Supporting Information

for

Titanium-mediated reductive cross-coupling reactions of imines with terminal alkynes: An efficient route for the synthesis of stereodefined allylic amines

Kebin Mao¹, Guoqin Fan², Yuanhong Liu²,*,[§], Shi Li², Xu You² and Dan Liu¹

Address: ¹College of Chemical Engineering, Shenyang University of Chemical Technology, Shenyang 110142, People's Republic of China and ²State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, People's Republic of China

Email: Yuanhong Liu - yhliu@mail.sioc.ac.cn

*Corresponding author

§Tel:+86-21-54925135; Fax: +86-21-64166128

Experimental section and NMR spectra

General Methods

All reactions were carried out using standard Schlenk techniques under argon. Diethyl ether was distilled from sodium and benzophenone. Titanium(IV) isopropoxide was purchased from TCI Chemical Company. Cyclopentylmagnesium chloride (2.0 M solution in diethyl ether) was purchased from Aldrich Co. Ltd. and was used as soon as possible after opening. Unless noted, all commercial reagents were used without further purification. Imines were prepared according to standard procedures and the spectroscopic data of these imines are in agreement with those previously reported.

 1 H and 13 C NMR spectra were recorded at room temperature in CDCl₃ (containing 0.03% tetramethylsilane) on Varian XL-300 MHz spectrometer or Varian XL-400 MHz spectrometer. 1 H NMR spectra were recorded at 300 or 400 MHz, 13 C NMR spectra were recorded at 75.5 or 100.6 MHz. 1 H NMR spectra was recorded with tetramethylsilane (δ = 0.00 ppm) as internal reference; 13 C NMR spectra was recorded with CDCl₃ (δ = 77.00 ppm) as internal reference. High-resolution mass spectra were obtained by using a Waters Micromass GCT Premier or an Agilent Technologies 6224 TOF LC/MS mass spectrometer. Elemental analyses were performed on an Italian Carlo-Erba 1106 analyzer. Single-crystal X-ray diffraction data was collected on a Bruker SMART diffractometer. In some cases, purification was performed on recycling preparative HPLC (LC-92XX NEXT series).

Typical procedure for the cross-coupling reaction of imines with 1-alkynes.

$$\begin{array}{c} \text{1.3 equiv} \\ \text{N} \\ \text{Ph} \\ & \begin{array}{c} \text{Ti(OiPr)_4/2 c-C_5H_9MgCl} \\ -30 \text{ °C, 1.5 h, Et}_2\text{O} \end{array} \\ \text{2a} \\ \end{array} \\ \begin{array}{c} \text{(iPrO)_2Ti} \\ \text{Ph} \\ \end{array} \\ \begin{array}{c} \text{Ph} \\ \text{n-C}_5\text{H}_{11} \\ \hline \text{2) sat. NaHCO}_3 \end{array} \\ \text{Ph} \\ \text{NHPh} \\ \end{array} \\ \text{5a} \\ \end{array}$$

To a stirred solution of imine **2a** (91 mg, 0.5 mmol) and Ti(OiPr)₄ (0.19 mL, 0.65 mmol) in Et₂O (5 mL) was added dropwise c-C₅H₉MgCl (0.65 mL, 2.0 M solution in diethyl ether, 1.3 mmol) at -30 °C. The solution was stirred at this temperature for 1.5 h, and then 1-heptyne (99 μ L, 72 mg, 0.75 mmol) was added to the reaction mixture at -30 °C. After stirring for 3 h at -30 °C, the mixture was quenched by saturated aqueous NaHCO₃ solution and stirred for ca. 1–2 h at room temperature. The resulting mixture was extracted

with diethyl ether three times. The combined extract was washed separately with water and brine, and dried over anhydrous Na₂SO₄. The solvent was evaporated in vacuo, and the residue was purified by preparative TLC on silica gel (eluent: petroleum ether/ethyl acetate = 100/1) to afford the desired allylic amine **5a** as a yellow oil (94 mg, 67% isolated yield). (*E*)-*N*-(1-Phenyloct-2-enyl)benzenamine (**5a**). ¹H NMR (300 MHz, CDCl₃, Me₄Si) δ 0.87 (t, J = 7.2 Hz, 3H), 1.22–1.43 (m, 6H), 1.99–2.06 (m, 2H), 4.02 (bs, 1H), 4.86 (d, J = 5.1 Hz, 1H), 5.57–5.72 (m, 2H), 6.56 (d, J = 8.4 Hz, 2H), 6.67 (t, J = 7.2 Hz, 1H), 7.11 (t, J = 7.8 Hz, 2H), 7.22–7.38 (m, 5H); ¹³C NMR (75.5 MHz, CDCl₃, Me₄Si) δ 14.05, 22.46, 28.78, 31.35, 32.21, 60.42, 113.49, 117.35, 126.94, 127.10, 128.59, 129.02, 131.05, 132.90, 142.77, 147.31; HRMS–EI: calcd for C₂₀H₂₅N: 279.1987, found: 279.1986.

(*E*)-*N*-(1-Phenylnon-2-enyl)benzenamine (5b). Purification of the crude product by preparative TLC on silica gel (eluent: petroleum ether/ethyl acetate = 100/1) afforded the title compound as a colorless oil in 69% yield. 1 H NMR (300 MHz, CDCl₃, Me₄Si) δ 0.87 (t, J = 6.9 Hz, 3H), 1.25–1.50 (m, 8H), 1.99–2.06 (m, 2H), 4.01 (bs, 1H), 4.86 (d, J = 5.1 Hz, 1H), 5.56–5.72 (m, 2H), 6.56 (d, J = 7.5 Hz, 2H), 6.66 (t, J = 7.5 Hz, 1H), 7.08–7.13 (m, 2H), 7.20–7.38 (m, 5H); 13 C NMR (75.5 MHz, CDCl₃, Me₄Si) δ 14.07, 22.60, 28.81, 29.06, 31.64, 32.26, 60.42, 113.49, 117.35, 126.94, 127.11, 128.60, 129.03, 131.06, 132.90, 142.77, 147.32; HRMS–EI: calcd for $C_{21}H_{27}N$: 293.2144, found: 293.2142.

(*E*)-*N*-(4,4-Dimethyl-1-phenylpent-2-enyl)benzenamine (5c). Purification of the crude product by flash chromatography on silica gel (eluent: petroleum ether/ethyl acetate = 100/1) afforded the title compound as a white solid in 88% yield. ¹H NMR (300 MHz, CDCl₃, Me₄Si) δ 1.00 (s, 9H), 3.99 (bs, 1H), 4.85 (d, J = 6.6 Hz, 1H), 5.50 (dd, J = 6.6, 15.6 Hz, 1H), 5.72 (d, J = 15.6 Hz, 1H), 6.56 (d, J = 8.4 Hz, 2H), 6.66 (t, J = 7.5 Hz, 1H), 7.08–7.13 (m, 2H), 7.19–7.37 (m, 5H); ¹³C NMR (75.5 MHz, CDCl₃, Me₄Si) δ 29.44,

32.95, 60.57, 113.52, 117.33, 125.94, 126.94, 127.05, 128.57, 128.99, 142.86, 143.59, 147.36; HRMS–EI: calcd for $C_{19}H_{23}N$: 265.1830, found: 265.1826.

