Supporting Information

for

Molecular assembly of amino acid interlinked topologically symmetric $\boldsymbol{\pi}$-complementary donor-acceptor-donor triads
 M. B. Avinash, K. V. Sandeepa and T. Govindaraju*

Address: ${ }^{1}$ Bioorganic Chemistry Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore-560064, India. Fax: +91 80 2208 2627; Tel: +91 8022082969

Email: T. Govindaraju* - tgraju@jncasr.ac.in
*Corresponding author

Experimental details, synthesis procedures, FESEM images, absorption, photoluminescence, PXRD and 2D NOESY spectra.

Contents

1. Materials and methods (S2)
2. Synthesis procedures (S3-S6)
3. Absorption and photoluminescence spectra (S6-S8)
4. FESEM images (S9-S11)
5. Powder X-ray diffraction study (S12)
6. 2D NOESY (S13-S16)

1. Materials and methods

Materials: 1,4,5,8-Naphthalenetetracarboxylic acid dianhydride, 1-pyrenemethylamine hydrochloride and N, N-diisopropylethylamine were obtained from Sigma-Aldrich, and 1hydroxybenzotriazole, L-alanine, L-phenylalanine and L-isoleucine from Spectrochem Pvt. Ltd. (Mumbai, India). All other reagents and solvents were of reagent grade and used without further purification.

NMR Spectroscopy, Mass Spectrometry (MS), and Elemental Analysis: ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and 2D NOESY NMR spectra were recorded on a Bruker AV-400 spectrometer with chemical shifts reported as ppm (in DMSO- d_{6} with tetramethylsilane as internal standard). Mass spectra were obtained from a Shimadzu 2020 LC-MS. Elemental analysis was carried out on a ThermoScientific FLASH 2000 Organic Element Analyzer.

Absorption Spectroscopy: UV-vis spectra were recorded on a Perkin Elmer Model Lambda 900 spectrophotometer. $200 \mu \mathrm{M}$ solutions of the samples were analyzed in quartz cuvettes of 1 mm path length.

Fluorescence Spectroscopy: Fluorescence spectra were recorded on a Perkin Elmer Model LS 55 spectrophotometer. $200 \mu \mathrm{M}$ solutions of the samples were analyzed in a quartz cuvettes of 1 mm path length with an excitation at 345 nm .

Circular Dichroism (CD): CD measurements were carried out on a Jasco J-815 spectropolarimeter under nitrogen atmosphere. $400 \mu \mathrm{M}$ solutions of the samples were analyzed in quartz cuvettes of 1 mm path length.

Field Emission Scanning Electron Microscopy: FESEM images were acquired with a FEI Nova nanoSEM-600 equipped with a field-emission gun operating at 15 kV . The samples were prepared by drop-casting free floating aggregates onto a Si (111) substrate.

Powder X-ray Diffraction (PXRD): PXRD patterns were recorded with a Rigaku-99 (Miniflex) diffractometer using $\mathrm{Cu} \mathrm{K} \alpha$ radiation ($\lambda=1.5406 \AA$). The free-floating selfassembled aggregates formed at 40% aqueous DMSO or 40% aqueous NMP were drop casted on a glass slide. The diffraction peaks were indexed by DICVOL program.

Computational Details: Energy minimized structures of $\mathbf{1}$ and $\mathbf{2}$ were obtained using the software Gaussian-09. The optimization was carried out by the Hartree-Fock method and 3-21G basis set. The optimized geometries were visualized using Visual Molecular Dynamics (VMD).

2. Synthesis procedures

Synthesis of 1

Synthesis of alanine appended NDI (Ala-NDI-Ala): 1,4,5,8-naphthalenetetracarboxylic acid dianhydride ($100 \mathrm{mg}, 0.373 \mathrm{mmol}$) and L-alanine ($66.46 \mathrm{mg}, 0.746 \mathrm{mmol}$) taken in 20 mL of N, N-dimethylformamide were sonicated for 5 min . The resulting suspension was heated for 13 h at $110{ }^{\circ} \mathrm{C}$ and then the solvent was concentrated to 5 mL under reduced pressure. The residue was purified by precipitation and washing with diethyl ether to afford a yellow solid in quantitative yield.

