Supporting Information

for

Development of an additive-controlled, Sml₂-mediated stereoselective sequence:

Telescoped spirocyclisation, lactone reduction and Peterson elimination

Brice Sautier, Karl D. Collins, David J. Procter*

Address: University of Manchester, School of Chemistry, Oxford Road, Manchester M13 9PL, United Kingdom

Email: David J. Procter - david.j.procter@manchester.ac.uk

General experimental procedures and characterisation data

General experimental	2
Preparation of samarium diiodide	
Experimental	3
Literature procedures	3
General procedure A – Spirocyclisation	3
General procedure B – Telescoped spirocyclisation/lactone reduction	7
General procedure C – Telescoped spirocyclisation/lactone reduction/Peterson elimination	10

^{*} Corresponding author

General experimental^{1,2}

All experiments were performed under an atmosphere of nitrogen, using anhydrous solvents unless stated otherwise. Tetrahydrofuran was distilled from sodium/benzophenone and stored under nitrogen, and was deoxygenated by bubbling with nitrogen for ten minutes when used in conjunction with samarium diiodide. Triethylamine was distilled from calcium hydride and stored under nitrogen. Water when used in conjunction with samarium diiodide was distilled before being deoxygenated by bubbling with nitrogen for four hours. All other dry solvents were used as purchased from Sigma-Aldrich.

¹H NMR and ¹³C NMR were recorded on 300, 400 and 500 MHz spectrometers, with chemical shift values being reported in ppm relative to residual chloroform ($\delta_{\rm H} = 7.27$ or $\delta_{\rm C} = 77.2$) as internal standards. All coupling constants (*J*) are reported in hertz (Hz).

Mass spectra were obtained using positive or negative electrospray (ES±) or electron ionization (EI±) methodology. Infrared spectra were recorded as evaporated films or neat using FTIR spectrometers. Melting points were measured on material obtained after column chromatography.

Column chromatography was carried out using 40– $60~\mu$, 60~Å silica gel. Routine TLC analysis was carried out on aluminium sheets coated with silica gel 60~F254, 0.2~mm thickness. Plates were viewed using a 254~nm ultraviolet lamp and dipped in *para*-anisaldehyde or potassium permanganate.

Preparation of samarium diiodide

Samarium powder (1.2 g, 8.0 mmol, 1.2 equiv), diiodoethane (1.9 g, 6.7 mmol, 1.0 equiv), THF (55 mL) were added to a nitrogen-flushed, oven-dried round-bottom flask. The flask was covered with aluminium foil and the mixture was then stirred at room temperature for a minimum of 5 h (typically overnight). The solution was then left to settle for 1 h, titrated,³ and used directly.

¹ Szostak, M.; Spain, M.; Procter, D. J. J. Org. Chem., **2012**, 77, 3049.

² For a detailed procedure on the preparation of SmI₂ and its use, see: Szostak, M.; Spain, M.; Procter, D. J. *Nature Protocols*, **2012**, *7*, 970.

³ Dahlén, A.; Hilmersson, G. Eur. J. Inorg. Chem., 2004, 3020.

Experimental

Literature procedures

Substrates 1 were synthesised according to the procedure described by Harb et al.⁴

General procedure A – Spirocyclisation

To a stirred solution of SmI_2 (2.5 equiv, 0.1 M in THF) and MeOH (96 equiv) at 0 °C was added 1 (1.0 equiv in THF) and the reaction mixture was stirred for 5 min. The reaction was quenched by bubbling air through it. H_2O and tartaric acid (100 mg/mmol 1) were then added, the aqueous phase was extracted with ethyl acetate (3×), and the combined organic phases were dried (Na_2SO_4 or $MgSO_4$) and concentrated in vacuo. Purification by column chromatography on silica gel eluting with 20% ethyl acetate in petroleum ether (40–60 °C) gave 2.

rac-(4R,5S,6S)-4-(Dimethyl(phenyl)silyl)-6-hydroxy-6-methyl-2-oxaspiro[4.4]nonan-1-one (2a)⁴

mp 71–74 °C;

 \mathbf{v}_{max} (neat)/cm⁻¹ 3523, 3436, 3276, 3068, 2360, 1747 (C=O), 1661, 1427, 1375, 1250, 1181, 1113, 1021, 833, 818;