(*E*)-*N*-(6-Chloro-1-phenylhex-2-enyl)benzenamine (5d). Purification of the crude product by preparative TLC on silica gel (eluent: petroleum ether/ethyl acetate = 100/1) afforded the title compound as a yellow oil in 66% yield. ¹H NMR (400 MHz, CDCl₃, Me₄Si) δ 1.79–1.86 (m, 2H), 2.20 (dt, J = 6.4, 7.2 Hz, 2H), 3.47 (td, J = 6.4, 2.0 Hz, 2H), 4.01 (bs, 1H), 4.88 (d, J = 5.6 Hz, 1H), 5.60–5.73 (m, 2H), 6.56 (d, J = 7.2 Hz, 2H), 6.67 (t, J = 7.2 Hz, 1H), 7.09–7.13 (m, 2H), 7.22–7.27 (m, 1H), 7.31–7.37 (m, 4H); ¹³C NMR (100 MHz, CDCl₃, Me₄Si) δ 29.25, 31.73, 44.25, 60.17, 113.48, 117.48, 126.94, 127.26, 128.65, 129.02, 130.44, 132.49, 142.34, 147.14; HRMS–EI: calcd for C₁₈H₂₀NCl: 285.1284, found: 285.1286.

(*E*)-*N*-(1,5-Diphenylpent-2-enyl)benzenamine (5e). Purification of the crude product by preparative TLC on silica gel (eluent: petroleum ether/ethyl acetate = 20/1) afforded the title compound as colorless oil in 68% yield. ¹H NMR (300 MHz, CDCl₃, Me₄Si) δ 2.35 (td, J = 6.6, 6.9 Hz, 2H), 2.67 (t, J = 7.2 Hz, 2H), 3.93 (bs, 1H), 4.83 (d, J = 6.0 Hz, 1H), 5.55–5.73 (m, 2H), 6.54 (d, J = 7.8 Hz, 2H), 6.70 (t, J = 7.2 Hz, 1H), 7.08–7.34 (m, 12H); ¹³C NMR (75.5 MHz, CDCl₃, Me₄Si) δ 34.02, 35.47, 60.20, 113.44, 117.37, 125.80, 126.97, 127.15, 128.24, 128.54, 128.59, 129.03, 131.57, 131.89, 141.55, 142.48, 147.25; HRMS–EI: calcd for C₂₃H₂₃N: 313.1830, found: 313.1833.

(*E*)-*N*-(1-Phenyl-3-(trimethylsilyl)allyl)benzenamine (5f). Purification of the crude product by preparative TLC on silica gel (eluent: petroleum ether/ethyl acetate = 100/1) afforded the title compound as a white solid in 80% yield. ¹H NMR (300 MHz, CDCl₃,

Me₄Si) δ 0.20 (s, 9H), 4.20 (bs, 1H), 5.05 (d, J = 5.4 Hz, 1H), 6.07 (d, J = 18.6 Hz, 1H), 6.32 (dd, J = 5.1, 18.6 Hz, 1H), 6.71 (d, J = 8.4 Hz, 2H), 6.81 (t, J = 7.2 Hz, 1H), 7.26 (t, J = 7.5 Hz, 2H), 7.33–7.49 (m, 5H); ¹³C NMR (75.5 MHz, CDCl₃, Me₄Si) δ –1.31, 62.67, 113.47, 117.43, 127.20, 127.29, 128.68, 129.03, 130.84, 141.97, 145.93, 147.25; HRMS–EI: calcd for C₁₈H₂₃NSi: 281.1600, found: 281.1595.

(*E*)-*N*-(1-Phenyl-3-(pyridin-2-yl)allyl)benzenamine (5g). Purification of the crude product by flash chromatography on silica gel (eluent: petroleum ether/ethyl acetate = 20/1) afforded the title compound as a dark red oil in 81% yield. ¹H NMR (400 MHz, CDCl₃, Me₄Si) δ 4.20 (bs, 1H), 5.13 (d, J = 6.0 Hz, 1Hz), 6.61–6.63 (m, 2H), 6.66–6.71 (m, 2H), 6.93 (dd, J = 6.4, 15.6 Hz, 1H), 7.06–7.15 (m, 3H), 7.19–7.21 (m, 1H), 7.24–7.28 (m, 1H), 7.32–7.35 (m, 2H), 7.41–7.43 (m, 2H), 7.53–7.58 (m, 1H), 8.51–8.52 (m, 1H); ¹³C NMR (100 MHz, CDCl₃, Me₄Si) δ 60.21, 113.48, 117.64, 121.87, 122.16, 127.20, 127.54, 128.79, 129.07, 130.53, 135.11, 136.40, 141.51, 147.05, 149.43, 154.98; HRMS–EI: calcd for C₂₀H₁₈N₂: 286.1470, found: 286.1472.

Ph
$$NH(p\text{-BrC}_6H_4)$$
5h

(*E*)-4-Bromo-*N*-(1-phenyl-3-(pyridin-2-yl)allyl)benzenamine (5h). Purification of the crude product by flash chromatography on silica gel (eluent: petroleum ether/ethyl acetate = 10/1) afforded the title compound as a red oil in 84% yield, which can be solidified at lower temperature. 1 H NMR (300 MHz, CDCl₃, Me₄Si) δ 4.26 (bs, 1H), 5.08 (d, J = 5.4 Hz, 1H), 6.49 (d, J = 8.7 Hz, 2H), 6.66 (d, J = 15.3 Hz, 1H), 6.91 (dd, J = 5.4, 15.3 Hz, 1H), 7.09–7.13 (m, 1H), 7.18–7.41 (m, 8H), 7.56–7.61 (m, 1H), 8.52 (d, J = 4.8 Hz, 1H); 13 C NMR (75.5 MHz, CDCl₃, Me₄Si) δ 60.15, 109.29, 115.07, 121.97, 122.32, 127.17, 127.74, 128.88, 130.72, 131.76, 134.51, 136.51, 140.96, 145.94, 149.46, 154.76; HRMS–ESI: calcd for C₂₀H₁₈BrN₂ [M + H]⁺: 365.0653, found: 365.0638.

(*E*)-4-Methoxy-*N*-(1-phenyl-3-(pyridin-2-yl)allyl)benzenamine (5i). Purification of the crude product by flash chromatography on silica gel (eluent: petroleum ether/ethyl acetate = 10/1) afforded the title compound as a red oil in 80% yield. 1 H NMR (300 MHz, CDCl₃, Me₄Si) δ 3.69 (s, 3H), 5.05 (d, J = 6.0 Hz, 1H), 6.57–6.74 (m, 5H), 6.92 (dd, J = 6.0, 15.9 Hz, 1H), 7.08–7.09 (m, 1H), 7.20–7.44 (m, 6H), 7.53–7.59 (m, 1H), 8.51 (d, J = 4.5 Hz, 1H); The N–H proton was not detected; 13 C NMR (75.5 MHz, CDCl₃, Me₄Si) δ 55.60, 61.06, 114.63, 114.75, 121.81, 122.12, 127.16, 127.46, 128.74, 130.34, 135.45, 136.40, 141.26, 141.72, 149.39, 152.08, 155.00; HRMS–EI: calcd for C₂₁H₂₀N₂O: 316.1576, found: 316.1580.

(*E*)-*N*-(4,4-Dimethyl-1-phenylpent-2-enyl)naphthalen-1-amine (5j). Purification of the crude product by preparative TLC on silica gel (eluent: petroleum ether/ethyl acetate = 100/1) afforded the title compound as a white solid in 67% yield. ¹H NMR (400 MHz, CDCl₃, Me₄Si) δ 1.02 (s, 9H), 4.68 (bs, 1H), 5.03 (d, J = 6.4 Hz, 1H), 5.62 (dd, J = 6.4, 15.6 Hz, 1H), 5.80 (d, J = 15.6 Hz, 1H), 6.48 (d, J = 6.4 Hz, 1H), 7.11–7.34 (m, 5H), 7.40–7.44 (m, 4H), 7.75–7.78 (m, 1H), 7.85–7.88 (m, 1H); ¹³C NMR (100 MHz, CDCl₃, Me₄Si) δ 29.46, 33.01, 60.73, 106.32, 117.36, 119.91, 123.41, 124.62, 125.56, 125.87, 126.48, 126.94, 127.14, 128.64, 128.68, 134.19, 142.20, 142.65, 143.99; HRMS–EI: calcd for C₂₃H₂₅N: 315.1987, found: 315.1988.

