# Supporting Information 

 for
# Enantioselective synthesis of planar chiral ferrocenes via palladium-catalyzed annulation with diarylethynes 

Yan-Chao Shi ${ }^{1}$, Rong-Fei Yang ${ }^{1,2}$, De-Wei Gao ${ }^{1}$ and Shu-Li You* ${ }^{1}$

Address: ${ }^{1}$ State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China and ${ }^{2}$ Process Development and Manufacturing Department, Pharmaron (Beijing) Co. Ltd., 6 Taihe Road, BDA, Beijing, 100176, China

Email: Shu-Li You* - E-mail: slyou@sioc.ac.cn

* Corresponding author

Experimental, characterization data and spectra.

## Content

General methods ..... S3
Complete optimization data ..... S4
Enantioselective synthesis of planar chiral ferrocenes ..... S4
Synthesis of ( $S_{\mathrm{p}}$ )-L1 ..... S15
Pd-catalyzed allylic amination reaction ..... S16
Pd-catalyzed allylic alkylation reaction ..... S17
References ..... S17
Copies of NMR spectra and HPLC chromatographs ..... S19

General Methods. Unless stated otherwise, all reactions were carried out in flame-dried glassware under a dry argon atmosphere. All solvents were purified and dried according to standard methods prior to use. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a Varian instrument ( 300 MHz and $75 \mathrm{MHz}, 400 \mathrm{MHz}$ and 100 MHz , respectively) and internally referenced to tetramethylsilane signal or residual protio solvent signals. Data for ${ }^{1} \mathrm{H}$ NMR are recorded as follows: chemical shift ( $\delta, \mathrm{ppm}$ ), multiplicity $(\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{m}=$ multiplet or unresolved, $\mathrm{br}=$ broad singlet, coupling constant(s) in Hz, integration). Data for ${ }^{13} \mathrm{C}$ NMR are reported in terms of chemical shift ( $\delta, \mathrm{ppm}$ ).

Compounds 1a-c [1-3] were prepared by reductive amination of ferrocene aldehyde with the corresponding amines. Compound 2a was purchased from Alfa. Compounds $\mathbf{2 b} \mathbf{- d}$ were synthesized following the reported procedures [4].

## Complete optimization data

Table S1: Examination of oxidants ${ }^{\text {a }}$

|  |  |  |  |
| :---: | :---: | :---: | :---: |
| Entry | Oxidant | Yield (\%) ${ }^{\text {b }}$ | ee (\%) ${ }^{\text {c }}$ |
| 1 | air | 42 | 98\% |
| 2 | $\mathrm{Cu}(\mathrm{OAc})_{2}$ | trace | - |
| 3 | $\mathrm{Cu}(\mathrm{OTf})_{2}$ | trace | - |
| 4 | $\mathrm{Ag}_{2} \mathrm{CO}_{3}$ | $<5$ | - |
| 5 | $\mathrm{Ag}_{2} \mathrm{O}$ | $<5$ | - |
| 6 | AgOAc | $<5$ | - |
| 7 | BQ | 14 | - |

${ }^{\mathrm{a}}$ Reaction conditions: 1a $(0.2 \mathrm{mmol}), \mathbf{2 a}$ ( 2.3 equiv), $\mathrm{Pd}(\mathrm{OAc})_{2}(10 \mathrm{~mol} \%)$, Boc-L-Val-OH ( $20 \mathrm{~mol} \%$ ), $\mathrm{K}_{2} \mathrm{CO}_{3}(100 \mathrm{~mol} \%)$, TBAB ( $25 \mathrm{~mol} \%$ ) and oxidant (2 equiv for entries $2-7$ under argon) in 1.5 mL DMA. ${ }^{\mathrm{b}}$ Isolated yield. ${ }^{\mathrm{c}}$ Determined by HPLC analysis.

## General procedure for the enantioselective synthesis of planar chiral ferrocenes



To a solution of alkyne $2(0.46 \mathrm{mmol})$ in DMA ( 1.5 mL ) was added Boc-L-Val-OH ( $8.7 \mathrm{mg}, 0.04 \mathrm{mmol}$ ), $\mathrm{Pd}(\mathrm{OAc})_{2}(4.5 \mathrm{mg}, 0.02 \mathrm{mmol}), \mathrm{K}_{2} \mathrm{CO}_{3}(27.6$
$\mathrm{mg}, 0.2 \mathrm{mmol}$ ), TBAB (tetrabutyl ammonium bromide) ( $16.1 \mathrm{mg}, 0.05 \mathrm{mmol}$ ) and ferrocene $1(0.02 \mathrm{mmol})$ successively. The mixture was stirred at $80^{\circ} \mathrm{C}$ under air (open flask) for 48 h . After the reaction was complete, it was then quenched with saturated aqueous $\mathrm{NaHCO}_{3}$ solution and extracted with EtOAc for three times. The combined organic layers were washed with $\mathrm{H}_{2} \mathrm{O}$ and brine successively, then dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtrated. After the solvent was removed under reduced pressure, the residue was purified by silica gel column chromatography (ethyl acetate/petroleum ether $=1 / 10, \mathrm{v} / \mathrm{v}, 3 \% \mathrm{Et}_{3} \mathrm{~N}$ ) to afford the desired product 3 .

( $S_{\mathrm{p}}$ )-1-[( $N, N$-Dimethylamino)methyl]-2-(2,3,4-triphenylnaphthalen-1-yl)ferrocene (3aa)

Yellow solid ( $50 \mathrm{mg}, 42 \%$ yield, $98 \%$ ee). Analytical data for 3aa: $\mathrm{Mp}=78-80{ }^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}{ }^{20}=-91.7^{\circ}(c=0.26$ chloroform, $98 \%$ ee $) .{ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 2.23(\mathrm{~s}$, $6 \mathrm{H}), 3.13$ (d, $J=14.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.64(\mathrm{~d}, J=14.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.73\left(\mathrm{dd}, \mathrm{J} 2=2.4 \mathrm{~Hz}, J_{2}=\right.$ $1.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.85(\mathrm{t}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.21(\mathrm{~s}, 5 \mathrm{H}), 4.50\left(\mathrm{dd}, J_{1}=2.8 \mathrm{~Hz}, J_{2}=1.6 \mathrm{~Hz}\right.$, $1 \mathrm{H}), 6.50-6.52(\mathrm{~m}, 1 \mathrm{H}), 6.59-6.62(\mathrm{~m}, 1 \mathrm{H}), 6.73-6.97$ (series of m, 9H), 7.09 (td, $J_{1}$ $\left.=7.2 \mathrm{~Hz}, J_{2}=0.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.18\left(\mathrm{tt}, J_{1}=7.6 \mathrm{~Hz}, J_{2}=1.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.36\left(\mathrm{td}, J_{1}=7.2\right.$ $\left.\mathrm{Hz}, J_{2}=0.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.43-7.50(\mathrm{~m}, 2 \mathrm{H}), 7.63-7.70(\mathrm{~m}, 2 \mathrm{H}), 10.18(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 45.7,58.2,65.2,69.1,70.1,71.9,86.0,86.9$, $123.8,125.14,125.18,125.7,126.20,126.31,126.4,126.6,127.0,127.1,127.8,129.0$, $130.97,131.19,131.28,131.39,131.9,132.0,132.2,138.4,138.9,139.7,140.8,142.1$, 142.4; The enantiomeric excess was determined by phenomenex cellulose-3 ( 25 cm ), $\mathrm{MeOH} / \mathrm{IPA}=90 / 10,0.7 \mathrm{~mL} / \mathrm{min}, \lambda=214 \mathrm{~nm}, t($ major $)=5.577 \mathrm{~min}, t($ minor $)=$ 9.827 min .