¹**H NMR** (400 MHz, CDCl₃) δ ppm 0.39 (3 H, s, SiCH₃), 0.45 (3 H, s, SiCH₃), 1.26 (3 H, s, CH₃), 1.32–1.44 (1 H, 1 H from CH₂), 1.57–1.65 (1 H, m, 1 H from CH₂), 1.75 (1 H, ddd, J = 13.6, 10.3, 5.0 Hz, 1 H from CH₂), 1.87–2.02 (2 H, m, 2 × 1 H from CH₂), 2.05–2.15 (2 H, m, 1 H from CH₂, SiCH), 4.16 (1 H, dd, J = 8.8, 6.1 Hz, 1 H from OCH₂), 4.39 (1 H, t, J = 8.8 Hz, 1 H from OCH₂), 7.33–7.45 (3 H, m, 3 × Ar-H), 7.45–7.55 (2 H, m, 2 × Ar-H);

¹³C **NMR** (100 MHz, CDCl₃) δ ppm -4.2 (SiCH₃), -4.0 (SiCH₃), 19.1 (CH₂), 23.0 (CH₃), 28.7 (SiCH), 30.4 (CH₂), 37.7 (CH₂), 57.4 (C^q), 66.9 (OCH₂), 82.4 (C^qOH), 127.2 (2 × Ar-C), 128.7 (Ar-C), 132.6 (2 × Ar-C), 135.7 (Ar-C^q), 181.0 (C=O);

m/z (+ES) 327 ((M + Na), 100%); (Found (M + Na), 327.1402. $C_{17}H_{24}O_3NaSi$ requires M, 327.1387).

⁴ Harb, H. Y.; Collins, K. D.; Altur, J. V. G.; Bowker, S.; Campbell, L.; Procter, D. J. *Org. Lett.*, **2010**, *12*, 5446.

rac-(4R,5S,6S)-4-(Dimethyl(phenyl)silyl)-6-hydroxy-6-(pent-4-en-1-yl)-2-oxaspiro[4.4]nonan-1-one (2b)

 v_{max} (neat)/cm⁻¹ 3442 br. (OH), 3064, 2946, 2914, 2863, 1739 (C=O), 1427, 1372, 1261, 1191, 1111, 1029, 910, 832, 817, 736, 703;

¹H NMR (400 MHz, CDCl₃) δ 0.39 (3 H, s, SiCH₃), 0.47 (3 H, s, SiCH₃), 1.31–1.48 (5 H, m, C H_2 CH₂CH=CH₂, 3 H from CH₂), 1.48–1.55 (1 H, m, 1 H from CH₂), 1.74–1.84 (2 H, m, CH₂), 1.85–1.97 (1 H, m, 1 H from CH₂), 2.00–2.08 (3 H, m, SiCH, C H_2 CH=CH₂), 2.13 (1 H, ddd, J = 13.3, 10.8, 5.7 Hz, 1 H from CH₂), 3.74 (1 H, s, OH), 4.14 (1 H, dd, J = 9.0, 8.3 Hz, 1 H from OCH₂), 4.31 (1 H, dd, J = 8.3, 8.3 Hz, 1 H from OCH₂), 4.90–5.11 (2 H, m, CH=C H_2), 5.78 (1 H, ddt, J = 16.9, 10.2, 6.7 Hz, CH=CH₂), 7.32–7.46 (3 H, m, 3 × Ar-H), 7.47–7.52 (2 H, m, 2 × Ar-H);

¹³C NMR (100 MHz, CDCl₃) δ -3.0 (SiCH₃), -2.7 (SiCH₃), 20.9 (CH₂), 23.3 (CH₂), 30.8 (SiCH), 31.8 (CH₂), 34.3 (CH₂CH=CH₂), 35.7 (CH₂), 36.4 (CH₂), 58.1 (C⁴), 68.3 (OCH₂), 85.7 (C⁴OH), 115.0 (CH=CH₂), 128.4 (2 × Ar-C), 130.0 (Ar-C), 133.7 (2 × Ar-C), 136.6 (Ar-C⁴), 138.7 (CH=CH₂), 183.3 (C=O);

m/z (+ES) 381 ((M + Na), 100%); (Found (M + Na), 381.1850. $C_{21}H_{30}O_3NaSi$ requires M, 381.1857).

rac-(4R,5R,6S)-6-Ethyl-6-hydroxy-4-(dimethyl(phenyl)silyl)-2-oxa-spiro[4.4]nonan-1-one (2c)

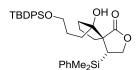
 v_{max} (neat)/cm⁻¹ 3450, 2972, 2892, 1752 (C=O), 1709 (C=O), 1665, 1168, 1109, 1201, 994, 816;