(*E*)-*N*-(1-(4-Bromophenyl)-3-(pyridin-2-yl)allyl)benzenamine (5k). Purification of the crude product by flash chromatography on silica gel (eluent: petroleum ether/ethyl acetate = 10/1) afforded the title compound as a red oil in 81% yield. ¹H NMR (400 MHz, CDCl₃, Me₄Si) δ 4.23 (bs, 1H), 5.09 (d, J = 6.0 Hz, 1H), 6.56–6.59 (m, 2H), 6.62 (dd, J = 15.6, 1.2 Hz, 1H), 6.68–6.72 (m, 1H), 6.89 (dd, J = 6.0, 15.6 Hz, 1H), 7.08–7.21 (m, 4H), 7.28–7.31 (m, 2H), 7.43–7.47 (m, 2H), 7.55–7.60 (m, 1H), 8.51–8.53 (m, 1H); ¹³C NMR (100 MHz, CDCl₃, Me₄Si) δ 59.61, 113.52, 117.91, 121.30, 122.01, 122.37, 128.87, 129.12, 131.01, 131.85, 134.43, 136.49, 140.58, 146.69, 149.48, 154.64; HRMS–ESI: calcd for C₂₀H₁₈BrN₂ [M + H]⁺: 365.0653, found: 365.0638.

(*E*)-*N*-(1-(4-Bromophenyl)-3-phenylallyl)benzenamine (5l). The reaction was carried out on a 2 mmol scale. Purification of the crude product by recycling preparative HPLC afforded the title compound as a colorless oil in 81% yield. ¹HNMR (400 MHz, CDCl₃, Me₄Si) δ 4.06 (bs, 1H), 5.01 (d, J = 6.4 Hz, 1H), 6.31 (dd, J = 6.4, 16.0 Hz, 1H), 6.53–6.58 (m, 3H), 6.70 (t, J = 7.2 Hz, 1H), 7.10–7.14 (m, 2H), 7.17–7.34 (m, 7H), 7.44–7.46 (m, 2H); ¹³C NMR (100 MHz, CDCl₃, Me₄Si) δ 60.03, 113.59, 117.94, 121.21, 126.49, 127.85, 128.56, 128.84, 129.15, 130.02, 131.62, 131.84, 136.28, 141.04, 146.81; HRMS–EI: calcd for C₂₁H₁₈NBr: 363.0623, found: 363.0621.

(*E*)-*N*-(1-(4-Bromophenyl)-3-(trimethylsilyl)allyl)benzenamine (5m). Purification of the crude product by preparative TLC on silica gel (eluent: petroleum ether/ethyl acetate = 50/1) afforded the title compound as a white solid in 84% yield. ¹H NMR (300 MHz, CDCl₃, Me₄Si) δ 0.20 (s, 9H), 4.19 (bs, 1H), 5.01 (d, J = 5.1 Hz, 1H), 6.02 (d, J = 18.6 Hz,

1H), 6.27 (dd, J = 5.4, 18.6 Hz, 1H), 6.68 (d, J = 8.4 Hz, 2H), 6.83 (t, J = 7.2 Hz, 1H), 7.25 (dd, J = 7.8, 7.2 Hz, 2H), 7.36 (d, J = 8.1 Hz, 2H), 7.59 (d, J = 8.1 Hz, 2H); ¹³C NMR (75.5 MHz, CDCl₃, Me₄Si) δ –1.37, 62.12, 113.51, 117.73, 121.01, 128.85, 129.09, 131.67, 131.76, 141.01, 145.42, 146.87. HRMS–EI: calcd for C₁₈H₂₂NBrSi: 359.0705, found: 359.0702.

(*E*)-*N*-(1-(4-Methoxyphenyl)-3-(pyridin-2-yl)allyl)benzenamine (5n). Purification of the crude product by flash chromatography on silica gel (eluent: petroleum ether/ethyl acetate = 5/1) afforded the title compound as a colorless oil in 75% yield. ¹H NMR (400 MHz, CDCl₃, Me₄Si) δ 3.78 (s, 3H), 4.15 (bs, 1H), 5.08 (d, J = 6.0 Hz, 1H), 6.61–6.71 (m, 4H), 6.87 (d, J = 8.4 Hz, 2H), 6.90–6.94 (m, 1H), 7.08–7.15 (m, 3H), 7.21–7.24 (m, 1H), 7.40 (d, J = 8.4 Hz, 2H), 7.57 (dt, J = 2.0, 7.2 Hz, 1H), 8.51-8.53 (m, 1H); ¹³C NMR (100 MHz, CDCl₃, Me₄Si) δ 55.24, 59.61, 113.50, 114.17, 117.60, 121.87, 122.14, 128.40, 129.09, 130.31, 133.61, 135.35, 136.43, 147.15, 149.47, 155.12, 159.00; HRMS–EI: calcd for C₂₁H₂₀N₂O: 316.1576, found: 316.1572.

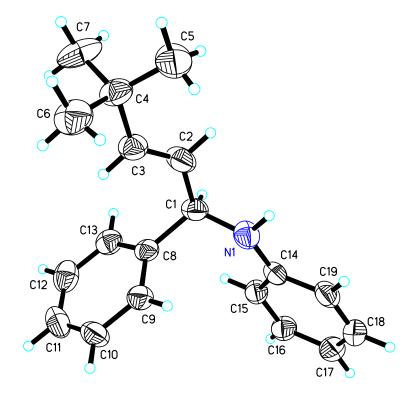
(*E*)-1-Phenyl-*N*-propyl-3-(pyridin-2-yl)prop-2-en-1-amine (5ο). Purification of the crude product by flash chromatography on silica gel (eluent: petroleum ether/ethyl acetate = 5/1) afforded the title compound as a colorless oil in 60% yield. ¹H NMR (400 MHz, CDCl₃, Me₄Si) δ 0.91 (t, J = 7.2 Hz, 3H), 1.49–1.58 (m, 2H), 1.75 (bs, 1H) 2.49–2.66 (m, 2H), 4.41 (d, J = 7.2 Hz, 1H), 6.67 (d, J = 16.0 Hz, 1H), 6.77 (dd, J = 7.2, 16.0 Hz, 1H), 7.06–7.10 (m, 1H), 7.24–7.35 (m, 4H), 7.39–7.42 (m, 2H), 7.56–7.60 (m, 1H), 8.50–8.52 (m, 1H); ¹³C NMR (100 MHz, CDCl₃, Me₄Si) δ 11.76, 23.23, 49.62, 65.23, 121.27, 121.93, 127.24, 127.32, 128.56, 129.91, 136.34, 137.25, 142.59, 149.38, 155.49; HRMS–EI: calcd for C₁₇H₂₀N₂: 252.1626, found: 252.1623.