( $S_{\mathrm{p}}$ )-1-[(N,N-Dimethylamino)methyl]-2-(6-methyl-2,3,4-tri-p-tolylnaphthalen-1-yl)fer rocene (3ab)

Yellow solid ( $46 \mathrm{mg}, 35 \%$ yield, $97 \%$ ee). Analytical data for 3ab: $\mathrm{Mp}=81-83{ }^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}{ }^{20}=-176.3^{\circ}(c=0.29$ chloroform, $97 \%$ ee $) .{ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 2.10$ ( $\mathrm{s}, 3 \mathrm{H}$ ), $2.14(\mathrm{~s}, 3 \mathrm{H}), 2.22(\mathrm{~s}, 6 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H}), 2.45(\mathrm{~s}, 3 \mathrm{H}), 3.05(\mathrm{~d}, J=13.8 \mathrm{~Hz}$, $1 \mathrm{H}), 3.65-3.70(\mathrm{~m}, 2 \mathrm{H}), 3.84(\mathrm{t}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.17(\mathrm{~s}, 5 \mathrm{H}), 4.50(\mathrm{~s}, 1 \mathrm{H}), 6.35(\mathrm{dd}$, $\left.J_{1}=7.8 \mathrm{~Hz}, J_{2}=1.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.41(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.55(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H})$, 6.60-6.68 (m, 3H), 6.71-6.74 (m, 2H), $6.80\left(\mathrm{dd}, J_{1}=7.5 \mathrm{~Hz}, J_{2}=1.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.89(\mathrm{~d}$, $J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.15(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.33\left(\mathrm{dd}, J_{1}=7.8 \mathrm{~Hz}, J_{2}=1.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.37$ $(\mathrm{s}, 1 \mathrm{H}), 7.48\left(\mathrm{dd}, J_{1}=8.7 \mathrm{~Hz}, J_{2}=1.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 10.00(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 21.05,21.09,21.3,21.8,45.8,58.3,65.1,68.7,69.9,71.8,86.3$, 87.1, 125.78, 125.89, 126.98, 127.00, 127.07, 127.11, 127.7, 128.4, 129.0, 129.5, $130.8,131.0,131.14,131.20,131.31,131.59,131.74,132.5,134.0,134.2,134.9$, $135.4,137.0,137.8,138.1,139.1,139.3,141.7$; The enantiomeric excess was determined by phenomenex cellulose-4 $(25 \mathrm{~cm}), \mathrm{CH}_{3} \mathrm{CN} / \mathrm{IPA}=95 / 5,0.5 \mathrm{~mL} / \mathrm{min}, \lambda=$ $254 \mathrm{~nm}, t($ major $)=10.318 \mathrm{~min}, t($ minor $)=9.552 \mathrm{~min}$.

( $S_{\mathrm{p}}$ )-1-[(N,N-Dimethylamino)methyl]-2-(6-methoxy-2,3,4-tris(4-methoxyphenyl)naph thalen-1-yl)ferrocene (3ac)

Yellow solid ( $64 \mathrm{mg}, 45 \%$ yield, $99 \%$ ee). Analytical data for 3ac: $\mathrm{Mp}=84-86{ }^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}{ }^{20}=-154.4^{\circ}(c=0.29$ chloroform, $99 \%$ ee $) .{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.23$ (s, 6H), 3.08 (d, J = $13.5 \mathrm{~Hz}, 1 \mathrm{H}$ ), $3.62(\mathrm{~s}, 3 \mathrm{H}), 3.66(\mathrm{~s}, 3 \mathrm{H}), 3.62-3.70(\mathrm{~m}, 2 \mathrm{H}), 3.74$ $(\mathrm{s}, 3 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.88(\mathrm{t}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.17(\mathrm{~s}, 5 \mathrm{H}), 4.51(\mathrm{~s}, 1 \mathrm{H}), 6.30-6.47$ (series of m, 6H), 6.62-6.65 (m, 2H), $6.75\left(\mathrm{dd}, J_{1}=8.4 \mathrm{~Hz}, J_{2}=2.1 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.80(\mathrm{dd}$, $\left.J_{1}=8.4 \mathrm{~Hz}, J_{2}=2.1 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.90\left(\mathrm{dd}, J_{1}=8.1 \mathrm{~Hz}, J_{2}=2.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.95(\mathrm{~d}, J=2.7$ $\mathrm{Hz}, 1 \mathrm{H}), 7.30\left(\mathrm{dd}, J_{1}=9.3 \mathrm{~Hz}, J_{2}=2.7 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.37\left(\mathrm{dd}, J_{1}=8.7 \mathrm{~Hz}, J_{2}=2.1 \mathrm{~Hz}\right.$, $1 \mathrm{H}), 10.06(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 45.5,54.87,54.98$, $55.06,55.11,58.1,65.4,68.9,70.0,71.9,86.3,105.7,111.86,111.89,112.01,112.06$, $112.7,113.3,115.6,126.7,130.7,131.82,132.00,132.13,132.17,132.22,132.36$, $132.9,133.7,133.9,134.8,137.2,139.6,140.2,156.7,156.9,157.1,157.7$; The enantiomeric excess was determined by phenomenex cellulose-4 ( 25 cm ), $\mathrm{CH}_{3} \mathrm{CN} / \mathrm{IPA}=95 / 5,0.5 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, t$ (major) $=9.818 \mathrm{~min}, t($ minor $)=8.218$ min.

( $S_{\mathrm{p}}$ )-1-[(N,N-Dimethylamino)methyl]-2-(6-fluoro-2,3,4-tris(4-fluorophenyl)naphthale n -1-yl)ferrocene (3ad)

