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1.'H, ¥*C, and DEPT-135 NMR spectra for compound 3a in CDClj at rt (300/75 MHz)
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2. 'H NMR spectrum for compound 3a in CDCl5 at 328K (500 MHz)
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3. 'H NMR Spectrum for compound 3a in DMSO-ds at 353K (500 MHz)
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4. COSY and HSQC NMR spectra for compound 3a in DMSO-dg at 353K (500 MHz)
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5. *H NMR spectra for compound 3a in CDCl3 from 213K to 330K (500 MHz)
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6. COSY and HSQC NMR spectra for compound 3a in CDCl3 at 213K (500 MHz)
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7. ROESY NMR spectra for compound 3a in CDCl3 at 213K (500 MHz)
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8. 'H, **C, and DEPT-135 NMR spectra for compound 3b in CDCl; at rt (300/75 MHz)
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9. 'H, 3C, and DEPT-135 NMR spectra for compound 3c in CDCl5 at rt (300/75 MHz)
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10. *H, 3C, and DEPT-135 NMR spectra for compound 4 in CDCl; at rt (300/75 MHz)
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11. *H, 3C, and DEPT-135 NMR spectra for compound 5 in CDClj at rt (300/75 MHz)
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12.'H, 3C, and DEPT-135 NMR spectra for compound 7 in CDCl; at rt (300/75 MHz)
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13. Geometry-optimized structure for 3a-endo
Optimized energy: —1390.9235364 Hartree (DFT/B3LYP/6-31G*)

Atom X Y Z

1 s si 1.2909097 2.3699504 -0.0390958
2 C C2 0.9527198 0.6874151 0.6565145
3 C C3 2.3431975 0.0365402 0.9107221
4 C C4 3.4554967 0.8682306 0.2203702
5C C5 3.0736445 2.3389358 0.3818677
6 H H4 0.3840958 0.8474016 1.5735063
7 H HG6 2.5409681 -0.0237534 1.9885476
8 H H7Y 3.4893978 0.6108523 -0.8423785
9 H HS8 4.4339969 0.6414497 0.6489249
10 H H9 3.5898315 3.0195125 -0.2986168
11 H H10 3.1684460 2.6986623 1.4110559
12 O 01 1.1720143 2.3081096 -1.5090455
13 0 02 0.5726042 3.3963217 0.7285479
14 C C1 0.2150632 -0.2720755 -0.3175187
15 H H1 0.5430366 -0.0259222 -1.3403634
16 N N1 0.7689126 -1.5743868 0.10588406
17 N N2 2.1624652 -1.2768370 0.3371450
18 C C6 3.0106334 -2.3034300 0.0686703
19 O 03 4.2159993 -2.3140000 0.2754890
20 C C7 0.8367022 -2.6485663 -0.9085625
21 H H3 -0.0736086 -3.2502893 -0.8732843
22 H H12 0.9452222 -2.2221525 -1.9199916
23 C C8 2.1153774 -3.4076314 -0.5146735
24 H HS5 1.9225780 -4.1478772 0.2715963
25 H H14 2.6060922 -3.9143885 -1.3482398
26 C C9 -1.2942663 -0.2231651 -0.2494660
27 C C10 -4.1010189 -0.0563076 -0.1197201
28 C Cl1 -2.0049250 0.6080711 -1.1296254
29 C C12 -2.0113292 -0.9629918 0.6933613
30 C cC13 -3.4048362 -0.8910900 0.7625230
31 C Cl14 -3.3888136 0.6961581 -1.0657817
32 H H2 -1.4634000 1.2009161 -1.8626954
33 H H11 -1.4741679 -1.6152055 1.3759320
34 H H13 -3.9293849 -1.4861871 1.5014928
35 H H1S5 -3.9426716 1.3397375 -1.7419785
306 O 04 -5.4565045 0.0913840 -0.1441716
37 C C15 -6.2304940 -0.6404353 0.7929250
38 H H16 -5.9776281 -0.3677844 1.8260086
39 H H17 -6.1025576 -1.7235335 0.6643889
40 H H1S8 -7.2702623 -0.3745473 0.5942245
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14. Geometry-optimized structure for 3a-exo
Optimized energy: —1390.9250155 Hartree (DFT/B3LYP/6-31G*)

Atom X Y Z

1 s si 3.0175787 -1.4200341 -0.1323919
2 C C1 3.9257867 0.1562811 -0.0314463
3 H HI1A 3.7694951 0.5526280 0.9743508
4 H HI1B 4.9829544 -0.0540021 -0.2069815
5 N N1 1.1275775 1.6248402 0.0560710
6 O 01 3.4627910 -2.1308093 -1.3450182
7 0 02 2.9714260 -2.1124958 1.1653697
8 N N2 0.9480530 0.8102202 1.2300002
9 C cC2 3.2565377 1.0026730 -1.1134665
10 H H2A 3.5882031 0.6652189 -2.1012300
11 H H2B 3.5063696 2.0620113 -1.0120649
12 O 03 -0.0901064 3.1354751 -1.1953916
13 C C3 1.7215128 0.8178558 -1.0003442
14 H H3 1.2385264 1.0961328 -1.9407940
15 C C4 0.0927752 2.5231196 -0.1578945
16 C C6 0.0384492 1.6155089 2.0820243
17 H H6A 0.6585843 2.1634843 2.7983984
18 H H6B -0.6253312 0.9529610 2.6394377
19 ¢ C5 -0.7059134 2.5858295 1.1433102
20 H H5A -1.7338069 2.2828541 0.9221358
21 H H5B -0.7351370 3.6105501 1.5244999
22 C C8 1.3814921 -0.6415561 -0.5453918
23 H HS8 0.9660792 -1.2689719 -1.3344351
24 C C7 0.4669653 -0.5131424 0.6857881
25 H H7 0.7393852 -1.2672383 1.4300138
26 C C9 -1.0165126 -0.6389933 0.3836062
27 C C10 -1.6155466 -0.1831584 -0.7970831
28 H HI1O0 -1.0168247 0.2568235 -1.5893061
29 C Cl11 -2.9950018 -0.2705952 -1.0016482
30 H H11 -3.4147318 0.0969812 -1.9309079
31 ¢ C12 -3.8112507 -0.8304901 -0.0118841
32 C C13 -3.2273644 -1.3085406 1.1712772
33 H H13 -3.8685194 -1.7571812 1.9235579
34 C Cl4 -1.8555309 -1.2133344 1.3559925
35 H H14 -1.4182613 -1.6035036 2.2726837
306 O 04 -5.1629423 -0.9628245 -0.1023531
37 C C15 -5.8084939 -0.4997395 -1.2802691
38 H H2 -5.4547200 -1.0363310 -2.1701335
39 H H1 -5.6584145 0.5781561 -1.4237979
40 H H4 -6.8712965 -0.7005212 -1.1359348
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