(*E*)-*N*-(1-(4-Bromophenyl)-3-cyclopropylallyl)benzenamine (5q). After the reaction was finished, the mixture was quenched by saturated aqueous NaHCO₃ solution and stirred for ca. 1–2 h at room temperature. The resulting mixture was extracted with diethyl ether three times. The combined extract was washed separately with brine, and dried over anhydrous Na₂SO₄. The solvent was evaporated in vacuo and the residue was detected by NMR. NMR yield: 95%. ¹H NMR (400 MHz, CDCl₃, Me₄Si) δ 0.32–0.35 (m, 2H), 0.67–0.71 (m, 2H), 1.32–1.41 (m, 1H), 4.00 (br, 1H), 4.79 (d, J = 6.8 Hz, 1H), 5.10 (dd, J = 8.8, 15.2 Hz, 1H), 5.66 (dd, J = 6.8, 15.2 Hz, 1H), 6.49 (d, J = 8.0 Hz, 2H), 6.67 (t, J = 7.2 Hz, 1H), 7.09 (dd, J = 7.2, 8.0 Hz, 2H), 7.22 (d, J = 8.4 Hz, 2H), 7.42 (d, J = 8.4 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃, Me₄Si) δ 6.79, 6.80, 13.53, 59.75, 113.45, 117.61, 120.75, 128.35, 128.62, 129.04, 131.63, 137.08, 141.69, 146.88; HRMS–EI: calcd for C₁₈H₁₈BrN: 327.0623, found: 327.0620.

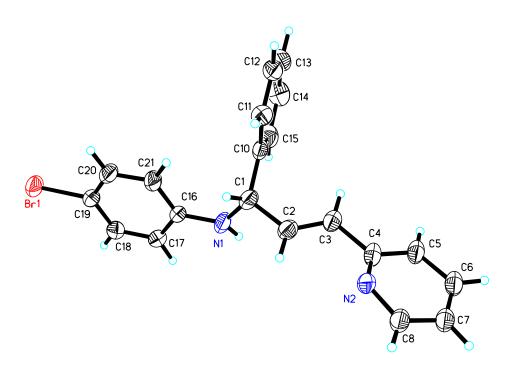
(*E*)-*N*-(3-(4-Bromophenyl)-1-cyclopropylallyl)benzenamine (6q). Purification of the crude product by preparative TLC on silica gel (eluent: petroleum ether/ethyl acetate = 50/1) afforded the title compound as a colorless oil in 74% yield. ¹HNMR (300 MHz, CDCl₃, Me₄Si) δ 0.37–0.42 (m, 2H), 0.56–0.63 (m, 2H), 1.03–1.10 (m, 1H), 3.28–3.33 (m, 1H), 4.03 (bs, 1H), 6.22 (dd, J = 5.7, 15.6 Hz, 1H), 6.53 (d, J = 15.9 Hz, 1H), 6.61 (d, J = 7.8 Hz, 2H), 6.68 (t, J = 7.2 Hz, 1H), 7.14 (dd, J = 7.5, 8.4 Hz, 2H), 7.21 (d, J = 8.4 Hz, 2H), 7.40 (d, J = 8.4 Hz, 2H); ¹³C NMR (75.5 MHz, CDCl₃, Me₄Si) δ 2.94, 3.55, 17.06, 60.07, 113.30, 117.35, 120.95, 127.89, 128.78, 129.10, 131.50, 131.59, 135.92, 147.63; HRMS–EI: calcd for C₁₈H₁₈NBr: 327.0623, found: 327.0618.

Acylation of compound 51

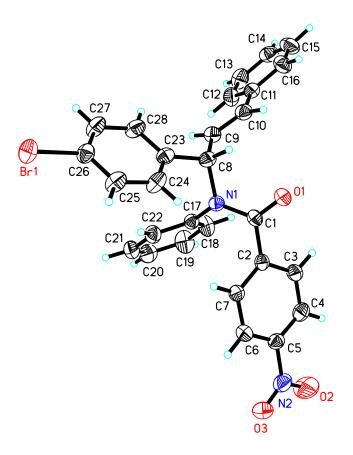
(E)-N-(1-(4-Bromophenyl)-3-phenylallyl)-4-nitro-N-phenylbenzamide (7). To a stirred solution of allylic amine 51 (182 mg, 0.5 mmol) in CH₂Cl₂ (11 mL) was added Et₃N (3 mL) at 0 °C. Then 4-nitrobenzoyl chloride (2.5 mmol, 464 mg) was added at 0 °C, after the acyl chloride was dissolved, 4-dimethylaminopyridine (120 mg) was added. The mixture was warmed up to room temperature and stirred for 48 h. The resulting mixture was quenched by saturated NH₄Cl (5 mL), and extracted with dichloromethane three times. The combined extract was washed separately with water and brine, and dried over anhydrous Na₂SO₄. The solvent was evaporated in vacuo and the residue was purified by column chromatography on silica gel (eluent: petroleum ether/ethyl acetate = 20/1 to 10/1) to afford the desired compound as a red solid (210 mg, 82% isolated yield). ¹H NMR $(400 \text{ MHz}, \text{CDCl}_3, \text{Me}_4\text{Si}) \delta 6.43 \text{ (dd}, J = 8.8, 16.0 \text{ Hz}, 1\text{H}), 6.65 \text{ (d}, J = 8.8 \text{ Hz}, 1\text{H}), 6.81$ (d, J = 16.0 Hz, 1H), 6.79 - 6.84 (m, 2H), 7.13 - 7.16 (m, 3H), 7.24 - 7.38 (m, 7H), 7.42 - 7.48(m, 4H), 7.97 (d, J = 8.8 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃, Me₄Si) δ 62.04, 121.76, 122.89, 124.65, 126.60, 128.16, 128.20, 128.60, 129.09, 129.15, 129.68, 129.96, 131.55, 135.09, 136.05, 138.48, 139.50, 142.26, 147.67, 168.23; HRMS-EI: calcd for C₂₈H₂₁BrN₂O₃: 512.0736, found: 512.0731.

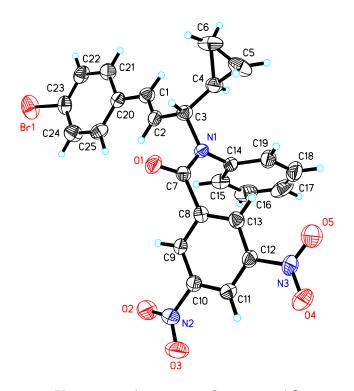

$$\begin{array}{c} O_2N \\ O_3C \text{ to rt, 1 h} \\ O_4N \\ O_5C \text{ to rt, 1 h} \\ O_5N \\$$

(E)-N-(3-(4-Bromophenyl)-1-cyclopropylallyl)-3,5-dinitro-N-phenylbenzamide (8).

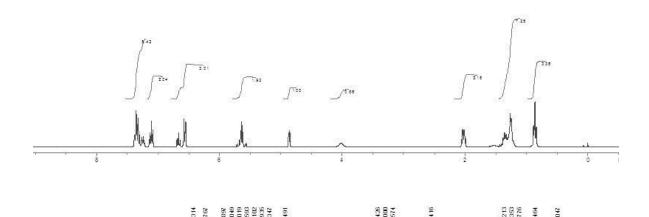

To a stirred solution of allylic amine 6q (351 mg, 1.07 mmol) in CH₂Cl₂ (3.0 mL) was added dropwise Et₃N (0.32 mL, 2.3 mmol) at 0 °C. And then 3,5-dinitrobenzoyl chloride 1.18 mmol) in 2 mL CH₂Cl₂ was added at this temperature. 4-Dimethylaminopyridine (24 mg, 0.2 mmol) was added and then the mixture was warmed up to room temperature. After stirring for 1 h, the resulting mixture was quenched by saturated NH₄Cl (5 mL), and extracted with dichloromethane three times. The combined extract was washed separately with water and brine, and dried over anhydrous Na₂SO₄. The solvent was evaporated in vacuo and the residue was purified twice by column chromatography on silica gel to afford the desired compound as a white solid (334 mg, 64% isolated yield). ¹H NMR (400 MHz, CDCl₃, Me₄Si) δ 0.47–0.53 (m, 1H), 0.63–0.69 (m, 2H), 0.73-0.80 (m, 1H), 0.95-1.04 (m, 1H), 4.74-4.78 (m, 1H), 6.37 (dd, <math>J = 7.2, 16.0 Hz, 1H), 6.68 (d, J = 16.0 Hz, 1H), 7.20 - 7.32 (m, 7H), 7.44 - 7.47 (m, 2H), 8.44 (d, Th)J = 2.0 Hz, 2H), 8.83 (t, J = 2.4 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃, Me₄Si) δ 4.33, 5.84, 13.48, 64.23, 119.10, 121.77, 127.72, 128.06, 128.52, 128.82, 129.57, 130.10, 131.71, 131.81, 135.36, 138.93, 139.88, 147.66, 165.36; HRMS-EI: calcd for C₂₅H₂₀BrN₃O₅: 521.0586, found: 521.0585.