Yellow solid ( $41 \mathrm{mg}, 31 \%$ yield, $97 \%$ ee ). Analytical data for 3ad: $[\alpha]_{\mathrm{D}}{ }^{20}=-62.2^{\circ}(c$ $=0.30$ chloroform, $97 \%$ ee $).{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.18(\mathrm{~s}, 6 \mathrm{H}), 3.10(\mathrm{~d}, J=$ $13.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.44(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.66(\mathrm{~s}, 1 \mathrm{H}), 3.91(\mathrm{t}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.18(\mathrm{~s}$, 5 H ), $4.45(\mathrm{~s}, 1 \mathrm{H}), 6.39-6.66$ (series of m, 7H), 6.79-6.86 (m, 3H), 7.08 (td, $J_{1}=8.4$ $\left.\mathrm{Hz}, J_{2}=1.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.18\left(\mathrm{dd}, J_{1}=11.1 \mathrm{~Hz}, J_{2}=2.7 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.36\left(\mathrm{td}, J_{1}=6.6 \mathrm{~Hz}, J_{2}\right.$ $=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.44\left(\mathrm{td}, J_{1}=8.4 \mathrm{~Hz}, J_{2}=2.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 10.7\left(\mathrm{dd}, J_{1}=9.3 \mathrm{~Hz}, J_{2}=6.0\right.$ $\mathrm{Hz}, 1 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 45.6,57.9,65.7,69.6,70.1,71.8,85.6,86.9$,
$110.1(\mathrm{~d}, J=21.5 \mathrm{~Hz}), 113.6(\mathrm{~d}, J=21.2 \mathrm{~Hz}), 113.74(\mathrm{~d}, J=20.8 \mathrm{~Hz}), 113.78(\mathrm{~d}, J=$ $20.9 \mathrm{~Hz}), 113.9(\mathrm{~d}, J=21.0 \mathrm{~Hz}), 114.2(\mathrm{~d}, J=26.7 \mathrm{~Hz}), 114.6(\mathrm{~d}, J=21.4 \mathrm{~Hz}), 115.2$ $(\mathrm{d}, J=20.6 \mathrm{~Hz}), 128.3,131.7(\mathrm{~d}, J=8.1 \mathrm{~Hz}), 132.30,132.38,132.43,132.50(\mathrm{~d}, J=$ $8.7 \mathrm{~Hz}), 132.62,133.0(\mathrm{~d}, J=7.7 \mathrm{~Hz}), 133.11,133.6(\mathrm{~d}, J=8.0 \mathrm{~Hz}), 134.9(\mathrm{~d}, J=3.4$ $\mathrm{Hz}), 136.2(\mathrm{~d}, J=3.1 \mathrm{~Hz}), 137.0(\mathrm{~d}, J=5.1 \mathrm{~Hz}), 137.5(\mathrm{~d}, J=3.7 \mathrm{~Hz}), 139.1,140.6$, 160.65 (d, $J=244 \mathrm{~Hz}), 160.74(\mathrm{~d}, J=246 \mathrm{~Hz}), 160.76(\mathrm{~d}, J=242 \mathrm{~Hz}), 161.6(\mathrm{~d}, J=$ 245 Hz ); ${ }^{19} \mathrm{~F}$ NMR ( $376 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta-116.8,-116.5,-115.2,-114.0$; The enantiomeric excess was determined by Daicel Chiralcel OD-H ( 25 cm ), hexanes/IPA $=98 / 2,0.3 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, t($ major $)=19.220 \mathrm{~min}, t($ minor $)=16.953 \mathrm{~min}$.

( $S_{\mathrm{p}}$ )-1-[(Pyrrolidin-1-yl)-methyl]-2-(2,3,4-triphenylnaphthalen-1-yl)ferrocene (3ba) Yellow solid ( $44 \mathrm{mg}, 35 \%$ yield, $95 \%$ ee). Analytical data for 3ba: $\mathrm{Mp}=77-79{ }^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}{ }^{20}=-101.4^{\circ}(c=0.31$ chloroform, $95 \%$ ee $) .{ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 1.79$ (br, 4H), 2.53 (br, 4H), 3.32 (d, $J=13.8 \mathrm{~Hz}, 1 \mathrm{H}$ ), 3.71 (s, 1H), 3.76 (d, $J=13.5 \mathrm{~Hz}$, $1 \mathrm{H}), 3.85(\mathrm{~s}, 1 \mathrm{H}), 4.22(\mathrm{~s}, 5 \mathrm{H}), 4.50(\mathrm{~s}, 1 \mathrm{H}), 6.50(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.63(\mathrm{~d}, J=6.0$ $\mathrm{Hz}, 1 \mathrm{H}), 6.73-6.98$ (series of m, 9H), $7.10(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.18(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H})$, 7.37 (t, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.42-7.51(\mathrm{~m}, 2 \mathrm{H}), 7.63-7.70(\mathrm{~m}, 2 \mathrm{H}), 10.22(\mathrm{~d}, J=9.0 \mathrm{~Hz}$, $1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 23.4,54.2,54.5,65.1,68.8,69.6,70.0,71.7,85.8$, $123.8,125.1,125.6,126.21,126.28,126.38,126.40,126.5,127.0,127.1,127.7,129.0$, $130.9,131.17,131.25,131.36,131.39,131.8,132.1,132.2,138.3,138.8,139.7,140.7$, 142.1 142.4; IR (film) 3445, 3055, 2959, 2775, 1651, 1601, 1491, 1441, 1373, 1107, 1031, 1002, 819, 754, $699 \mathrm{~cm}^{-1}$; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{43} \mathrm{H}_{38} \mathrm{FeN}^{+1}$ $(\mathrm{M}+\mathrm{H})$ requires $m / z 624.2348$, found $m / z 624.2339$. The enantiomeric excess was determined by phenomenex cellulose-3 $(25 \mathrm{~cm}), \mathrm{CH}_{3} \mathrm{CN} / \mathrm{IPA}=955,0.5 \mathrm{~mL} / \mathrm{min}, \lambda=$ $254 \mathrm{~nm}, t($ major $)=6.917 \mathrm{~min}, t($ minor $)=7.473 \mathrm{~min}$.

( $S_{\mathrm{p}}$ )-1-(Pyrrolidin-1-yl-methyl)-2-(6-methyl-2,3,4-tri-p-tolylnaphthalen-1-yl)ferrocene (3bb)

Yellow solid ( $41 \mathrm{mg}, 30 \%$ yield, $97 \%$ ee). Analytical data for 3bb: $\mathrm{Mp}=84-86^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}{ }^{20}=-157.7^{\circ}(c=0.31$ chloroform, $97 \%$ ee $) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.77$ (br, 4H), 2.10 ( s, 3H), 2.14 (s, 3H), 2.33 (s, 3H), 2.45 ( s, 3H), 2.52 (br, 4H), 3.25 (d, J $=13.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.67\left(\mathrm{dd}, J_{1}=2.0 \mathrm{~Hz}, J_{2}=1.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.78(\mathrm{~d}, J=13.6 \mathrm{~Hz}, 1 \mathrm{H})$, $3.82-3.83(\mathrm{~m}, 1 \mathrm{H}), 4.18(\mathrm{~s}, 5 \mathrm{H}), 4.49(\mathrm{~s}, 1 \mathrm{H}), 6.36\left(\mathrm{dd}, J_{1}=8.0 \mathrm{~Hz}, J_{2}=1.6 \mathrm{~Hz}, 1 \mathrm{H}\right)$, 6.43-6.45 (m, 1H), 6.55 (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.61-6.65(\mathrm{~m}, 3 \mathrm{H}), 6.69-6.73(\mathrm{~m}, 2 \mathrm{H})$, $6.81\left(\mathrm{dd}, J_{1}=8.0 \mathrm{~Hz}, J_{2}=1.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.89(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.17(\mathrm{~d}, J=7.6 \mathrm{~Hz}$, $1 \mathrm{H}), 7.37\left(\mathrm{dd}, J_{1}=7.6 \mathrm{~Hz}, J_{2}=1.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.38(\mathrm{~s}, 1 \mathrm{H}), 7.48\left(\mathrm{dd}, J_{1}=8.8 \mathrm{~Hz}, J_{2}=\right.$ $1.6 \mathrm{~Hz}, 1 \mathrm{H}), 10.04(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 21.06,21.09$, $21.3,21.8,23.5,54.3,54.5,65.0,68.5,69.9,71.6,86.2,125.77,125.83,126.94$, 127.01, 127.09, 127.11, 127.7, 128.4, 129.0, 129.5, 130.8, 131.0, 131.20, 131.23, 131.34, 131.67, 131.69, 132.5, 134.01, 134.11, 134.9, 135.3, 137.0, 137.7, 138.1, 139.0, 139.3, 141.7; IR (film) 3440, 3020, 2920, 2871, 2776, 1622, 1511, 1447, 1375, 1347, 1183, 1107, 833, 815, $731 \mathrm{~cm}^{-1}$; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{47} \mathrm{H}_{46} \mathrm{FeN}^{+1}(\mathrm{M}+\mathrm{H})$ requires $m / z 680.2974$, found $m / z 680.2971$. The enantiomeric excess was determined by phenomenex cellulose-4 $(25 \mathrm{~cm}), \mathrm{CH}_{3} \mathrm{CN} / \mathrm{IPA}=95 / 5,0.5$ $\mathrm{mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, t($ major $)=11.327 \mathrm{~min}, t($ minor $)=9.835 \mathrm{~min}$.