¹H NMR (300 MHz, CDCl₃) δ ppm 0.41 (3 H, s, SiCH₃), 0.47 (3 H, s, SiCH₃), 0.94 (3 H, t, J = 7.3 Hz, CH₂CH₃), 1.30–1.40 (1 H, m, 1 H from CH₂), 1.40–1.48 (1 H, m, 1 H from CH₂), 1.52 (2 H, q, J = 7.3 Hz, CH₂CH₃), 1.71–1.87 (2 H, m, 2 × 1 H from CH₂), 1.87–2.00 (1 H, m, 1 H from CH₂), 2.06 (1 H, t, J = 8.0 Hz, SiCH), 2.10–2.23 (1 H, m, 1 H from CH₂), 3.61 (1 H, s, OH), 4.15 (1 H, dd, J = 9.0, 8.0 Hz, 1 H from OCH₂), 4.33 (1 H, t, J = 9.0 Hz, 1 H from OCH₂), 7.32–7.45 (3 H, m, 3 × Ar-H), 7.44–7.58 (2 H, m, 2 × Ar-H);

¹³C NMR (75 MHz, CDCl₃) δ ppm -3.0 (2 × SiCH₃), 8.2 (CH₂CH₃), 20.6 (CH₂), 28.6 (CH₂CH₃), 30.4 (SiCH), 31.8 (CH₂), 35.7 (CH₂), 57.9 (C^q), 68.0 (CH₂O), 85.9 (C^qOH), 128.2 (2 × Ar-C), 129.8 (Ar-C), 133.6 (2 × Ar-C), 136.6 (Ar-C^q), 183.0 (C=O);

m/z (+ES) 341 ((M + Na), 100%), 357 (40); (Found (M + Na), 341.1547. $C_{18}H_{26}O_3NaSi$ requires M, 341.1543).

rac-(4S,5S,6R)-6-(But-3-en-1-yl)-4-(dimethyl(phenyl)silyl)-6-hydroxy-2-oxaspiro[4.4]nonan-1-one (2d)


 v_{max} (neat)/cm⁻¹ 3446 (br. OH), 3070, 2954, 2909, 1762 (C=O), 1738, 1428, 1373, 1253, 1171, 1111, 1028, 997, 912, 832, 815, 779, 735, 701, 652;

¹H NMR (400 MHz, CDCl₃) δ ppm 0.39 (3 H, s, SiCH₃), 0.47 (3 H, s, SiCH₃), 1.30–1.40 (1 H, m, 1 H from C H_2 CH₂CH₂CH), 1.41–1.47 (1 H, m, 1 H from CH₂), 1.51–1.57 (2 H, m, CH₂), 1.75–1.85 (2 H, m, 1 H from CH₂, 1 H from C H_2 CH=CH₂), 1.88–1.96 (1 H, m, 1 H from C H_2 CH₂CH), 2.05–2.09 (2 H, m, 1 H from CH₂, CHSi), 2.11–2.18 (1 H, m, 1 H from C H_2 CH=CH₂), 2.19–2.25 (1 H, m, 1 H from CH₂), 4.16 (1 H, dd, J = 9.1, 7.9 Hz, 1 H from CH₂O), 4.34 (1 H, dd, J = 9.1, 9.1 Hz, 1 H from CH₂O), 4.96 (1 H, dd, J = 10.2, 1.8 Hz, 1 H from CH=C H_2), 5.02 (1 H, dd, J = 17.0, 1.8 Hz, 1 H from CH=C H_2), 5.80 (1 H, ddt, J = 17.0, 10.2, 6.6 Hz, CH=CH₂), 7.38–7.42 (3 H, m, 3 × ArH), 7.48–7.53 (2 H, m, 2 × ArH);

¹³C NMR (100 MHz, CDCl₃) δ ppm -3.3 (SiCH₃), -3.0 (SiCH₃), 20.6 (CH₂CH₂CH), 28.3 (CH₂), 30.4 (CHSi), 31.5 (CH₂CH=CH₂), 35.2 (CH₂), 35.8 (CH₂), 58.0 (C^q), 68.0 (CH₂O), 85.4 (C^qOH), 114.5 (CH=CH₂), 128.2 (2 × ArCH), 129.7 (ArCH), 133.5 (2 × ArCH), 136.4 (ArC^q), 138.6 (CH=CH₂), 182.8 (C=O);

m/z (ES+) 367 ((M + Na), 100%). (Found: (M + Na) 367.1714. $C_{20}H_{28}O_3SiNa$ requires M, 367.1700).

rac-(4S,5S,6R)-6-(3-((tert-Butyldiphenylsilyl)oxy)propyl)-4-(dimethyl(phenyl)silyl)-6-hydroxy-2-oxaspiro[4.4]nonan-1-one (2e)