Procedure for the iodoallylic amine derivative 9

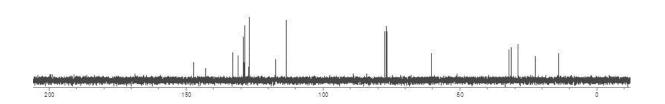

(Z)-N-(3-Iodo-1-phenyl-3-(pyridin-2-yl)allyl)benzenamine (9). To a stirred solution of imine 2a (91 mg, 0.5 mmol) and Ti(OiPr)₄ (0.19 mL, 0.65 mmol) in Et₂O (5 mL) was added dropwise c-C₅H₉MgCl (0.65 mL, 2.0 M solution in diethyl ether, 1.3 mmol) at −30 °C. The solution was stirred at this temperature for 1.5 h, and then 2-ethynylpyridine (76 μL, 77 mg, 0.75 mmol) was added into the reaction mixture at -30 °C. After stirring for 3 h at -30 °C, iodine (254 mg, 1 mmol) was added and then warmed up to -10 °C. After stirring for 6 h at this temperature, saturated aqueous Na₂S₂O₃ (5 mL) solution was added to quench the reaction and was stirred overnight. The resulting mixture was extracted with diethyl ether three times. The combined extract was washed with brine, and dried over anhydrous Na₂SO₄. The solvent was evaporated in vacuo and the residue was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 30/1 as eluent) to afford the desired allylic amine 9 as a red solid (167 mg, 81% isolated yield). ¹H NMR (400 MHz, CDCl₃, Me₄Si) δ 4.30 (bs, 1H), 5.43 (d, J = 8.4 Hz, 1H), 6.67 (d, J =7.2 Hz, 2H), 6.73 (t, J = 7.2 Hz, 1H), 6.91 (d, J = 8.4 Hz, 1H), 7.14–7.19 (m, 3H), 7.31–7.40 (m, 3H), 7.56–7.62 (m, 4H), 8.54–8.56 (m, 1H); ¹³C NMR (100 MHz, CDCl₃, Me_4Si) δ 64.78, 107.23, 113.69, 118.04, 122.74, 123.18, 127.17, 127.91, 128.98, 129.25, 136.76, 140.71, 142.81, 147.02, 149.05, 156.66; HRMS-EI: calcd for C₂₀H₁₇IN₂: 412.0437, found: 412.0432.

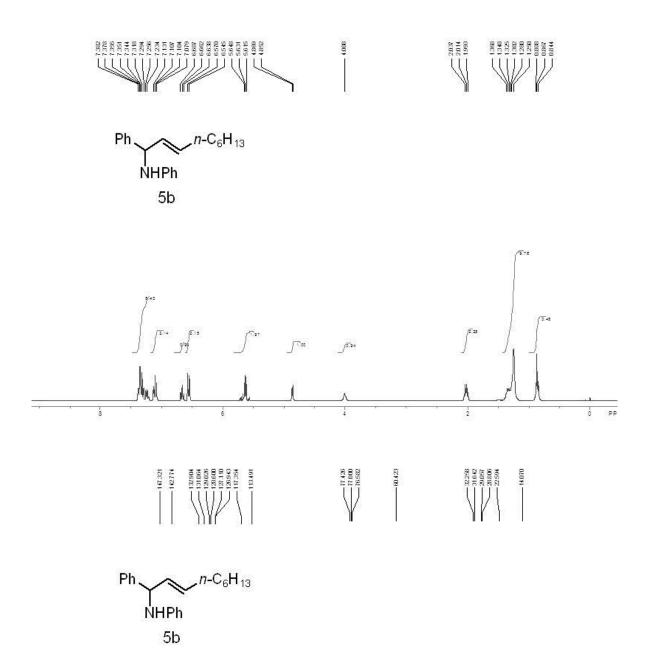

X-ray crystal structure of compound $\mathbf{5c}$ (methyl groups are disordered)

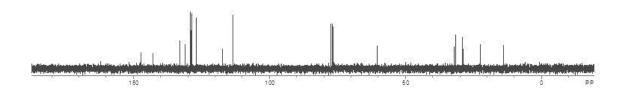
X-ray crystal structure of compound **5h** (several atoms are disordered)