( $S_{\mathrm{p}}$ )-1-[(Pyrrolidin-1-yl)-methyl]-2-(6-methoxy-2,3,4-tris(4-methoxyphenyl)naphthale n-1-yl)ferrocene (3bc)

Yellow solid ( $61 \mathrm{mg}, 41 \%$ yield, $97 \%$ ee). Analytical data for 3bc: $\mathrm{Mp}=87-89^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}{ }^{20}=-174.3^{\circ}(c=0.30$ chloroform, $97 \%$ ee $) .{ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 1.77$ (br, 4H), 2.51 (br, 4H), 3.24 (d, $J=13.5 \mathrm{~Hz}, 1 \mathrm{H}$ ), 3.62 (s, 3H), 3.66 ( $\mathrm{s}, 3 \mathrm{H}$ ), 3.74 ( s , 3 H ), 3.79 (s, 3H), 3.69-3.89 (series of m, 3H), 4.17 (s, 5H), 4.47 (s, 1H), 6.31-6.47 (series of m, 6H), 6.60-6.65 (m, 2H), $6.75(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.81(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, $1 \mathrm{H}), 6.91\left(\mathrm{dd}, J_{1}=8.4 \mathrm{~Hz}, J_{2}=2.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.95(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.30\left(\mathrm{dd}, J_{1}=\right.$ $\left.9.3 \mathrm{~Hz}, J_{2}=2.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.38(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 10.11(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 23.4,54.1,54.5,54.78,54.89,54.97,55.02,65.1,68.5$, 69.4, 69.8, 71.5, 86.1, 87.8, 105.5, 111.8, 112.0, 112.6, 113.2, 115.4, 126.7, 130.8, 131.9, 132.11, 132.18, 132.31, 132.34, 132.7, 133.6, 133.8, 134.8, 137.0, 139.4, 140.1, 156.6, 156.8, 157.0, 157.6; IR (film) 3423, 2932, 2833, 2776, 1609, 1509, 1459, 1286, 1245, 1176, 1107, 1035, 827, $774 \mathrm{~cm}^{-1}$; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{47} \mathrm{H}_{46} \mathrm{FeNO}_{4}{ }^{+1}(\mathrm{M}+\mathrm{H})$ requires $m / z 744.2771$, found $m / z 744.2770$. The enantiomeric excess was determined by phenomenex cellulose-4 ( 25 cm ), $\mathrm{CH}_{3} \mathrm{CN} / \mathrm{IPA}=95 / 5,0.5$ $\mathrm{mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, t($ major $)=11.677 \mathrm{~min}, t($ minor $)=8.627 \mathrm{~min}$.

( $S_{\mathrm{p}}$ )-1-[(N,N-Dimethylamino)methyl]-2-(2,3,4-triphenylnaphthalen-1-yl)-1'-bromofer rocene (3ca)

Yellow solid ( $85 \mathrm{mg}, 42 \%$ yield, $96 \%$ ee). Analytical data for 3ca: $\mathrm{Mp}=82-84^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}{ }^{20}=-13.3^{\circ}(c=0.15$ chloroform, $96 \%$ ee $) .{ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 2.31$ (s, $6 \mathrm{H}), 3.12(\mathrm{~d}, J=14.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{~d}, J=14.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.89(\mathrm{~s}, 1 \mathrm{H}), 3.94(\mathrm{t}, J=2.4$ $\mathrm{Hz}, 1 \mathrm{H}), 3.86(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.23(\mathrm{~d}, J=0.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.47(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H})$, $4.49(\mathrm{~d}, J=0.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.67(\mathrm{~s}, 1 \mathrm{H}), 6.61(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.74(\mathrm{t}, J=2.8 \mathrm{~Hz}$, $1 \mathrm{H}), 6.80-6.98$ (series of m, 8H), 7.05 (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}$ ), $7.14(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H})$, $7.23(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.51(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.56(\mathrm{~d}, J=$ $8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.74(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.80(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 10.01(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, $1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 46.0,56.6,68.4,68.6,69.5,70.3,71.7,73.4,74.3$, $79.6,87.6,88.6,124.2,125.28,125.39,125.9,126.46,126.54,126.58,126.74,127.2$, $127.9,128.9,131.0,131.23,131.25,131.35,131.45,131.93,132.23,138.7,139.0$, 139.7, 140.8, 142.1, 142.6; IR (film) 3056, 2941, 2814, 2765, 1602, 1491, 1442, 1370, 1265, 1152, 1072, 1024, 872, 789, 772, 755, 737, 700, $624 \mathrm{~cm}^{-1}$; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{41} \mathrm{H}_{35} \mathrm{BrFeN}^{+1}(\mathrm{M}+\mathrm{H})$ requires $m / z$ 676.1297, found $m / z 676.1287$. The enantiomeric excess was determined by Daicel Chiralcel OD-H ( 25 cm ), hexanes $/$ IPA $=98 / 2,0.4 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, t($ major $)=16.438 \mathrm{~min}, t($ minor $)=$ 14.545 min .