 \mathbf{v}_{max} (neat)/cm⁻¹ 3438 (br. OH), 3070, 2953, 2929, 2857, 1763 (C=O), 1427, 1374, 1253, 1173, 1110, 1028, 998, 909, 821;

¹H NMR (400 MHz, CDCl₃) δ ppm 0.40 (3 H, s, SiCH₃), 0.46 (3 H, s, SiCH₃), 1.08 (9 H, s, 3 × CCH₃), 1.32–1.41 (1 H, m, 1 H from CH₂), 1.45–1.53 (1 H, m, 1 H from CH₂), 1.54–1.63 (3 H, m, CH₂CH₂OSi, 1 H from CH₂CH₂CH₂OSi), 1.65–1.74 (1 H, m, 1 H from CH₂CH₂CH₂OSi), 1.74–1.88 (2 H, m, 2 H from CH₂), 1.88–2.00 (1 H, m, 1 H from CH₂), 2.04 (1 H, t, J = 7.7 Hz, CHSi), 2.15 (1 H, ddd, J = 13.2, 10.7, 6.0 Hz, 1 H from CH₂), 3.68 (2 H, t, J = 5.7 Hz, CH₂OSi), 4.14 (1 H, dd, J = 9.1, 7.6 Hz, 1 H from CHCH₂O), 4.32 (1 H, t, J = 8.7 Hz, 1 H from CHCH₂O), 7.32–7.50 (11 H, m, 11 × ArH), 7.64–7.71 (4 H, m, 4 × ArH);

¹³C NMR (100 MHz, CDCl₃) δ ppm -3.1 (SiCH₃), -3.0 (SiCH₃), 19.2 (C^q), 20.6 (CH₂), 26.9 (3 × CCH₃), 27.1 (CH₂CH₂CH₂OSi), 30.3 (CHSi), 31.7 (CH₂), 32.5 (CH₂CH₂OSi), 36.1 (CH₂), 58.0 (C^q), 64.3 (CH₂OSi), 68.0 (CHCH₂O), 85.4 (C^qOHs), 127.6 (4 × ArCH), 128.2 (2 × ArCH), 129.6 (2 × ArCH), 129.7 (ArCH), 133.5 (2 × ArCH), 133.8 (ArC^q), 133.8 (ArC^q), 135.5 (4 × ArCH), 136.6 (ArC^q), 182.9 (C=O).

rac-Methyl 4-((4R,5S,6R)-4-(dimethyl(phenyl)silyl)-6-hydroxy-1-oxo-2-oxaspiro[4.4]-nonan-6-yl)butanoate (2f)

v_{max} (neat)/cm⁻¹ 2953, 1765 (C=O), 1737 (C=O), 1254, 1171, 1112, 1023, 998, 834, 819;

¹**H NMR** (400 MHz, CDCl₃) δ ppm 0.41 (3 H, s, SiCH₃), 0.48 (3 H, s, SiCH₃), 1.31 - 1.98 (9 H, m, 9H from CH₂), 2.13 (1 H, t, J = 8.4 Hz, SiCH), 2.27 - 2.40 (3 H, m, 3H from CH₂), 3.70 (3 H, s, OCH₃), 4.15 (1 H, t, J = 8.9 Hz, 1H from OCH₂), 4.27 - 4.37 (1 H, m, 1H from OCH₂), 7.34 - 7.60 (5 H, m, 5 × Ar-H);

¹³C NMR (100 MHz, CDCl₃) δ ppm -3.1 (SiCH₃), -2.9 (SiCH₃), 19.4 (CH₂), 20.8 (CH₂), 30.5 (SiCH), 31.7 (CH₂), 34.1 (CH₂), 35.5 (CH₂), 36.5 (CH₂), 57.7 (C^q), 68.2 (OCH₂), 85.3 (C^qOH), 128.2 (2 × Ar-C), 129.8 (Ar-C), 133.6 (2 × Ar-C), 136.4 (Ar-Cq), 173.9 (CO_2CH_3), 183.3 (CO_2CH_2); m/z (+ES) 413 ((M + Na), 35%) 523 (100); (Found (M + Na), 413.1761. C₂₁H₃₀O₅NaSi requires M, 413.1755).