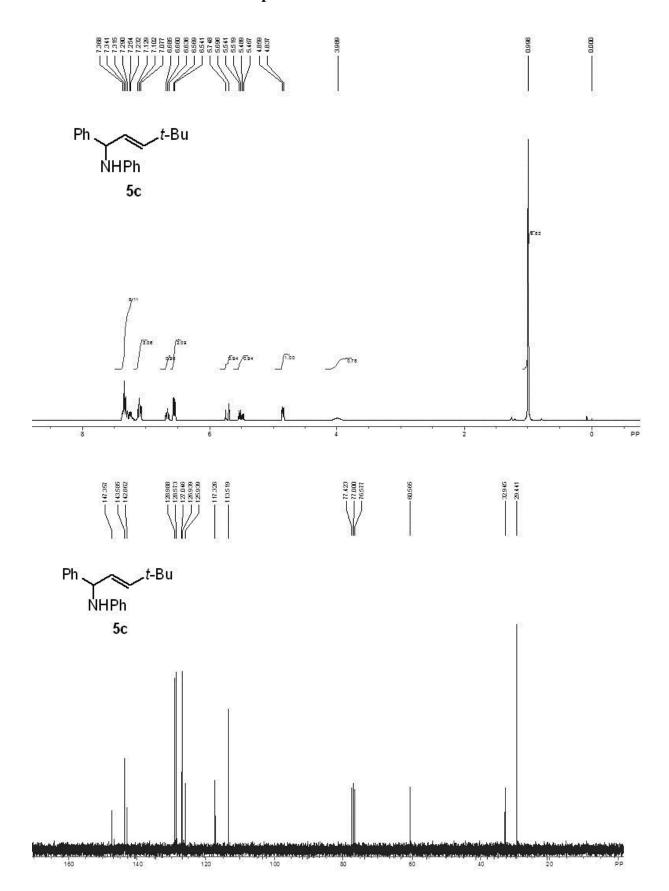


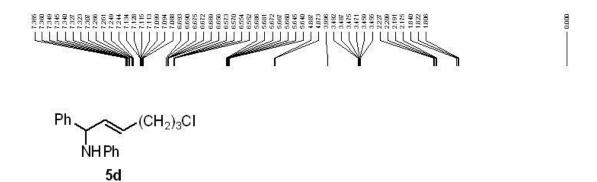
X-ray crystal structure of compound 7

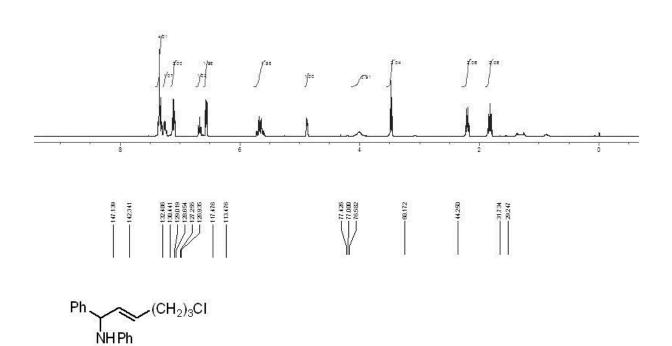


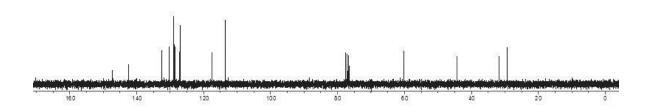

X-ray crystal structure of compound 8

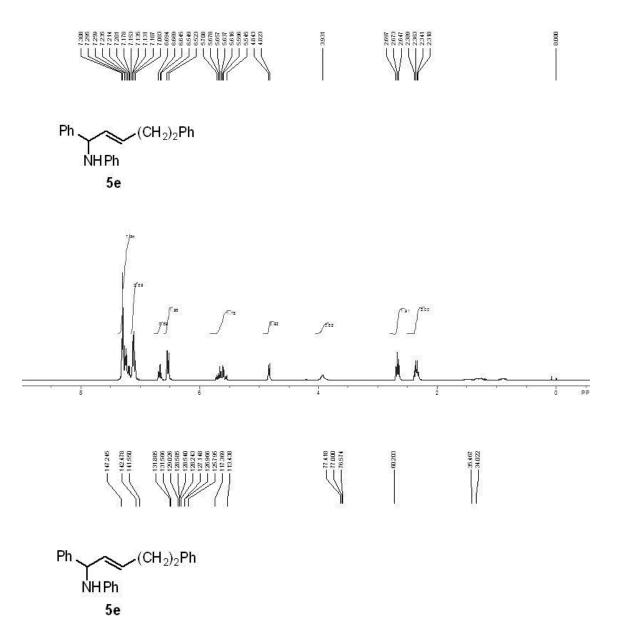


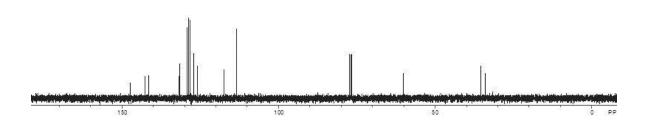


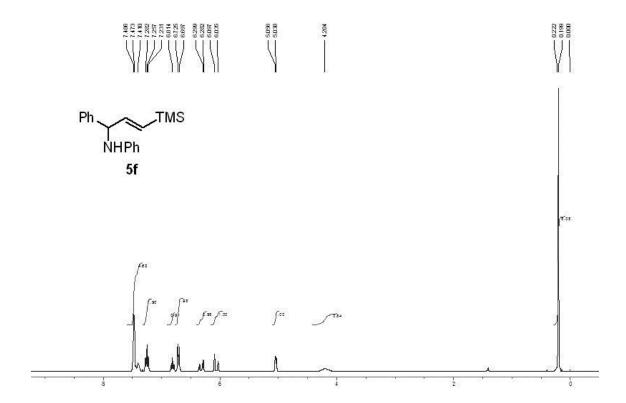


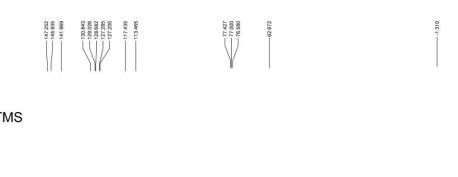


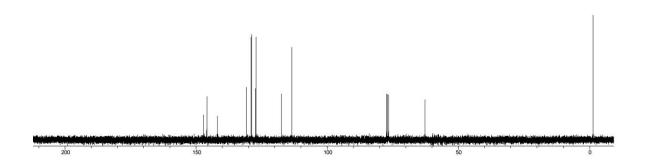


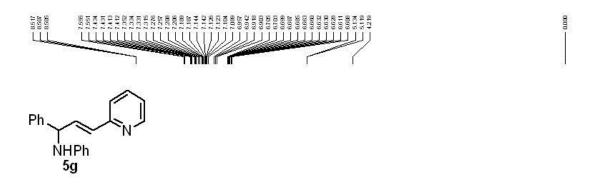


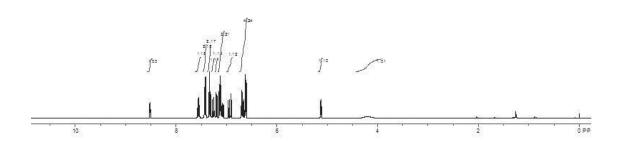


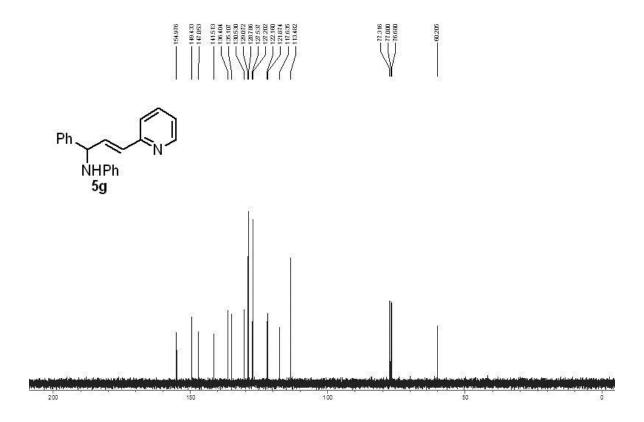


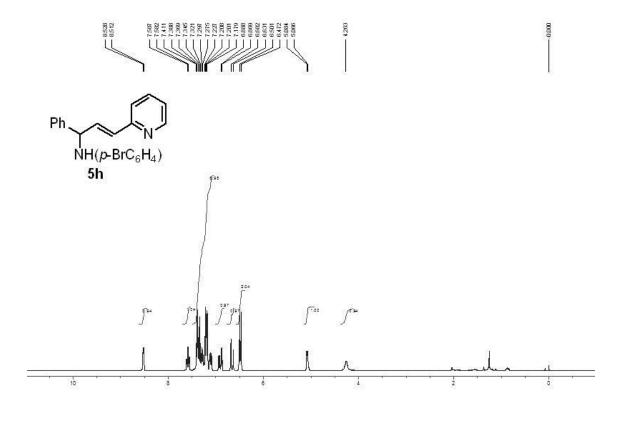


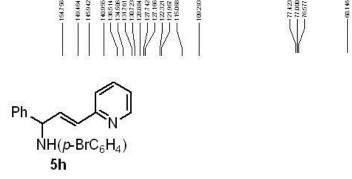

5d

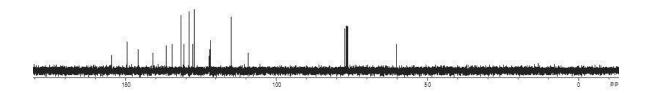


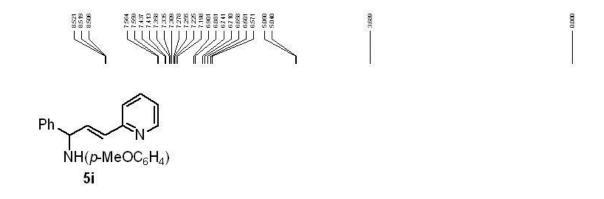