( $S_{\mathrm{p}}$ )-1-[(N,N-Dimethylamino)methyl]-2-(6-methyl-2,3,4-tri-p-tolylnaphthalen-1-yl)-1, -bromo ferrocene (3cb)

Yellow solid ( $41 \mathrm{mg}, 28 \%$ yield, $96 \%$ ee). Analytical data for 3cb: $\mathrm{Mp}=87-89{ }^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}{ }^{20}=-59.7^{\circ}(c=0.29$ chloroform, $96 \%$ ee $) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.09(\mathrm{~s}$, $3 \mathrm{H}), 2.15(\mathrm{~s}, 3 \mathrm{H}), 2.25(\mathrm{~s}, 6 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H}), 2.45(\mathrm{~s}, 3 \mathrm{H}), 3.00(\mathrm{~d}, J=14.0 \mathrm{~Hz}, 1 \mathrm{H})$, $3.77-3.80(\mathrm{~m}, 2 \mathrm{H}), 3.85(\mathrm{t}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.00\left(\mathrm{dd}, J_{1}=4.0 \mathrm{~Hz}, J_{2}=2.4 \mathrm{~Hz}, 1 \mathrm{H}\right)$, $4.15\left(\mathrm{dd}, J_{1}=4.0 \mathrm{~Hz}, J_{2}=2.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.38-4.39(\mathrm{~m}, 2 \mathrm{H}), 4.64(\mathrm{br}, 1 \mathrm{H}), 6.35\left(\mathrm{dd}, J_{1}\right.$ $\left.=7.6 \mathrm{~Hz}, J_{2}=1.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.41(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.55(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, 6.62-6.74 (series of m, 5H), $6.80\left(\mathrm{dd}, J_{1}=8.0 \mathrm{~Hz}, J_{2}=1.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.89\left(\mathrm{dt}, J_{1}=8.0\right.$ $\left.\mathrm{Hz}, J_{2}=0.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.16(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.32\left(\mathrm{dd}, J_{1}=8.0 \mathrm{~Hz}, J_{2}=1.6 \mathrm{~Hz}, 1 \mathrm{H}\right)$, $7.38(\mathrm{~s}, 1 \mathrm{H}), 7.52\left(\mathrm{dd}, J_{1}=8.4 \mathrm{~Hz}, J_{2}=1.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 9.73(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 21.00$, 21.04, 21.21, 21.7, 45.5, 56.4, 68.2, 68.6, 69.3, $70.2,71.3,73.2,74.3,79.5,87.8,126.0,126.1,127.00,127.08,127.10,127.12,127.7$, $128.4,128.6,129.2,130.69,130.92,130.99,131.16,131.24,131.7,132.4,134.1$, $134.4,135.0,135.4,136.8,137.9,138.1,139.07,139.16,141.8$; IR (film) 3421, 3021, $2920,1814,2761,2602,2496,1508,1151,1107,1022,869,834,815,742,668 \mathrm{~cm}^{-1}$; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{45} \mathrm{H}_{43} \mathrm{BrFeN}^{+1}(\mathrm{M}+\mathrm{H})$ requires $\mathrm{m} / \mathrm{z}$ 732.1923, found $m / z$ 732.1919. The enantiomeric excess was determined by phenomenex cellulose-4 $(25 \mathrm{~cm}), \mathrm{CH}_{3} \mathrm{CN} / \mathrm{IPA}=95 / 5,0.5 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, t($ major $)=17.027$ $\min , t(\operatorname{minor})=16.227 \mathrm{~min}$.

( $S_{\mathrm{p}}$ )-1-[(N,N-Dimethylamino)methyl]-2-(6-methoxy-2,3,4-tris(4-methoxyphenyl)naph thalen-1-yl)-1'-bromo ferrocene (3cc)

Yellow solid ( $64 \mathrm{mg}, 40 \%$ yield, $96 \%$ ee). Analytical data for 3cc: $\mathrm{Mp}=90-92{ }^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}{ }^{20}=-80.7^{\circ}(c=0.30$ chloroform, $96 \%$ ee $) .{ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 2.22(\mathrm{~s}$, $6 \mathrm{H}), 2.98(\mathrm{~d}, J=13.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.62(\mathrm{~s}, 3 \mathrm{H}), 3.66(\mathrm{~s}, 3 \mathrm{H}), 3.68(\mathrm{~d}, J=18.4 \mathrm{~Hz}, 1 \mathrm{H})$, $3.75(\mathrm{~s}, 3 \mathrm{H}), 3.76\left(\mathrm{dd}, J_{1}=2.4 \mathrm{~Hz}, J_{2}=1.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.88(\mathrm{t}, J=2.8 \mathrm{~Hz}$, $1 \mathrm{H}), 4.00\left(\mathrm{td}, J_{1}=2.8 \mathrm{~Hz}, J_{2}=1.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.14\left(\mathrm{td}, J_{1}=2.8 \mathrm{~Hz}, J_{2}=1.2 \mathrm{~Hz}, 1 \mathrm{H}\right)$, 4.36-4.38 (m, 2H), $4.58(\mathrm{~s}, 1 \mathrm{H}), 6.31-6.48$ (series of m, 6H), $6.63(\mathrm{t}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H})$, $6.65(\mathrm{t}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.76\left(\mathrm{dd}, J_{1}=8.4 \mathrm{~Hz}, J_{2}=2.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.81\left(\mathrm{dd}, J_{l}=8.4 \mathrm{~Hz}\right.$, $\left.J_{2}=2.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.90\left(\mathrm{dd}, J_{1}=8.4 \mathrm{~Hz}, J_{2}=2.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.96(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H})$, 7.34-7.38 (m, 2H), $9.80(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 45.6$, 54.84, 54.96, 55.03, 55.11, 56.4, 68.2, 68.7, 69.3, 70.2, 71.4, 73.1, 74.2, 79.4, 87.8, 105.7, 111.9, 112.1, 112.7, 113.3, 115.8, 126.5, 130.5, 131.1, 131.96, 132.10, 132.12, 132.21, 132.28, 132.9, 133.6, 133.8, 134.7, 137.4, 139.6, 140.3, 156.7, 157.0, 157.2, 157.7; IR (film) 3384, 2934, 2833, 2762, 1735, 1610, 1577, 1509, 1459, 1370, 1286, 1286, 1244, 1176, 1035, $828 \mathrm{~cm}^{-1}$; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{45} \mathrm{H}_{43} \mathrm{BrFeNO}_{4}^{+1}(\mathrm{M}+\mathrm{H})$ requires $\mathrm{m} / \mathrm{z}$ 796.1719, found $\mathrm{m} / \mathrm{z}$ 796.1714. The enantiomeric excess was determined by phenomenex cellulose-4 ( 25 cm ), $\mathrm{CH}_{3} \mathrm{CN} / \mathrm{IPA}=95 / 5,0.5 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, t($ major $)=9.277 \mathrm{~min}, t($ minor $)=8.377$ min.