General procedure B – Telescoped spirocyclisation/lactone reduction

To a stirred solution of SmI₂ (2.5 equiv, 0.1 M in THF) and MeOH (96 equiv) at 0 °C was added 1 (1.0 equiv in THF) and the reaction mixture was stirred for 5 min. The reaction mixture was quickly transferred by cannula into a preformed mixture of SmI₂ (8.0 equiv, 0.1 M in THF), Et₃N (24 equiv) and H₂O (24 equiv), and the resulting mixture was stirred at room temperature for 5 min. The reaction was quenched by opening the vessel to air. H₂O and tartaric acid (100 mg/mmol 1) were then added, the aqueous phase was extracted with ethyl acetate (3×), and the combined organic phases were dried (Na₂SO₄ or MgSO₄) and concentrated in vacuo. Purification by column chromatography on silica gel eluting with 30% ethyl acetate in petroleum ether (40–60 °C) gave 3.

rac-(1S,2R)-2-((S)-1-(Dimethyl(phenyl)silyl)-2-hydroxyethyl)-2-(hydroxymethyl)-1-methylcyclopentanol (3a)

 \mathbf{v}_{max} (neat)/cm⁻¹ 3284 (br. OH), 2957, 2876, 1427, 1372, 1304, 1248, 1145, 1110, 1054, 961, 912, 816, 777, 733, 699, 645;

¹**H NMR** (500 MHz, CDCl₃) δ ppm 0.46 (3 H, s, SiCH₃), 0.47 (3 H, s, SiCH₃), 1.20 (3 H, s, CCH₃), 1.17–1.23 (2 H, m, CH₂), 1.39–1.48 (1 H, m, 1 H from CH₂), 1.51–1.59 (1 H, m, 1 H from CH₂), 1.61 (1 H, br. d, J = 5.4 Hz, CHSi), 1.72 (1 H, ddd, J = 12.8, 9.9, 2.5 Hz, 1 H from CH₂), 2.02–2.11 (1 H, m, 1 H from CH₂), 3.63 (1 H, d, J = 12.5 Hz, 1 H from CCH₂OH), 3.85 (1 H, dd, J = 10.8, 5.5 Hz, 1 H from CHCH₂OH), 3.94 (1 H, dd, J = 12.5, 1.7 Hz, 1 H from CCH₂OH), 4.51 (1 H, dd, J = 10.8, 0.9 Hz, 1 H from CHCH₂OH), 7.33–7.38 (3 H, m, 3 × ArH), 7.56–7.61 (2 H, m, 2 × ArH);

¹³C NMR (125 MHz, CDCl₃) δ ppm -0.2 (SiCH₃), 0.2 (SiCH₃), 17.8 (CH₂), 25.3 (CCH₃), 34.8 (CH₂), 37.0 (CHSi), 39.6 (CH₂), 50.6 (C^q), 61.4 (CHCH₂OH), 67.8 (CCH₂OH), 85.8 (C^qOH), 127.8 (2 × ArCH), 128.8 (ArCH), 133.9 (2 × ArCH), 140.1 (ArC^q).

rac-(1S,2R)-2-((R)-1-(Dimethyl(phenyl)silyl)-2-hydroxyethyl)-2-(hydroxymethyl)-1-(pent-4-en-1-yl)cyclopentanol (3b)⁵

 v_{max} (neat)/cm⁻¹ 3289 br. (OH), 2953, 2878, 1427, 1250, 1109, 1049, 910, 834, 818, 700;

¹H NMR (400 MHz, CDCl₃) δ 0.45 (3 H, s, SiCH₃), 0.47 (3 H, s, SiCH₃), 1.15 (2 H, dd, J = 8.9, 6.8 Hz, CH₂), 1.19–1.31 (1 H, m, 1 H from CH₂), 1.28–1.50 (2 H, m, 1 H from CH₂, 1 H from CH₂CH₂CH=CH₂), 1.48–1.63 (3 H, m, 1 H from CH₂CH₂CH=CH₂, CH₂), 1.65 (1 H, dd, J = 5.7, 1.6 Hz, SiCH), 1.74–1.88 (1 H, m, 1 H from CH₂), 1.98 (1 H, ddd, J = 13.4, 9.5, 2.3 Hz, 1 H from CH₂), 2.02–2.16 (2 H, m, CH₂CH=CH₂), 3.61 (1 H, d, J = 12.5 Hz, 1 H from C^qCH₂OH), 3.84 (1 H, dd, J = 10.8, 5.6 Hz, 1 H from CHCH₂OH), 3.96 (1 H, dd, J = 12.5, 1.6 Hz, 1 H from C^qCH₂OH), 4.46 (1 H, dd, J = 10.8, 1.3 Hz, 1 H from CHCH₂OH), 4.92–5.08 (2 H, m, CH=CH₂), 5.83 (1 H, ddt, J = 16.9, 10.2, 6.6 Hz, CH=CH₂), 7.31–7.38 (3 H, m, 3 × Ar-H), 7.55–7.62 (2 H, m, 2 × Ar-H);