Compound Ala-NDI-Ala (100 mg, 0.244 mmol), 1-ethyl-3-(3dimethylaminopropyl)carbodiimide ($102.8 \mathrm{mg}, 0.54 \mathrm{mmol}$) and hydroxybenzotriazole ($72.96 \mathrm{mg}, 0.54 \mathrm{mmol}$) were dissolved in N, N-dimethylformamide (10 mL) and stirred in an ice bath for about 15 min under inert atmosphere. 1-Pyrenemethylamine hydrochloride ($131 \mathrm{mg}, 0.5 \mathrm{mmol}$) and diisopropylethyl amine $(0.3 \mathrm{~mL})$ were added to the reaction mixture. The resulting solution was stirred at room temperature for 24 h and the red
coloured precipitate was filtered and washed with excess methanol to afford the red solid, 1 in 63% yield. ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}, δ in ppm): $8.63(\mathrm{~m}, 6 \mathrm{H}), 8.12(\mathrm{~m}, 18 \mathrm{H})$, $5.59(\mathrm{q}, 2 \mathrm{H}), 4.99(\mathrm{t}, 4 \mathrm{H}), 1.63(\mathrm{~d}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz. DMSO- d_{6}, δ in ppm): 168.91, $162.45,132.58,130.69,130.22,129.93,127.96,127.42,127.30,126.88,126.58,126.47$, $126.19,125.12,125.07,124.49,123.84,123.78,123.11,49.90,41.00,14.35$. EIMS: m / z $=836.31[\mathrm{M}]^{+}$for $\mathrm{C}_{54} \mathrm{H}_{36} \mathrm{~N}_{4} \mathrm{O}_{6}$. Elemental analysis: Found: C, 77.47; H, 4.40; N, 6.62; calcd: C, $77.50 ; \mathrm{H}, 4.34 ; \mathrm{N}, 6.69$ for $\mathrm{C}_{54} \mathrm{H}_{36} \mathrm{~N}_{4} \mathrm{O}_{6}$.

Synthesis of 2

Synthesis of phenylalanine appended NDI (Phe-NDI-Phe): 1,4,5,8naphthalenetetracarboxylic acid dianhydride ($100 \mathrm{mg}, 0.373 \mathrm{mmol}$) and L-phenylalanine ($124 \mathrm{mg}, 0.746 \mathrm{mmol}$) taken in 20 mL of N, N-dimethylformamide was sonicated for 5 min . The resulting suspension was heated for 16 h at $110^{\circ} \mathrm{C}$ and then the solvent was concentrated to 5 mL under reduced pressure. The residue was purified by precipitation and washing with diethyl ether to afford a brown solid in quantitative yield.

Compound Phe-NDI-Phe (70 mg, 0.124 mmol), 1-ethyl-3-(3dimethylaminopropyl)carbodiimide ($52.52 \mathrm{mg}, 0.274 \mathrm{mmol}$), hydroxybenzotriazole ($37 \mathrm{mg}, 0.274 \mathrm{mmol}$) was dissolved in N, N-dimethylformamide (10 mL) and stirred in an ice bath for about 15 min under inert atmosphere. 1-Pyrenemethylamine hydrochloride $(67 \mathrm{mg}, 0.248 \mathrm{mmol})$ and diisopropylethyl amine $(0.5 \mathrm{~mL})$ were added to the reaction mixture. The resulting solution was stirred at room temperature for 24 h and the red coloured precipitate was filtered and washed with excess methanol to afford the red solid, 2 in 52% yield. ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}, δ in ppm): 8.72(t, 2 H$), 8.53(\mathrm{~s}, 4 \mathrm{H})$,
8.13(m, 18H), 5.86(q, 2H), 5.02(m, 4H), 3.73(dd, 2H), 3.38(dd, 2H). ${ }^{13} \mathrm{C}$ NMR (100 MHz. DMSO- d_{6}, δ in ppm): 168.12, 162.39, 137.97, 132.49, 130.72, 130.37, 130.22, 129.96, 128.91, 127.97, 127.92, 127.45, 127.32, 126.91, 126.17, 125.84, 125.15, 125.07, 124.53, 123.88, 123.80, 123.06, 55.43, 40.91, 33.83. EIMS: $m / z=988.48\left[\mathrm{M}^{+}\right.$for $\mathrm{C}_{66} \mathrm{H}_{44} \mathrm{~N}_{4} \mathrm{O}_{6}$. Elemental analysis: Found: C, 80.21; H, 4.54; N, 5.61; calcd: C, 80.15; H, 4.48; $\mathrm{N}, 5.66$ for $\mathrm{C}_{66} \mathrm{H}_{44} \mathrm{~N}_{4} \mathrm{O}_{6}$.

Synthesis of 3

Synthesis of isoleucine appended NDI (Ile-NDI-Ile): 1,4,5,8-naphthalenetetracarboxylic acid dianhydride ($100 \mathrm{mg}, 0.373 \mathrm{mmol}$) and L-isoleucine ($98 \mathrm{mg}, 0.746 \mathrm{mmol}$) taken in 20 mL of N, N-dimethylformamide were sonicated for 5 min . The resulting suspension was heated for 24 h at $110{ }^{\circ} \mathrm{C}$ and then the solvent was concentrated to 5 mL under reduced pressure. The residue was purified by precipitation and washing with diethyl ether to afford a brown solid in quantitative yield.