( $S_{\mathrm{p}}$ )-1-[(N,N-Dimethylamino)methyl]-2-(6-methoxy-2,3,4-tris(4-methoxyphenyl)naph thalen-1-yl)ferrocene (3cd)

Yellow solid ( $45 \mathrm{mg}, 30 \%$ yield, $92 \%$ ee). Analytical data for 3 cd : $\mathrm{Mp}=94-96{ }^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}{ }^{20}=-9.7^{\circ}(c=0.31$ chloroform, $92 \%$ ee $) .{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.27(\mathrm{~s}$, $6 \mathrm{H}), 3.11(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.71-3.75(\mathrm{~m}, 2 \mathrm{H}), 3.97(\mathrm{br}, 1 \mathrm{H}), 4.05(\mathrm{br}, 1 \mathrm{H}), 4.18$ (br, 1H), $4.35(\mathrm{~d}, J=0.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.44(\mathrm{br}, 1 \mathrm{H}), 4.68(\mathrm{br}, 1 \mathrm{H}), 6.43-6.71$ (series of m, $7 \mathrm{H}), 6.80-6.86(\mathrm{~m}, 3 \mathrm{H}), 7.08\left(\mathrm{td}, J_{1}=8.1 \mathrm{~Hz}, J_{2}=1.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.20\left(\mathrm{dd}, J_{1}=10.8 \mathrm{~Hz}\right.$, $\left.J_{2}=2.7 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.34-7.39\left(\mathrm{td}, J_{1}=6.9 \mathrm{~Hz}, J_{2}=1.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.48-7.55\left(\mathrm{td}, J_{1}=8.4\right.$ $\left.\mathrm{Hz}, J_{2}=2.7 \mathrm{~Hz}, 1 \mathrm{H}\right), 9.98\left(\mathrm{dd}, J_{1}=9.3 \mathrm{~Hz}, J_{2}=6.0 \mathrm{~Hz}, 1 \mathrm{H}\right) ;{ }^{13} \mathrm{C}$ NMR $(100 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 45.68,45.80,56.3,68.3,68.8,69.2,70.1,70.5,72.0,73.3,74.1,79.4,87.2$, $110.1(\mathrm{~d}, J=21.8 \mathrm{~Hz}), 113.7(\mathrm{~d}, J=21.4 \mathrm{~Hz}), 113.8(\mathrm{~d}, J=21.2 \mathrm{~Hz}), 113.9(\mathrm{~d}, J=$ $21.3 \mathrm{~Hz}), 114.5(\mathrm{~d}, J=24.8 \mathrm{~Hz}), 114.6(\mathrm{~d}, J=21.5 \mathrm{~Hz}), 115.2(\mathrm{~d}, J=21.2 \mathrm{~Hz}), 128.1$, $131.5(\mathrm{~d}, J=8.3 \mathrm{~Hz}), 132.28,132.33,132.37,132.45,132.52,132.6(\mathrm{~d}, J=7.8 \mathrm{~Hz})$, $133.0(\mathrm{~d}, J=7.7 \mathrm{~Hz}), 133.6(\mathrm{~d}, J=8.2 \mathrm{~Hz}), 134.8(\mathrm{~d}, J=3.4 \mathrm{~Hz}), 136.1(\mathrm{~d}, J=3.3$ $\mathrm{Hz}), 137.3,137.4(\mathrm{~d}, J=3.1 \mathrm{~Hz}), 139.2,140.7,160.7(\mathrm{~d}, J=244 \mathrm{~Hz}), 160.815(\mathrm{~d}, J=$ $247 \mathrm{~Hz}), 160.824(\mathrm{~d}, J=244 \mathrm{~Hz}), 161.6(\mathrm{~d}, J=245 \mathrm{~Hz}) ;{ }^{19} \mathrm{~F}$ NMR ( $376 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta-116.2,-116.1,-115.0,-113.3$; IR (film) 2941, 2814, 2765, 2604, 2498, 1625, 1604, 1513, 1368, 1228, 1156, 1093, 1039, 1015, 872, 847, 831, 819, $785 \mathrm{~cm}^{-1}$; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{41} \mathrm{H}_{31} \mathrm{BrF}_{4} \mathrm{FeN}^{+1}(\mathrm{M}+\mathrm{H})$ requires $m / z 748.0920$, found $m / z$ 748.0920. The enantiomeric excess was determined by Daicel Chiralcel OD-H $(25 \mathrm{~cm})$, hexanes $/ \mathrm{IPA}=98 / 2,0.3 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, t($ major $)=20.938 \mathrm{~min}, t$ $($ minor $)=17.655 \mathrm{~min}$.

## Synthesis of $\left(S_{\mathrm{p}}\right)$-L1



To a solution of compound $\left(S_{\mathrm{p}}\right)$-3ca ( $610 \mathrm{mg}, 0.90 \mathrm{mmol}$ ) in THF ( 10 mL ) was added $n-\mathrm{BuLi}\left(0.68 \mathrm{~mL}, 1.08 \mathrm{mmol}, 1.6 \mathrm{M}\right.$ in $n$-hexane) at $-78{ }^{\circ} \mathrm{C}$ under argon. The resulting deep red solution was stirred for 30 min . Then chlorodiphenylphosphine ( $0.194 \mathrm{~mL}, 1.08 \mathrm{mmol}$ ) was added. The mixture was warmed slowly to $0{ }^{\circ} \mathrm{C}$ and stirred for 1 h . Then the reaction mixture was quenched with water, extracted with ethyl acetate. The combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and filtrated. After the solvent was removed under reduced pressure, the residue was purified by silica gel column chromatography (dichloromethane/methanol $=1 / 100, \mathrm{v} / \mathrm{v}$ ) to give $\left(S_{\mathrm{p}}\right)-\mathbf{L} 1(306 \mathrm{mg}, 43 \%$ yield, $97 \%$ ee) as an orange solid. Analytical data for $\left(S_{\mathrm{p}}\right)-\mathrm{L} 1: \mathrm{Mp}=93-95^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{20}=-130.6^{\circ}(c=0.63$ chloroform, $97 \%$ ee). ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 2.18(\mathrm{~s}, 6 \mathrm{H}), 3.11(\mathrm{~d}, J=13.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.62$ $(\mathrm{d}, J=13.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{br}, 1 \mathrm{H}), 3.78(\mathrm{t}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.04(\mathrm{~s}, 1 \mathrm{H}), 4.13(\mathrm{br}, 1 \mathrm{H})$, 4.39 (br, 1H), 4.48 (br, 1H), 4.52 (br, 1H), 6.47 (d, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.53$ (d, $J=7.2$ $\mathrm{Hz}, 1 \mathrm{H}), 6.72\left(\mathrm{td}, J_{1}=7.6 \mathrm{~Hz}, J_{2}=0.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.76-6.90($ series of m, 7H), $6.96(\mathrm{~d}$, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.02-7.08(\mathrm{~m}, 3 \mathrm{H}), 7.11-7.31$ (series of m, 9H), 7.33-7.38(m, 2H), $7.48(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.534\left(\mathrm{td}, J_{1}=9.4 \mathrm{~Hz}, J_{2}=1.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.59(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, $1 \mathrm{H}), 9.86(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 45.2,57.8,66.8,70.6$, $73.3,73.51,73.58,73.62,74.07,74.10,74.19,74.95,75.07,76.55,76.61,86.7,123.8$, 125.17, 125.32, 123.6, 126.36, 126.42, 126.44, 126.46, 126.6, 127.09, 127.16, 127.74, 127.79, 127.80, 128.10, 128.17, 128.24, 128.56, 128.75, 130.97, 131.00, 131.18, 131.27, 131.33, 132.0, 132.2, 133.3 (d, $J=18.6 \mathrm{~Hz}$ ), 133.5 (d, $J=19.2 \mathrm{~Hz}$ ), 138.45, 138.54, 138.74, 138.83, 138.94, 139.7, 140.7, 142.0, 142.4; ${ }^{31} \mathrm{P}$ NMR (161 MHz, $\mathrm{CDCl}_{3}$ ) $\delta$-18.05; IR (film) 3054, 2941, 2854, 2813, 2765, 1737, 1601, 1434, 1370, 1265, 1160, 1071, 1027, 846, 789, 772, 739, $698 \mathrm{~cm}^{-1}$; HRMS (ESI): Exact mass
calcd for $\mathrm{C}_{53} \mathrm{H}_{45} \mathrm{FeNP}^{+1}(\mathrm{M}+\mathrm{H})$ requires $\mathrm{m} / \mathrm{z}$ 782.2634, found $\mathrm{m} / \mathrm{z}$ 782.2643. The enantiomeric excess was determined by phenomenex cellulose-2 ( 25 cm ), hexanes $/ \mathrm{EtOH}=94 / 6,0.7 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, t($ major $)=8.690 \mathrm{~min}, t($ minor $)=$ 7.317 min .