¹³C NMR (100 MHz, CDCl₃) δ 0.1 (SiCH₃), 0.4 (SiCH₃), 18.1 (CH₂), 22.7 (CH₂), 34.1 (CH₂), 34.5 (CH₂), 34.5 (CH₂), 34.8 (CH₂), 36.4 (SiCH), 51.5 (C^{q} CH₂OH), 61.7 (CHCH₂OH), 68.5 (C^{q} CH₂OH), 87.7 (C^{q} OH), 114.8 (CH=C H_{2}), 128.0 (2 × Ar-C), 129.0 (Ar-C), 134.0 (2 × Ar-C), 138.9 (CH=CH₂), 140.3 (Ar-C^q);

m/z (+ES) 301 (8%) 385 ((M + Na), 100); (Found (M + Na), 385.2169. $C_{21}H_{34}O_3NaSi$ requires M, 385.2170).

rac-(1R,2R)-1-(But-3-en-1-yl)-2-((S)-1-(dimethyl(phenyl)silyl)-2-hydroxyethyl)-2-(hydroxyethyl)cyclopentanol (3d)

PhMe₂Si OH

 \mathbf{v}_{max} (neat)/cm⁻¹ 3273 (br. OH), 3069, 2953, 2882, 1640, 1427, 1316, 1248, 1217, 1109, 1052, 1019, 957, 908, 816, 755, 732, 701, 646;

¹**H NMR** (400 MHz, CDCl₃) δ ppm 0.45 (3 H, s, SiCH₃), 0.48 (3 H, s, SiCH₃), 1.11–1.20 (2 H, m, CH₂), 1.24–1.43 (2 H, m, 1 H from CH₂CH₂CH, 1 H from CH₂), 1.48–1.62 (1 H, m, 1 H from CH₂),

⁵ Szostak, M.; Collins, K. D.; Fazakerley, N. J.; Spain, M.; Procter, D. J. *Org. Biomol. Chem.* **2012**, *10*, 5820.

1.67 (1 H, d, J = 5.4 Hz, CHSi), 1.69–1.76 (1 H, m, 1 H from CH_2CH_2CH), 1.76–1.87 (1 H, m, 1 H from CH_2), 1.95–2.04 (1 H, m, 1 H from CH_2), 2.07–2.18 (1 H, m, 1 H from $CH_2CH=CH_2$), 2.19–2.30 (1 H, m, 1 H from $CH_2CH=CH_2$), 3.61 (1 H, d, J = 12.4 Hz, 1 H from CCH_2OH), 3.82 (1 H, dd, J = 10.5, 5.4 Hz, 1 H from $CHCH_2OH$), 3.95 (1 H, dd, J = 12.4, 1.3 Hz, 1 H from CCH_2OH), 4.43 (1 H, d, J = 10.5 Hz, 1 H from $CHCH_2OH$), 4.99 (1 H, ddt, J = 10.1, 1.7, 1.0 Hz, 1 H from $CH=CH_2$), 5.08 (1 H, dd, J = 17.0, 1.7 Hz, 1 H from $CH=CH_2$), 5.88 (1 H, ddt, J = 17.0, 10.1, 6.7 Hz, $CH=CH_2$), 7.32–7.39 (3 H, m, 3 × ArH), 7.56–7.62 (2 H, m, 2 × ArH);

¹³C NMR (100 MHz, CDCl₃) δ ppm -0.2 (SiCH₃), 0.1 (SiCH₃), 17.8 (CH₂), 27.8 (*C*H₂CH=CH₂), 33.7 (CH₂), 34.2 (CH₂), 34.4 (*C*H₂CH₂CH), 36.0 (CHSi), 51.3 (C^q), 61.0 (CH*C*H₂OH), 68.0 (C*C*H₂OH), 87.3 (C^qOH), 114.6 (CH=*C*H₂), 127.7 (2 × ArCH), 128.7 (ArCH), 133.8 (2 × ArCH), 139.3 (*C*H=CH₂), 140.1 (ArC^q);

m/z (ES+) 371 ((M + Na), 100%), 372 (31). (Found: (M + Na) 371.2016. $C_{20}H_{32}O_3SiNa$ requires M, 371.2013).

rac-(1R,2R)-1-(3-((tert-Butyldiphenylsilyl)oxy)propyl)-2-((S)-1-(dimethyl(phenyl)silyl)-2-hydroxyethyl)-2-(hydroxymethyl)cyclopentanol (3e)

 \mathbf{v}_{max} (neat)/cm⁻¹ 3290 (br. OH), 3069, 2956, 2928, 2856, 1472, 1427, 1250, 1110, 1047, 1008, 821, 735, 700, 614;