Compound Ile-NDI-Ile (400 mg, 0.809 mmol), 1-ethyl-3-(3dimethylaminopropyl)carbodiimide ($342 \mathrm{mg}, 1.781 \mathrm{mmol}$) and hydroxybenzotriazole (241 mg, 1.781 mmol) were dissolved in N, N-dimethylformamide (15 mL) and stirred in an ice bath for about 15 min under an inert atmosphere. 1-Pyrenemethylamine hydrochloride ($437 \mathrm{mg}, 1.618 \mathrm{mmol}$) and diisopropylethyl amine $(0.5 \mathrm{~mL})$ were added to the reaction mixture. The resulting solution was stirred at room temperature for 24 h and the red coloured precipitate was filtered and washed with an excess of methanol to afford the red solid, $\mathbf{3}$ in 55% yield. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}\right.$, DMSO- d_{6}, δ in ppm$): 8.62(\mathrm{~m}, 6 \mathrm{H}), 8.13(\mathrm{~m}, 18 \mathrm{H}), 5.18(\mathrm{~d}, 2 \mathrm{H}), 4.96(\mathrm{~m}, 4 \mathrm{H}), 2.60(\mathrm{~m}, 2 \mathrm{H}), 1.19(\mathrm{~m}$,
$8 \mathrm{H}), 0.85(\mathrm{~m}, 2 \mathrm{H}), 0.73(\mathrm{t}, 6 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz} . \operatorname{DMSO}-d_{6}, \delta\right.$ in ppm$):$ 167.96, $162.74,132.63,130.73,130.66,130.17,129.90,127.97,127.32,126.84,126.56,126.19$, 126.12, 125.07, 124.99, 124.40, 123.84, 123.76, 123.07, 58.65, 40.87, 32.66, 24.46, 18.59, 11.09. EIMS: $m / z=920.45[\mathrm{M}]^{+}$for $\mathrm{C}_{60} \mathrm{H}_{48} \mathrm{~N}_{4} \mathrm{O}_{6}$. Elemental analysis: Found: C, $78.31 ; \mathrm{H}, 5.34 ; \mathrm{N}, 6.11$; calcd: C, $78.24 ; \mathrm{H}, 5.25 ; \mathrm{N}, 6.08$ for $\mathrm{C}_{60} \mathrm{H}_{48} \mathrm{~N}_{4} \mathrm{O}_{6}$.

3. Absorption and photoluminescence spectra

Figure S1: (a) UV-vis and (b) fluorescence spectra of $200 \mu \mathrm{M}$ of $\mathbf{1}$ in aqueous NMP. Excitation at 345 nm . The values represent the various percentages of water in aqueous NMP.

Figure S2: (a) and (c) UV-vis, (b) and (d) fluorescence spectra of $200 \mu \mathrm{M}$ of 2. (a) and (b) are in aqueous DMSO, (c) and (d) are in aqueous NMP. Excitation at 345 nm . The values represent the various percentages of water in aqueous NMP.

Figure S3: (a) and (c) UV-vis, (b) and (d) fluorescence spectra of $200 \mu \mathrm{M}$ of 3. (a) and (b) are in aqueous DMSO, (c) and (d) are in aqueous NMP. Excitation at 345 nm . The values represent the various percentages of water in aqueous NMP.

4. FESEM images

Figure S4: FESEM image of 1 obtained from (a) 40% and (b) 80% aqueous DMSO. FESEM image of $\mathbf{1}$ obtained from (c) 40% and (d) 80% aqueous NMP.

Figure S5: FESEM image of 2 obtained from (a) 40% and (b) 80% aqueous DMSO. (c) and (d) FESEM image of $\mathbf{2}$ obtained from 80% aqueous NMP.

Figure S6: FESEM image of $\mathbf{3}$ obtained from (a) 40% and (b) 80% aqueous DMSO. FESEM image of $\mathbf{3}$ obtained from (c) 40% and (d) 80% aqueous NMP.

5. Powder X-ray diffraction study

Figure S7: PXRD of 1, 2 and 3 obtained from 40% aqueous DMSO (A) and 40% aqueous NMP (B) respectively.

6. 2D NOESY

Figure S8: 2D NOESY NMR spectra of 1. Red circles indicate the cross peaks of amide NH proton with the proton of α-carbon and CH_{3} protons of alanine as well as with the CH_{2} protons of pyrenemethylamine.

Figure S9: 2D NOESY NMR spectra of 1 shows a weak spatial aromatic interaction of NDI and pyrene in DMSO- d_{6}.

Figure S10: 2D NOESY NMR spectra of 2 shows a weak spatial aromatic interaction of NDI and pyrene in DMSO- d_{6}.

Figure S11: 2D NOESY NMR spectra of $\mathbf{3}$ shows a weak spatial aromatic interaction of NDI and pyrene in DMSO- d_{6}.

