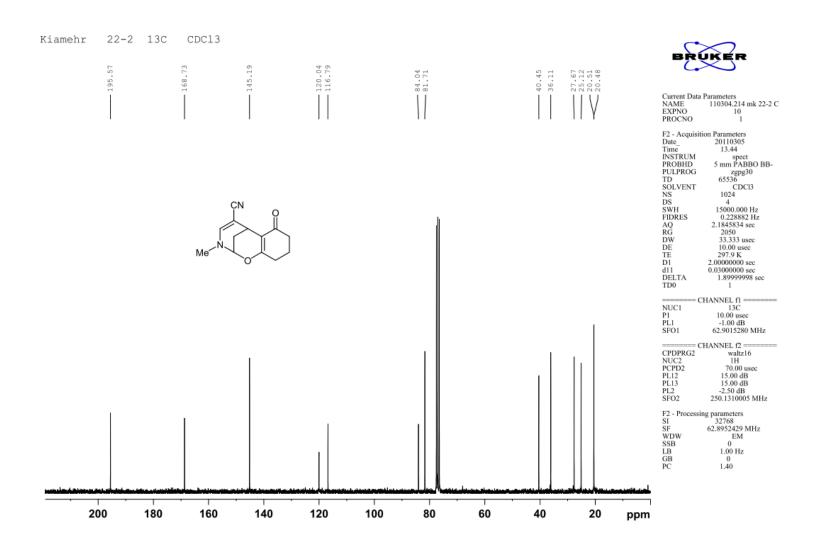

¹³C NMR spectra for compound 5

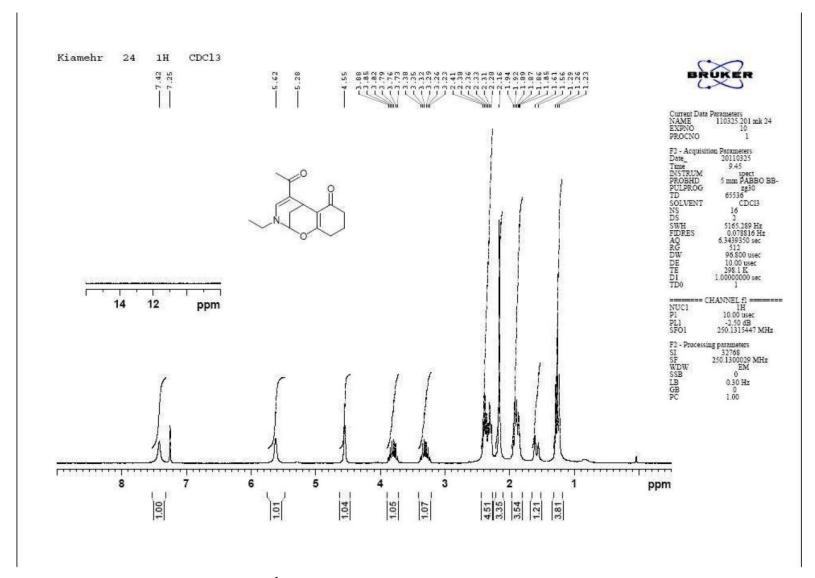

¹H NMR spectra for compound 6a

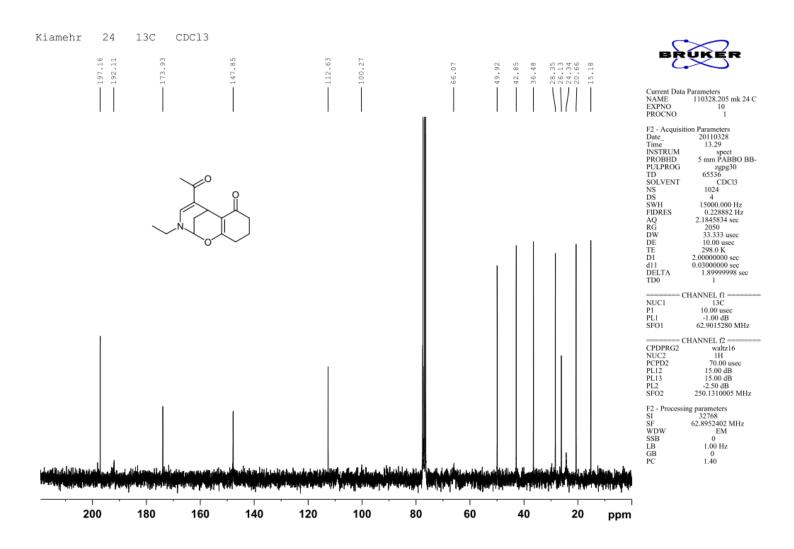

¹³C NMR spectra for compound 6a

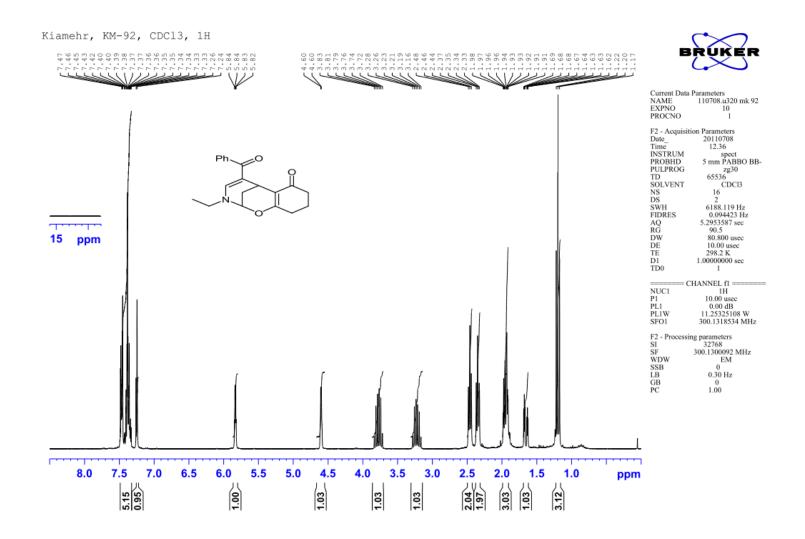

¹H NMR spectra for compound 6b