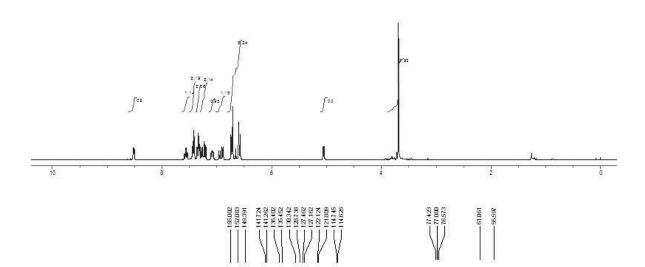


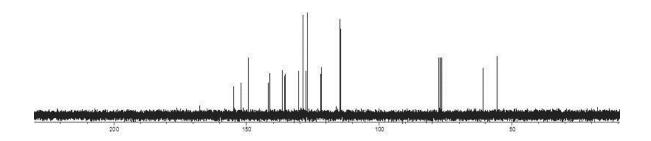


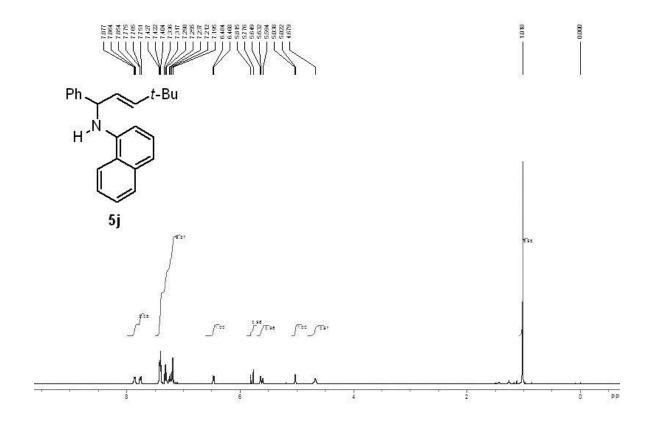

NHPh 5f

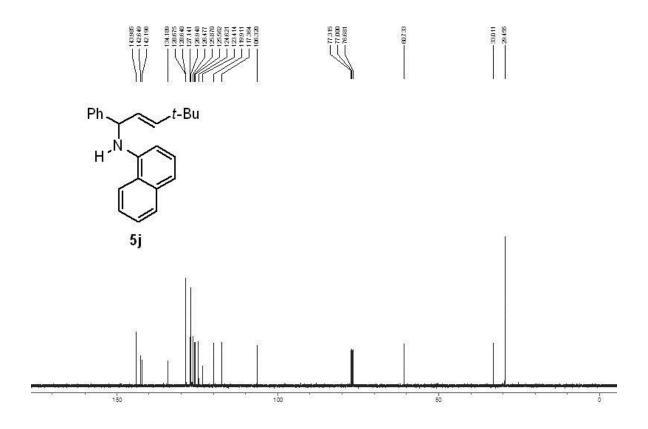


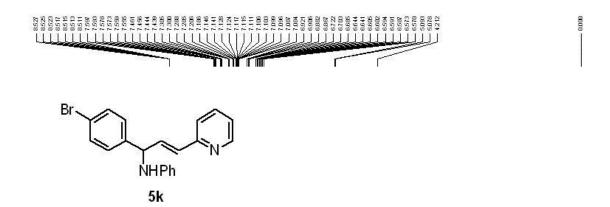


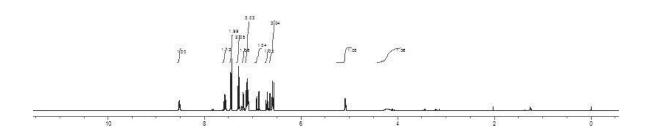


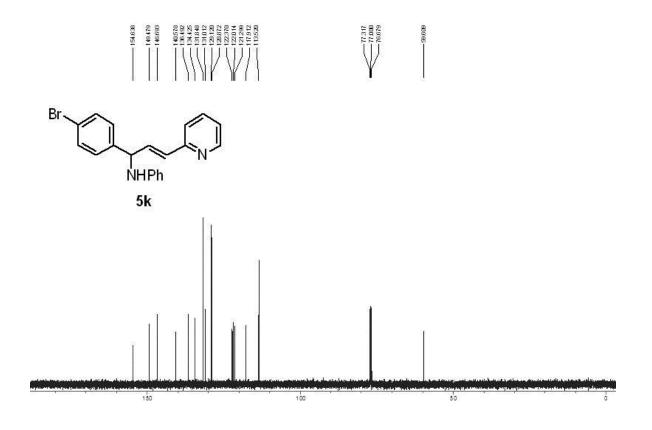


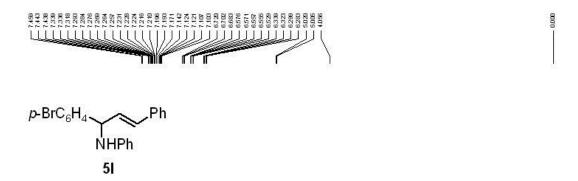


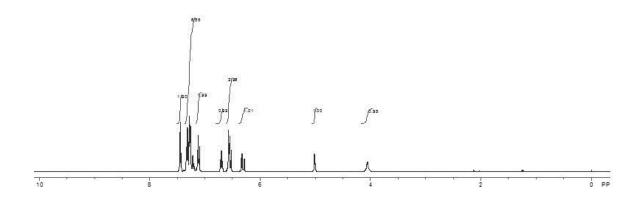


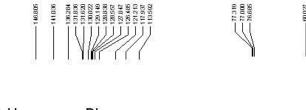


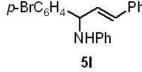

Ph
$$NH(p\text{-MeOC}_6H_4)$$
5i

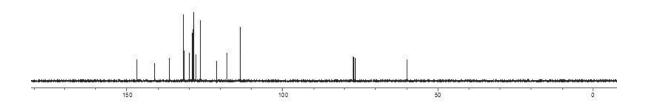


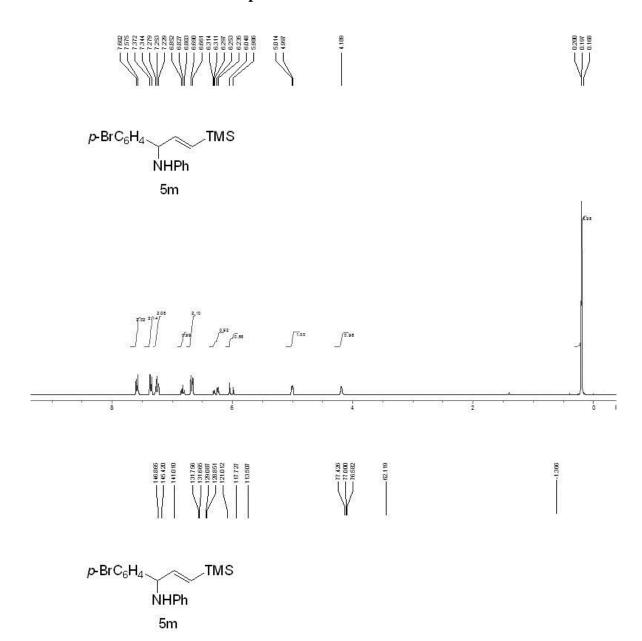


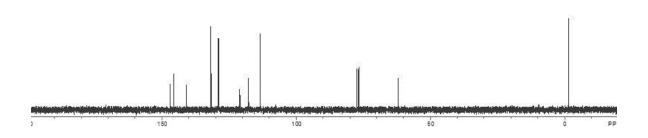


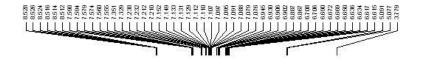


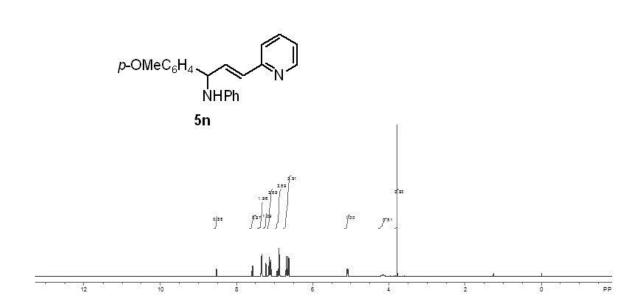


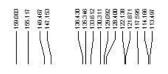