Pd-catalyzed allylic amination reaction with $\left(S_{\mathrm{p}}\right)$-L1

$\left[\mathrm{Pd}\left(\mathrm{C}_{3} \mathrm{H}_{5}\right) \mathrm{Cl}\right]_{2}(1.5 \mathrm{mg}, 0.004 \mathrm{mmol})$ and ligand $\left(S_{\mathrm{p}}\right)-\mathrm{L} 1(9.4 \mathrm{mg}, 0.012 \mathrm{mmol}$, $99 \%$ ee) were dissolved in dry THF ( 0.5 mL ), and the mixture was stirred for 30 min at rt under argon. To this solution were successively added (rac)-4 (50.4 mg, 0.2 $\mathrm{mmol}), \mathrm{BnNH}_{2}(42.8 \mathrm{mg}, 0.4 \mathrm{mmol})$, and TBAF ( 1 M in THF, $0.4 \mathrm{~mL}, 0.4 \mathrm{mmol}$ ). The reaction mixture was stirred at $50{ }^{\circ} \mathrm{C}$ for 14 h . After completion, the reaction mixture was diluted with $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{~mL})$ and washed twice with ice-cold saturated aqueous ammonium chloride. The organic phase was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and then concentrated under reduced pressure. The residue was purified by preparative TLC (ethyl acetate/petroleum $=1 / 10)$ to give $(R)-5(19.1 \mathrm{mg}, 32 \%$ yield, $43 \%$ ee $)$. Analytical data for $(R)-5:[\alpha]_{D}{ }^{20}=-14.24^{\circ}(c=0.25$ chloroform, $43 \%$ ee $)$. ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 1.84(\mathrm{~s}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 2 \mathrm{H}), 4.39(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H})$, $6.31\left(\mathrm{dd}, J_{1}=15.9 \mathrm{~Hz}, J_{2}=7.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.57(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}) 7.20-7.42$ (series of $\mathrm{m}, 15 \mathrm{H}$ ); The enantiomeric excess was determined by Diacel Chiralcel OJ-H $(25 \mathrm{~cm})$, hexanes $/ \mathrm{IPA}=90 / 10,0.6 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, t($ minor $)=18.40 \mathrm{~min}$, $t$ (major) $=22.07 \mathrm{~min}$. The absolute configuration of the product $(R)-5$ was assigned as $(R)$ by comparing the optical rotation with that reported in the literature [5].

Pd-catalyzed allylic alkylation reaction with $\left(S_{\mathrm{p}}\right)$-L1


A mixture of ligand $\left(S_{\mathrm{p}}\right)-\mathrm{L} 1(9.4 \mathrm{mg}, 0.012 \mathrm{mmol}, 97 \%$ ee $)$ and $\left[\mathrm{Pd}\left(\mathrm{C}_{3} \mathrm{H}_{5}\right) \mathrm{Cl}\right]_{2}(1.5$ $\mathrm{mg}, 0.004 \mathrm{mmol})$ in dry THF ( 2 mL ) was stirred at room temperature for 0.5 h , and to the resulting yellow solution was added $4(50.4 \mathrm{mg}, 0.2 \mathrm{mmol})$. After an additional stirring for 10 min , sodium dimethyl malonate [generated in situ by adding dimethyl malonate ( $79.2 \mathrm{mg}, 0.6 \mathrm{mmol}$ ) and sodium hydride ( $14.4 \mathrm{mg}, 0.6 \mathrm{mmol}$ ) in 1 mL THF] was added. The reaction was stirred at room temperature. After completion of the reaction (monitored by TLC), the reaction mixture was quenched with $\mathrm{NH}_{4} \mathrm{Cl}$ (aq.) and extracted with ether. The combined organic layers were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtrated. After the solvent was removed under reduced pressure, the residue was purified by silica gel column chromatography (ethyl acetate/petroleum $=1 / 15$ ) to give $(S)-6(61 \mathrm{mg}, 94 \%$ yield, $44 \%$ ee $)$. Analytical data for $(S)-\mathbf{6}^{[6]}:[\alpha]_{\mathrm{D}}{ }^{20}=-8.8^{\circ}\left(c=1.4\right.$ chloroform, $44 \%$ ee). ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 3.52(\mathrm{~s}, 3 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 3.96$ (d, $J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.27$ (dd, $J=8.8,10.4 \mathrm{~Hz}, 1 \mathrm{H})$, $6.33(\mathrm{dd}, J=8.4,15.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.48(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.17-7.33$ (series of m, 10H); The enantiomeric excess was determined by Diacel Chiralcel OD-H ( 25 cm ), hexanes $/$ IPA $=90 / 10,0.7 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, t($ minor $)=8.507 \mathrm{~min}, t$ (major) $=$ 9.140 min . The absolute configuration of the product $(S)-6$ was assigned as $(S)$ by comparing the optical rotation with that reported in the literature [6].

## References

(1) Khrushcheva, N. S.; Sokolov, V. I. Russ. Chem. Bull. 2004, 53, 830-833.
(2) Bhat, A. R.; Bhat, A. I.; Athar, F.; Azam, A. Helv. Chim. Act. 2009, 92, 1644-1656.
(3) Michael, W.; Ulrike, N.; Kurt, M. Tetrahedron: Asymmetry 1999, 10, 4369-4391.
(4) Mio, M. J.; Kopel, L. C.; Braun, J. B.; Gadzikwa, T. L.; Hull, K. L.; Brisbois, R. G. ; Markworth, C. J.; Grieco, P. A. Org. Lett. 2002, 4, 3199-3202
(5) Hayashi, T.; Yamamoto, A.; Ito, Y.; Nishioka, E.; Miura, H.; Yanagi, K. J. Am. Chem. Soc. 1989, 111, 6301-6311.
(6) Hayashi, T.; Yamamoto, A.; Hagihara, T.; Ito, Y. Tetrahedron Lett. 1986, 27, 191-194.