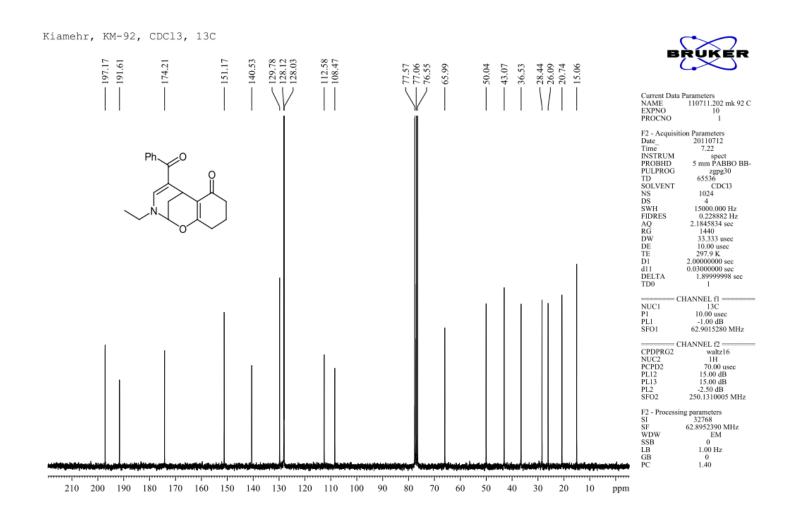

¹³C NMR spectra for compound 6b


¹H NMR spectra for compound 6c

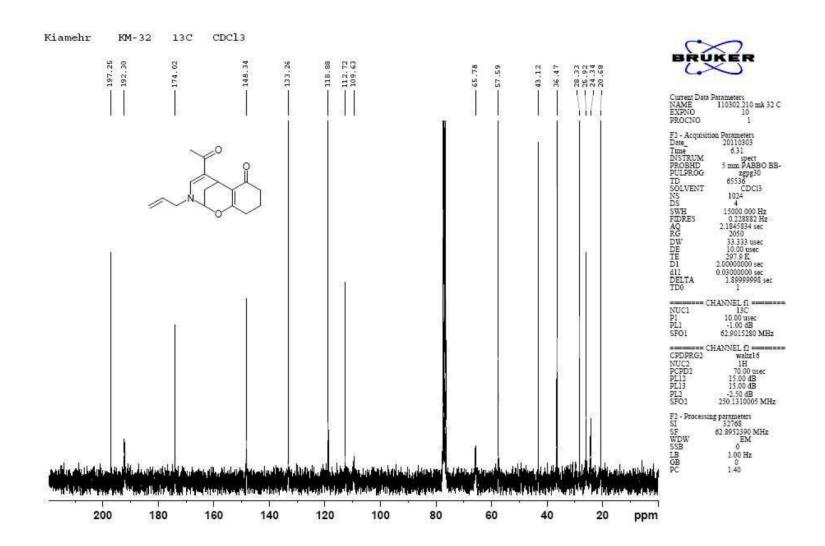

¹³C NMR spectra for compound 6c

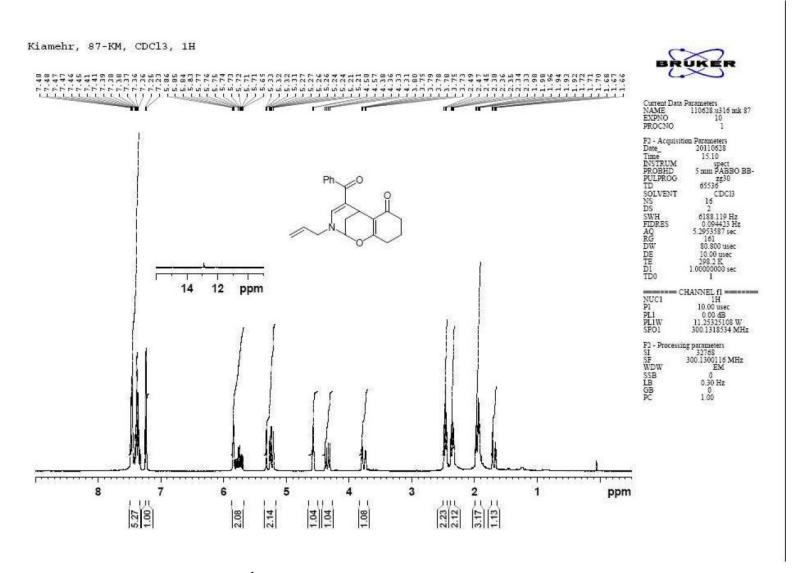

¹H NMR spectra for compound 6d

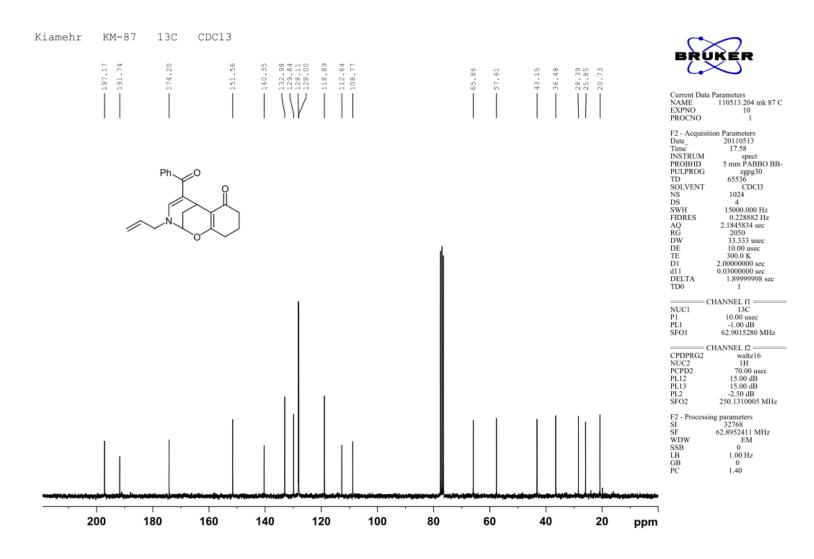