¹H NMR (400 MHz, CDCl₃) δ ppm 0.46 (3 H, s, SiCH₃), 0.50 (3 H, s, SiCH₃), 1.05 (9 H, s, 3 × CCH₃), 1.12–1.18 (1 H, m, 1 H from CH₂), 1.21–1.35 (3 H, m, CH₂, 1 H from CH₂), 1.42–1.92 (6 H, m, CHSi, 5 H from CH₂), 1.95–2.04 (1 H, m, 1 H from CH₂), 3.58 (1 H, d, J = 12.4 Hz, 1 H from CCH₂OH), 3.63–3.73 (2 H, m, CH₂CH₂OH), 3.81 (1 H, dd, J = 11.3, 5.6 Hz, 1 H from CHCH₂OH), 4.04 (1 H, dd, J = 12.4, 1.6 Hz, 1 H from CCH₂OH), 4.52 (1 H, dd, J = 11.3, 0.5 Hz, 1 H from CHCH₂OH), 7.32–7.46 (9 H, m, 9 × ArH), 7.58–7.62 (1 H, m, ArH), 7.63–7.70 (5 H, m, 5 × ArH); ¹³C NMR (100 MHz, CDCl₃) δ ppm 0.0 (SiCH₃), 0.2 (SiCH₃), 18.1 (CH₂), 19.1 (C^q), 26.4 (CH₂), 26.8 (3 × CCH₃), 29.7 (CH₂), 32.8 (CH₂), 34.5 (CH₂), 37.0 (CHSi), 51.5 (C^q), 61.2 (CHCH₂OH), 64.9 (CH₂CH₂OH), 68.4 (CCH₂OH), 87.3 (C^qOH), 127.6 (2 × ArCH), 127.7 (4 × ArCH), 128.7 (ArCH), 129.8 (ArCH), 129.8 (ArCH), 133.1 (2 × ArCH), 133.1 (ArC^q), 133.8 (ArC^q), 133.9 (ArC^q), 135.6 (4 × ArCH).

General procedure C – Telescoped spirocyclisation/lactone reduction/Peterson elimination

To a stirred solution of SmI₂ (2.5 equiv, 0.1 M in THF) and MeOH (96 equiv) at 0 °C was added **1** (1.0 equiv in THF), and the reaction mixture was stirred for 5 min. The reaction mixture was quickly transferred by cannula into a preformed mixture of SmI₂ (8.0 equiv, 0.1 M in THF), Et₃N (24 equiv) and H₂O (24 equiv) at room temperature, and the resulting mixture was stirred for 5 min. The reaction was then quenched by opening the vessel to air. t-BuOK (40 equiv) was added portionwise over 20 min, and the reaction mixture was stirred for 20 min (completion monitored by TLC, eluting with 50% ethyl acetate in petroleum ether (40–60 °C)). H₂O and tartaric acid (100mg/mmol **1**) were added, the aqueous phase was extracted with ethyl acetate (3×), and the combined organic phases were dried (Na₂SO₄ or MgSO₄) and concentrated in vacuo. Purification by column chromatography on silica gel eluting with 30% ethyl acetate in petroleum ether (40–60 °C) gave **5**.

rac-(1S,2R)-2-(Hydroxymethyl)-1-methyl-2-vinylcyclopentanol (5a)

 \mathbf{v}_{max} (neat)/cm⁻¹ 3322 (br. OH), 2961, 2877, 1454, 1427, 1407, 1374, 1303, 1254, 1215, 1111, 1048, 1026, 961, 913, 833, 817, 736, 700, 657;

¹**H NMR** (400 MHz, CDCl₃) δ ppm 1.26 (3 H, s, CH₃), 1.62–1.87 (5 H, m, 5 H from CH₂), 1.98–2.08 (1 H, m, 1 H from CH₂), 3.71 (1 H, d, J = 11.3 Hz, 1 H from CH₂OH), 3.78 (1 H, d, J = 11.3 Hz, 1 H from CH₂OH), 5.10 (1 H, dd, J = 17.6, 1.3 Hz, 1 H from CH=CH₂), 5.14 (1 H, dd, J = 11.0, 1.3 Hz, 1 H from CH=CH₂), 5.86 (1 H, dd, J = 17.6, 11.0 Hz, CH=CH₂);

¹³C NMR (100 MHz, CDCl₃) δ ppm 19.1 (CH₂), 24.3 (CH₃), 29.2 (CH₂), 39.8 (CH₂), 54.3 (C^q), 66.1 (CH₂OH), 84.1 (C^qOH), 114.2 (CH=*C*H₂), 140.6 (*C*H=CH₂).