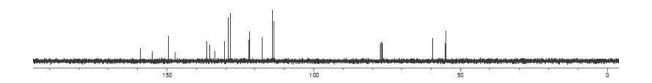


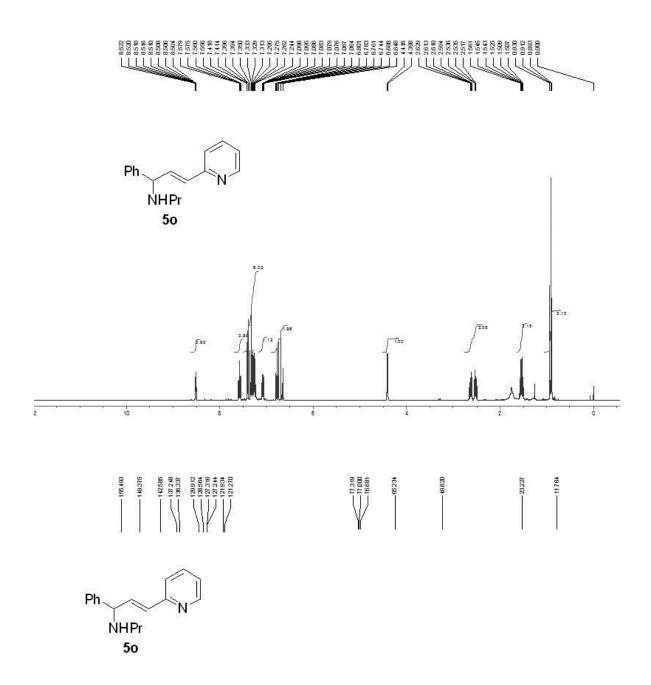


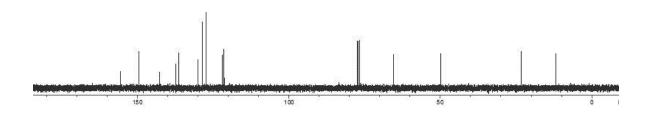


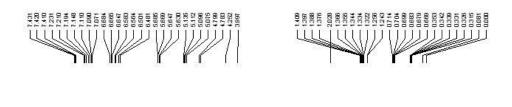


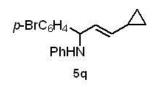


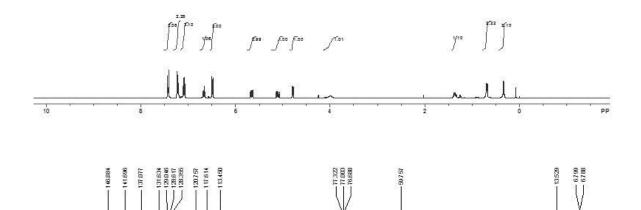


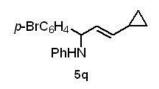


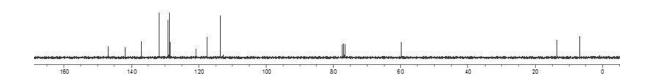


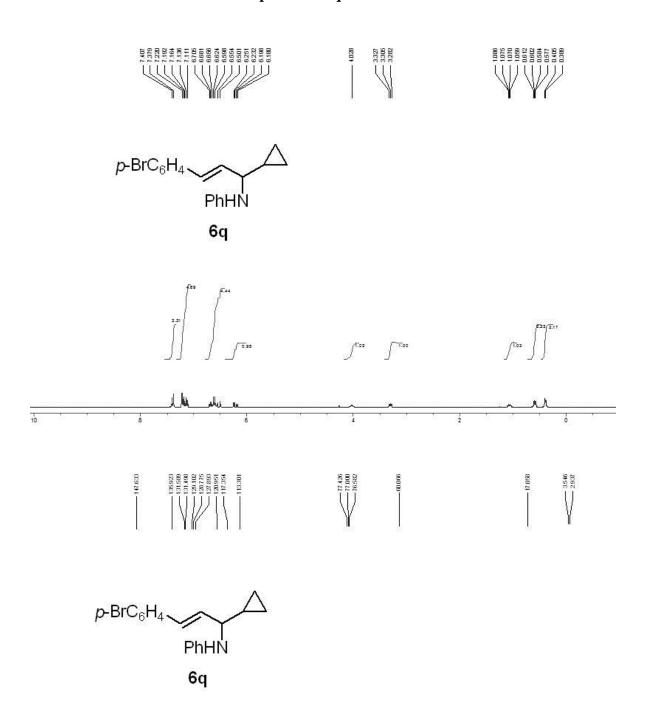


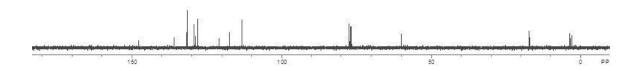


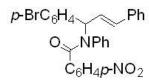


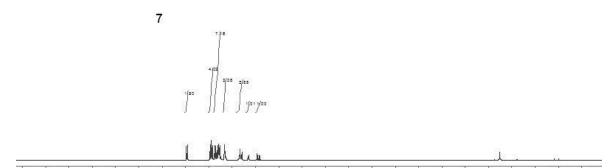


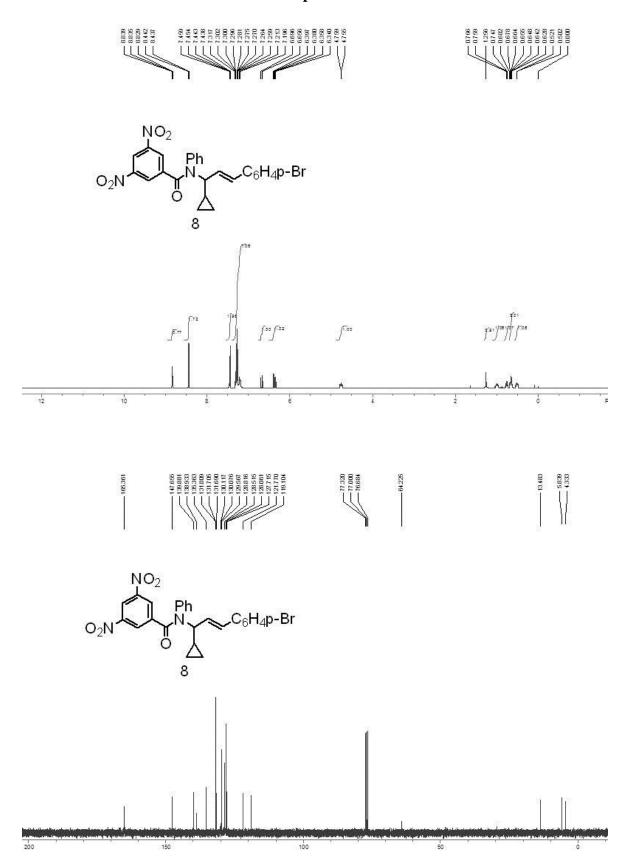




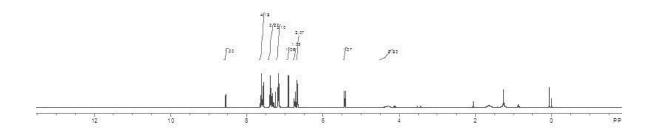




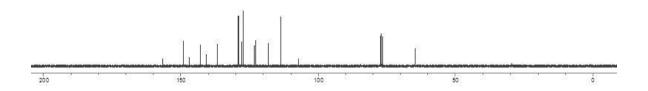







$$p$$
-BrC $_6$ H $_4$ \nearrow Ph
 O \nearrow NPh
 C_6 H $_4$ p -NO $_2$

7


200 150 100 50