 $^{13}\mathrm{C}$ NMR spectra for compound 6d

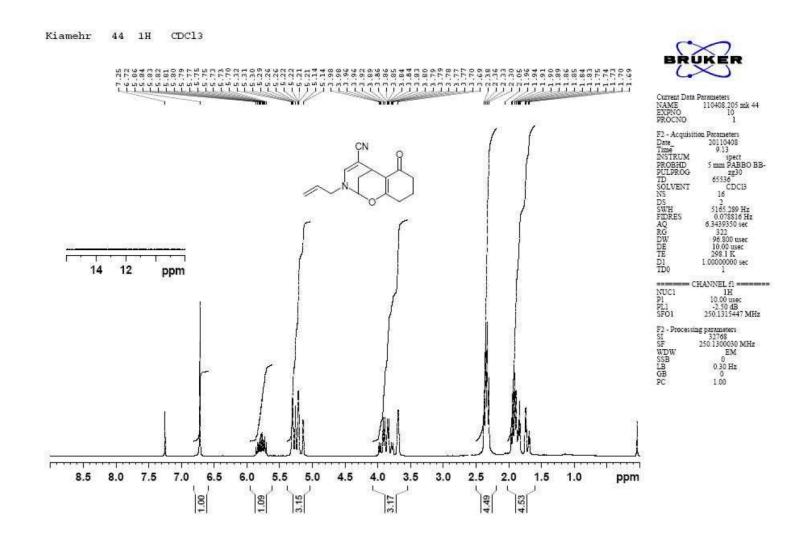

¹H NMR spectra for compound 6e

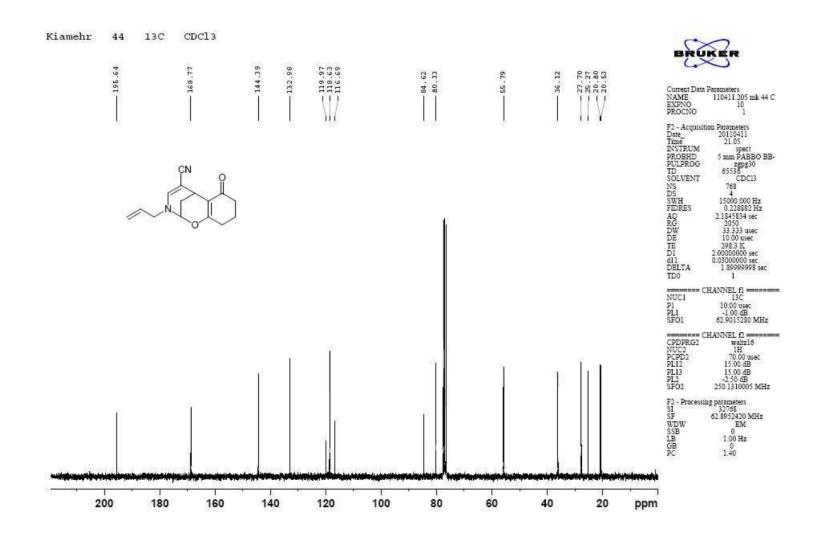
¹³C NMR spectra for compound 6e

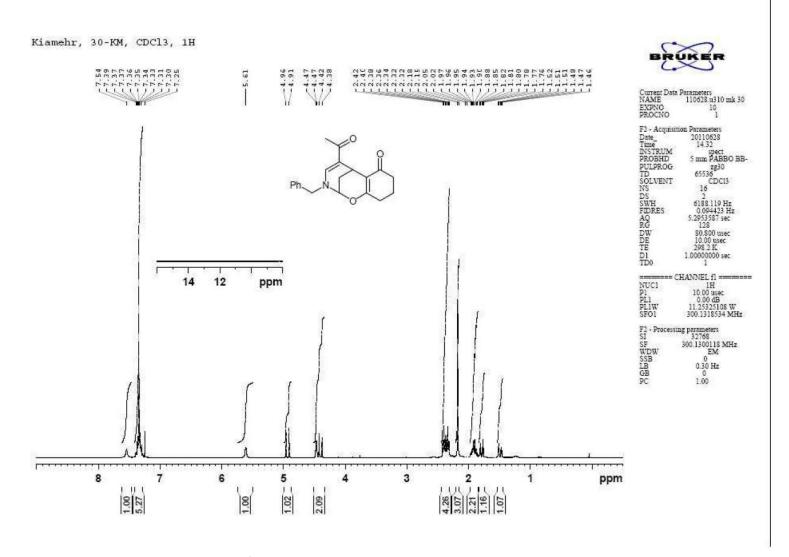

¹H NMR spectra for compound 6f

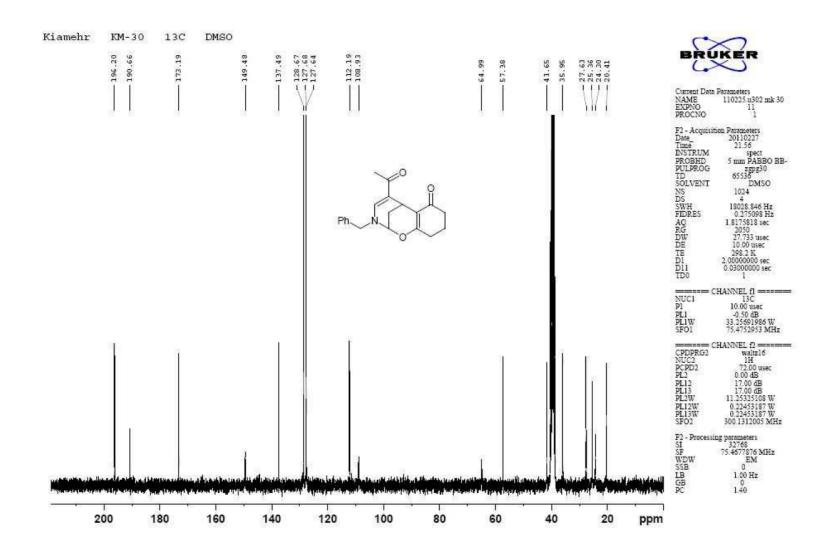