Copies of NMR spectra and HPLC chromatographs











$\stackrel{\substack{\tilde{\sim} \\ \sim}}{\mid}$




$\qquad$







$$
\begin{aligned}
& \text { ます す。 }
\end{aligned}
$$





| No. PeakNo | ID. Name | R. Time | PeakHeight | PeakArea | PerCent |  |
| :---: | :---: | :---: | :---: | ---: | :---: | :---: |
| 1 | 1 | 5.260 | 455177.3 | 6524683.9 | 51.0654 |  |
| 2 | 2 | 9.140 | 71564.6 | 6252421.1 | 48.9346 |  |
| Total |  |  |  | 526741.9 | 12777105.0 | 100.0000 |



| No. PeakNo | ID. Name | R. Time | PeakHeight | PeakArea | PerCent |  |
| :---: | :---: | :---: | :---: | ---: | :---: | ---: |
| 1 | 1 | 5.577 | 264324.1 | 5263154.8 | 99.0179 <br> 2 | 2 |



| No. PeakNo | ID. Name | R. Time | PeakHeight | PeakArea | PerCent |
| ---: | :---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 1 | 9.585 | 282080.5 | 4217669.7 | 50.9092 |
| 2 | 2 | 10.385 | 256623.8 | 4067027.2 | 49.0908 |
| Total |  |  | 538704.3 | 8284697.0 | 100.0000 |



| No. PeakNo | ID. Name | R. Time | PeakHeight | PeakArea | PerCent |  |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 1 |  | 9.552 | 20173.1 | 283294.8 | 1.7260 |
| 2 | 2 |  | 10.318 | 1004494.0 | 16129919.7 | 98.2740 |
| Total |  |  |  | 1024667.0 | 16413214.5 | 100.0000 |

(200

| No. PeakNo | ID. Name | R. Time | PeakHeight | PeakArea | PerCent |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1 | 8.225 | 392907.1 | 5355204.4 | 48.5611 |  |
| 2 | 2 | 9.852 | 306171.9 | 5672562.1 | 51.4389 |  |
| Total |  |  |  | 699079.1 | 11027766.5 | 100.0000 |



| No. PeakNo | ID. Name | R. Time | PeakHeight | PeakArea | PerCent |
| ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 1 | 8.218 | 13115.0 | 143279.9 | 0.5833 |
| 2 | 2 | 9.818 | 1317328.3 | 24422418.8 | 99.4167 |
| Total |  |  | 1330443.3 | 24565698.7 | 100.0000 |





| No. PeakNo | ID. Name | R. Time | PeakHeight | PeakArea | PerCent |  |
| :---: | :---: | :---: | :---: | ---: | :---: | :---: |
| 1 | 1 |  | 6.857 | 1341416.0 | 11818219.4 | 51.5591 |
| 2 | 2 | 7.398 | 772948.8 | 11103491.1 | 48.4409 |  |
| Total |  |  |  | 2114364.8 | 22921710.5 | 100.0000 |





| No. PeakNo | ID. Name | R. Time | PeakHeight | PeakArea | PerCent |
| ---: | ---: | ---: | ---: | ---: | :---: |
| 1 | 1 | 9.827 | 275220.9 | 3882593.2 | 48.7036 |
| 2 | 2 | 11.327 | 240766.1 | 4089283.3 | 51.2964 |
| Total |  |  | 515987.0 | 7971876.6 | 100.0000 |



| No. | PeakNo | ID. Name | R. Time | PeakHeight | PeakArea | PerCent |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1 |  | 9. 835 | 15306.8 | 247486.5 | 1. 4074 |
| 2 | 2 |  | 11. 327 | 970572.0 | 17337145.5 | 98.5926 |
| Total |  |  |  | 985878.8 | 17584632.0 | 100. 0000 |



| No. PeakNo | ID. Name | R. Time | PeakHeight | PeakArea | PerCent |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1 | 8.627 | 858645.1 | 11436145.9 | 48.8049 |
| 2 | 2 | 11.677 | 549721.2 | 11996248.2 | 51.1951 |
| Total |  |  | 1408366.3 | 23432394.1 | 100.0000 |



| No. PeakNo | ID. Name | R. Time | PeakHeight | PeakArea | PerCent |  |
| :---: | :---: | :---: | :---: | ---: | :---: | ---: |
| 1 | 1 | 8.627 | 3837.3 | 45509.4 | 0.5188 |  |
| 2 | 2 | 11.677 | 375535.7 | 8725694.8 | 99.4812 |  |
| Total |  |  |  | 379373.0 | 8771204.2 | 100.0000 |





| No. PeakNo | ID. Name | R. Time | PeakHeight | PeakArea | PerCent |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1 |  | 16.177 | 279914.6 | 6534434.8 | 49.2680 |
| 2 | 2 | 17.027 | 269295.8 | 6728597.1 | 50.7320 |  |
| Total |  |  |  | 549210.4 | 13263031.9 | 100.0000 |



| No. PeakNo | ID. Name | R. Time | PeakHeight | PeakArea | PerCent |  |
| :---: | :---: | :---: | ---: | ---: | ---: | ---: |
| 1 | 1 |  | 16.227 | 8941.5 | 213167.7 | 2.0942 |
| 2 | 2 | 17.027 | 388019.3 | 9965877.3 | 97.9058 |  |
| Total |  |  |  | 396960.7 | 10179045.0 | 100.0000 |


| No. PeakNo | ID. Name | R. Time | PeakHeight | PeakArea | PerCent |  |
| :---: | :---: | :---: | :---: | ---: | :---: | :---: |
| 1 | 1 |  | 8.377 | 721269.0 | 10584821.6 | 50.4867 |
| 2 | 2 | 9.277 | 639616.7 | 10380726.0 | 49.5133 |  |
| Total |  |  |  | 1360885.7 | 20965547.6 | 100.0000 |



| No. PeakNo | ID. Name | R. Time | PeakHeight | PeakArea | PerCent |  |
| :---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 1 |  | 1 | 8.377 | 14377.1 | 208847.4 | 2.2047 |
| 2 | 2 | 9.277 | 550513.7 | 9264058.5 | 97.7953 |  |
| Total |  |  | 564890.8 | 9472905.9 | 100.0000 |  |




| No. | Ret.Time min | Peak Name | Height mAU | Area mAU*min | Rel.Area \% | Amount | Type |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 7.24 | n.a. | 18.048 | 12.783 | 43.62 | n.a. | BM * |
| 2 | 9.17 | n.a. | 18.536 | 16.521 | 56.38 | n.a. | MB* |
| Total: |  |  | 36.584 | 29.303 | 100.00 | 0.000 |  |



| No. | Ret.Time min | Peak Name | Height mAU | Area mAU*min | Rel.Area \% | Amount | Type |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 7.32 | n.a. | 4.900 | 3.551 | 1.35 | n.a. | BM |
| 2 | 8.69 | n.a. | 384.839 | 259.539 | 98.65 | n.a. | MB |
| Total: |  |  | 389.740 | 263.090 | 100.00 | 0.000 |  |




| PeakNo | R. Time | PeakHeight | PeakArea | PerCent |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 8.507 | 591039.375 | 9057392.000 | 27.8780 |
| 2 | 9.140 | 1346444.000 | 23431976.000 | 72.1220 |
| Total |  | 1937483.375 | 32489368.000 | 100.0000 |