rac-(1S,2R)-2-(Hydroxymethyl)-1-(pent-4-en-1-yl)-2-vinylcyclopentanol (5b)

 v_{max} (neat)/cm⁻¹ 3011 br. (OH), 3080, 2945, 2876, 1639, 1454, 1440, 1415, 1055, 1002, 908;

¹**H NMR** (400 MHz, CDCl₃) δ 1.24–1.39 (2 H, m, 1 H from C*H*₂CH₂CH=CH₂, 1 H from CH₂), 1.44–1.79 (7 H, m, 1 H from C*H*₂CH=CH₂, 3 × CH₂), 1.89–2.01 (2 H, m, C*H*₂CH=CH₂), 2.01–2.12 (1

H, m, 1 H from CH₂), 2.17–2.46 (1 H, br. s, OH), 2.58–2.90 (1 H, br. s, OH), 3.56 (1 H, d, J = 11.3 Hz, 1 H from CH₂OH), 3.76 (1 H, d, J = 11.3 Hz, 1 H from CH₂OH), 4.81–4.94 (2 H, CH₂CH=CH₂), 4.97 (1 H, dd, J = 12.7, 1.2 Hz, 1 H from C^qCH=CH₂), 5.01 (1 H, dd, J = 15.3, 1.2 Hz, 1 H from C^qCH=CH₂), 5.61–5.78 (2 H, m, 1 H from C^qCH=CH₂, CH₂CH=CH₂);

¹³C NMR (100 MHz, CDCl₃) δ 19.5 (CH₂), 23.6 (CH₂), 29.7 (CH₂), 34.4 (CH₂), 36.1 (CH₂), 37.3 (CH₂), 55.3 (C^{q} CH=CH₂), 66.0 (HOCH₂), 86.6 (C^{q} OH), 114.2 (CH=C H_{2}), 114.8 (CH=C H_{2}), 138.8 (CH=CH₂), 140.8 (CH=CH₂).

m/z (+ES) 233 ((M + Na), 73%), 443 (2M + Na), 100); (Found (2M + Na), 233.1505. $C_{13}H_{22}O_2Na$ requires M, 233.1512).

rac-(1R,2R)-1-(But-3-en-1-yl)-2-(hydroxymethyl)-2-vinylcyclopentanol (5d)

 \mathbf{v}_{max} (neat)/cm⁻¹ 3309 (br. OH), 3082, 2946, 2875, 1639, 1446, 1418, 1313, 1228, 1113, 1052, 1001, 911;

¹H NMR (500 MHz, CDCl₃) δ ppm 1.52 (1 H, ddd, J = 13.9, 11.0, 5.0 Hz, 1 H from $CH_2CH_2CH=CH_2$), 1.65–1.78 (5 H, m, 1 H from $CH_2CH_2CH=CH_2$, CH_2 , 2 H from CH_2), 1.79–1.87 (1 H, m, 1 H from CH_2), 2.05–2.19 (2 H, m, 1 H from CH_2 , 1 H from $CH_2CH=CH_2$), 2.23–2.33 (1 H, m, 1 H from $CH_2CH=CH_2$), 3.66 (1 H, d, J = 11.3 Hz, 1 H from CH_2OH), 3.86 (1 H, d, J = 11.3 Hz, 1 H from CH_2OH), 4.94–4.98 (1 H, m, 1 H from $CH_2CH=CH_2$), 5.05 (1 H, dd, J = 17.0, 1.7 Hz, 1 H from $CH_2CH=CH_2$), 5.05 (1 H, dd, J = 17.0, 1.1 Hz, 1 H from $CCH=CH_2$), 5.05 (1 H, dd, J = 17.0, 1.1 Hz, 1 H from $CCH=CH_2$), 5.86 (1 H, ddt, J = 17.0, 10.2, 6.6 Hz, $CH_2CH=CH_2$);

¹³C NMR (125 MHz, CDCl₃) δ ppm 19.3 (CH₂), 28.7 (*C*H₂CH=CH₂), 29.5 (CH₂), 35.6 (*C*H₂CH=CH₂), 36.8 (CH₂), 55.0 ($^{\text{q}}$), 65.7 (CH₂OH), 86.4 ($^{\text{q}}$ OHs), 114.0 (CH₂CH=*C*H₂), 114.5 (CCH=*C*H₂), 139.3 (C*C*H=CH₂), 140.5 (CH₂CH=CH₂);

m/z (ES+) 119 (50%), 161 (85), 219 ((M + Na), 100). (Found: (M + Na) 219.1364. $C_{12}H_{20}O_2Na$ requires M, 219.1356).