¹³C NMR spectra for compound 6f

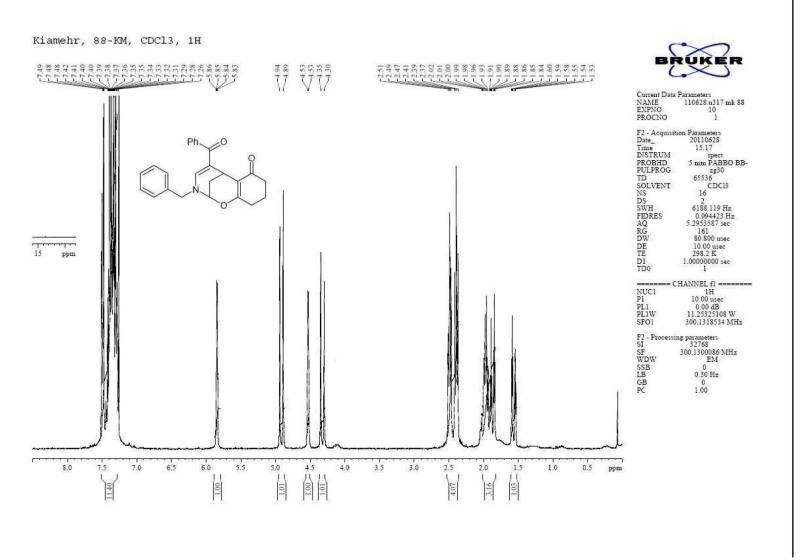

¹H NMR spectra for compound 6g

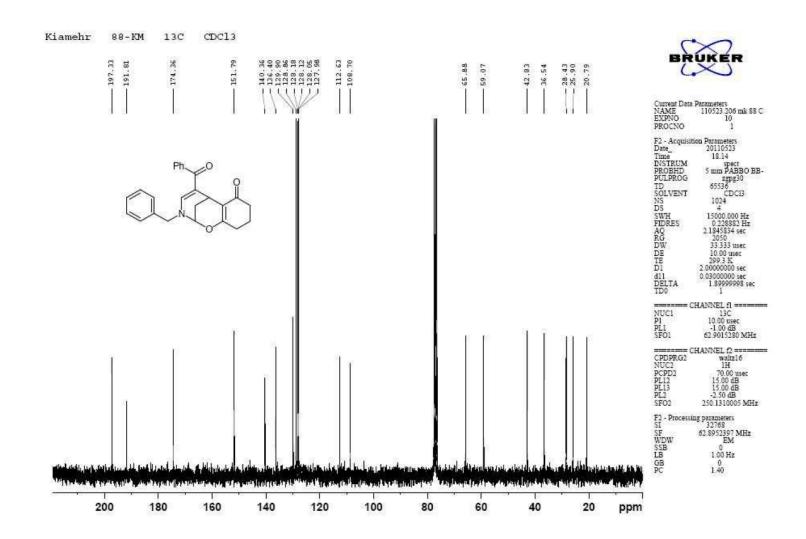

¹³C NMR spectra for compound 6g

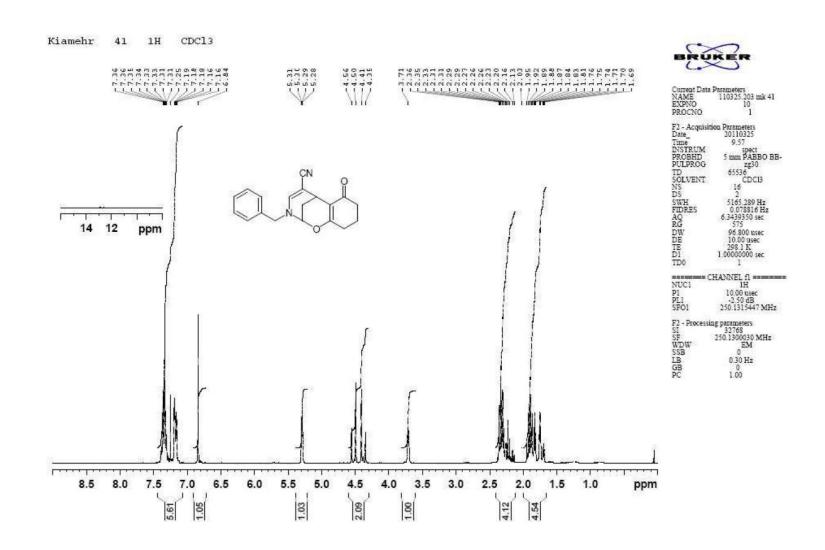

¹H NMR spectra for compound 6h

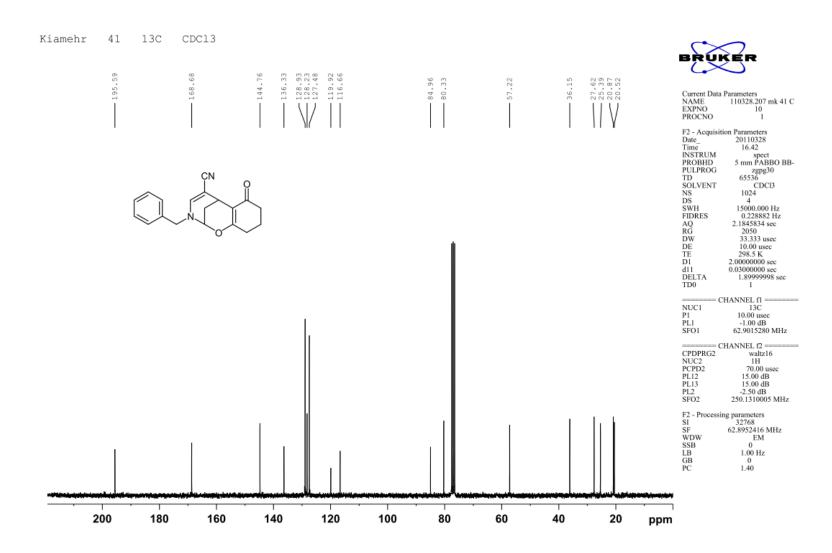

 $^{13}\mathrm{C}$ NMR spectra for compound 6h

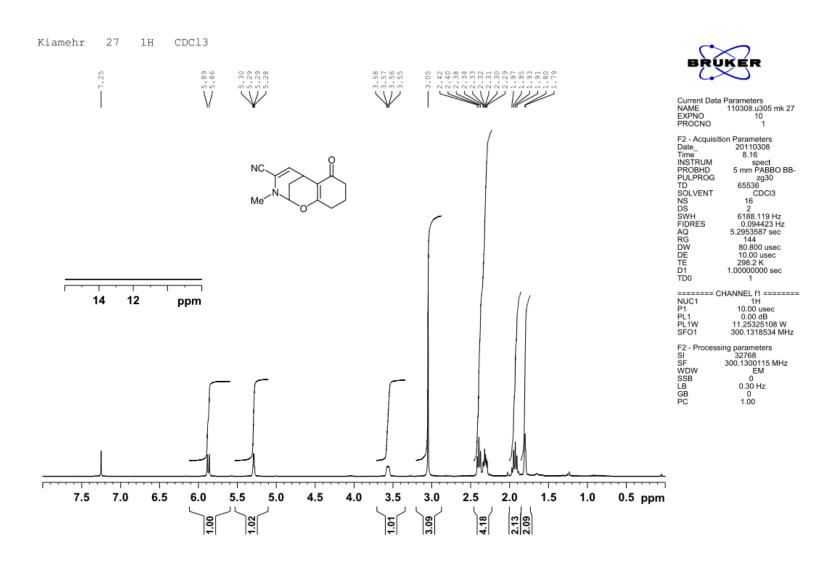

¹H NMR spectra for compound 6i

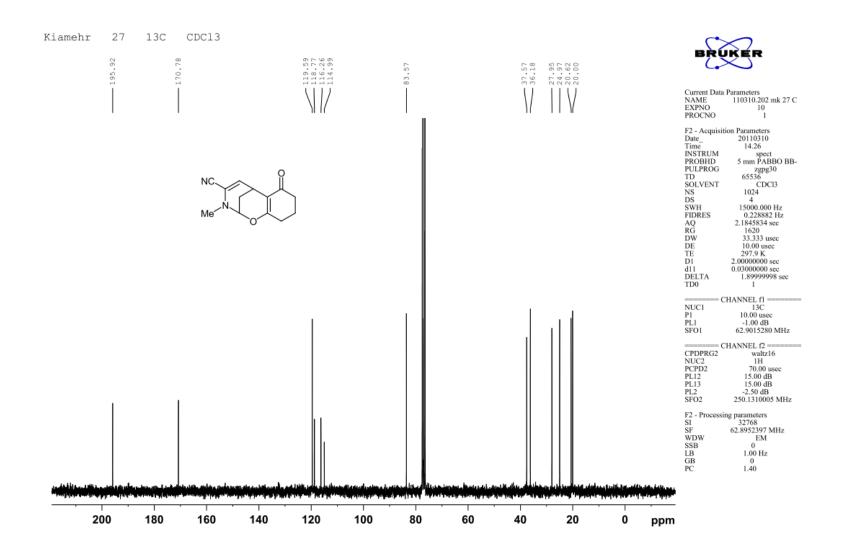

 $^{13}\mathrm{C}$ NMR spectra for compound 6i

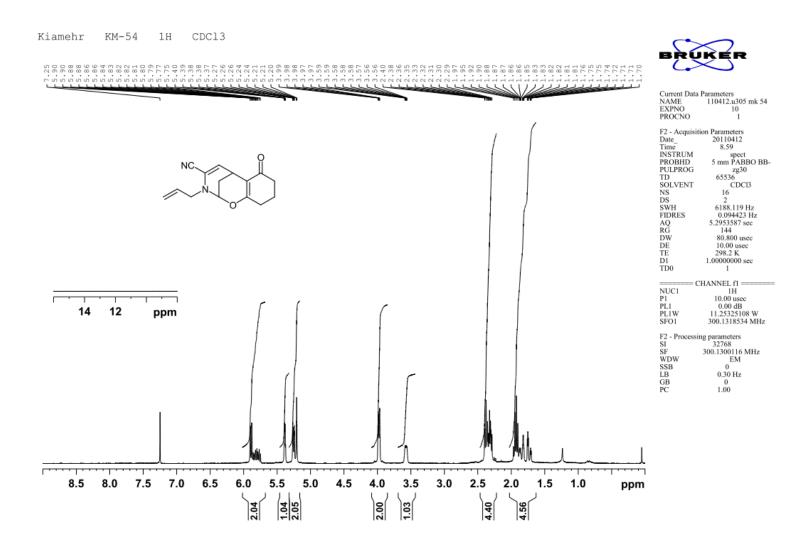

¹H NMR spectra for compound 6j

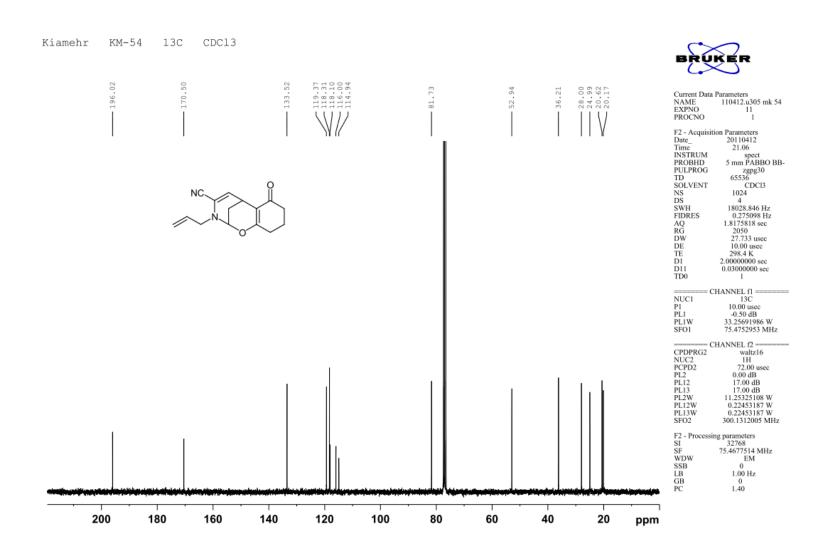

¹³C NMR spectra for compound 6j

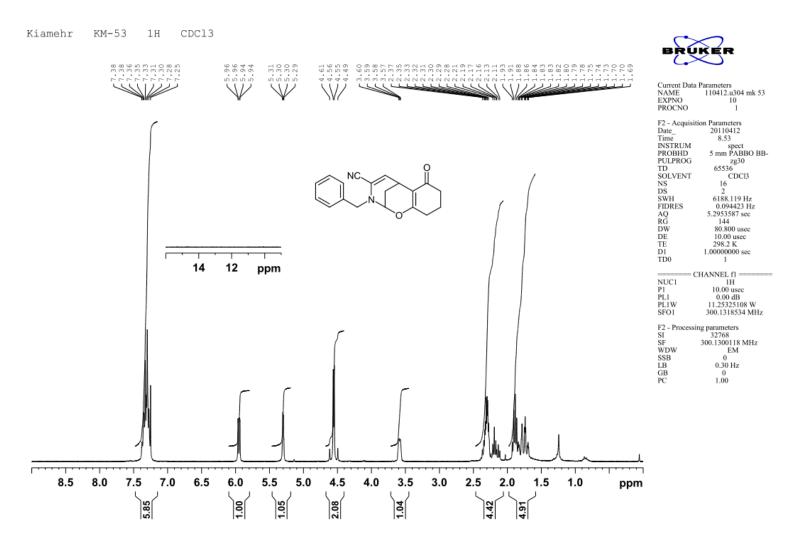

¹H NMR spectra for compound 6k

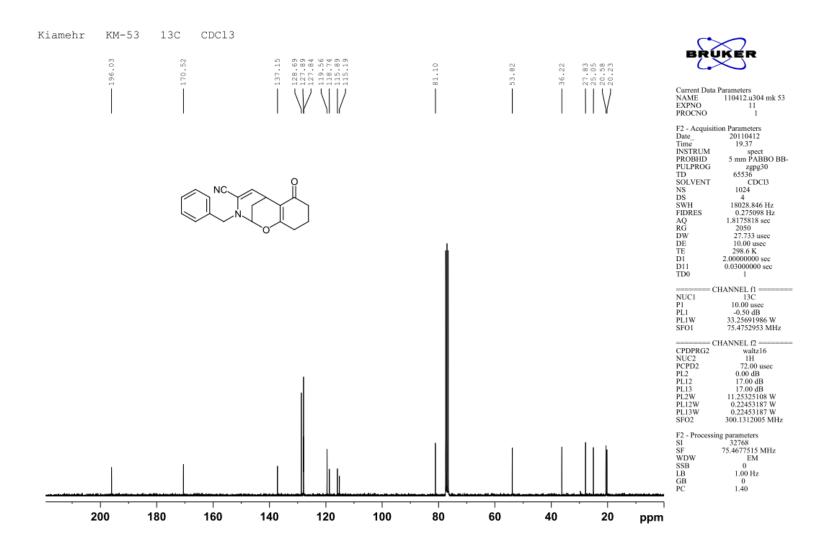

¹³C NMR spectra for compound 6k

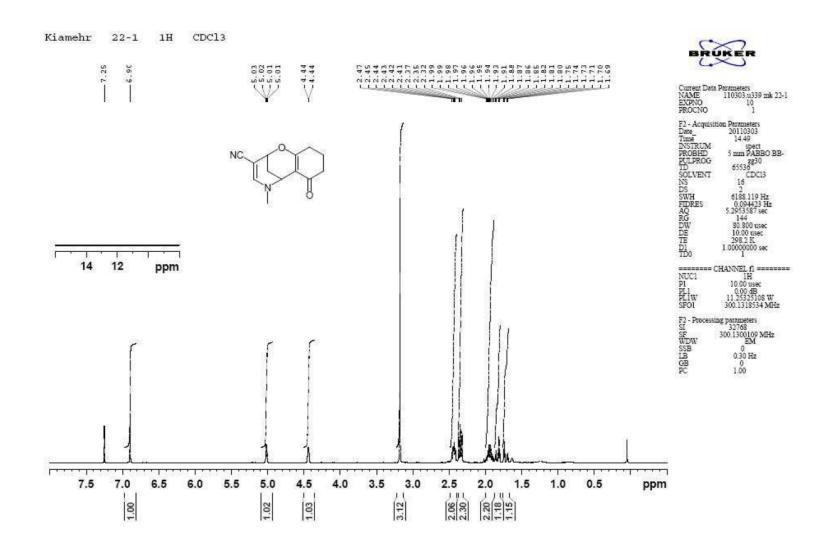

¹H NMR spectra for compound 6l

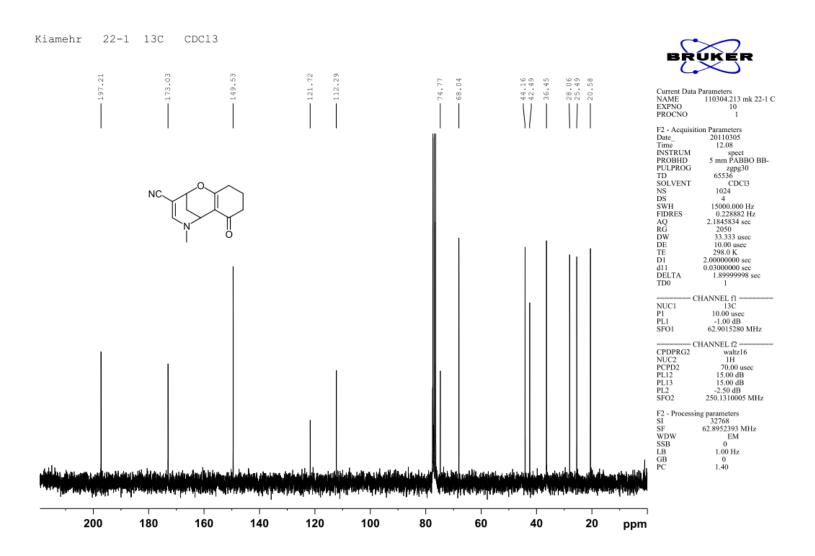

¹³C NMR spectra for compound 6l


¹H NMR spectra for compound 7a

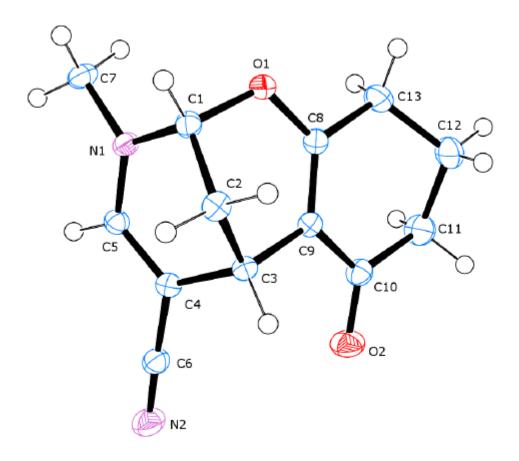

¹³C NMR spectra for compound 7a


¹H NMR spectra for compound 7b

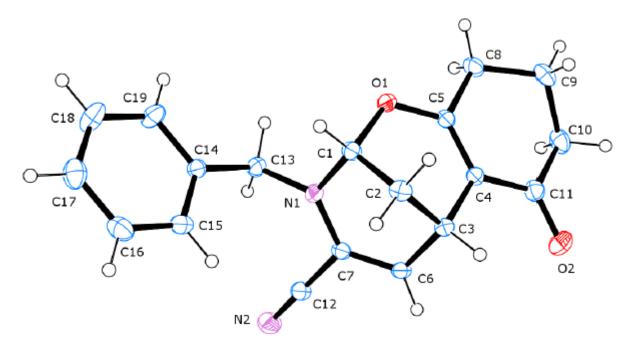

¹³C NMR spectra for compound 7b


¹H NMR spectra for compound 7c

 $^{13}\mathrm{C}$ NMR spectra for compound 7c



¹H NMR spectra for compound 8



 ^{13}C NMR spectra for compound 8

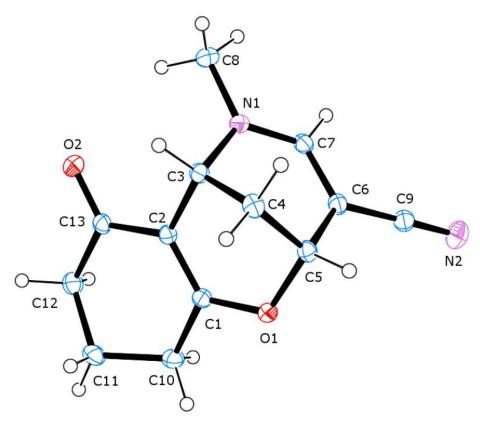

X-ray structures of compounds 6d, 7c, 8

Figure S2: ORTEP plot of structure **6d.**

Figure S3: ORTEP plot of structure **7c**.

Figure S4: ORTEP plot of structure **8.**