## Supporting Information

for

## High-spin intermediates of the photolysis of 2,4,6-triazido-3-chloro-5-fluoropyridine

Sergei V. Chapyshev<sup>1\*</sup>, Denis V. Korchagin<sup>1</sup>, Patrik Neuhaus<sup>2</sup> and Wolfram Sander<sup>2</sup>

Address: <sup>1</sup>Institute of Problems of Chemical Physics, Russian Academy of Sciences, 142432 Chernogolovka, Moscow Region, Russian Federation and <sup>2</sup>Lehrstuhl für Organische Chemie II, Ruhr-Universität, D-44780 Bochum, Germany

Email: Sergei V. Chapyshev\* - <u>chapyshevs@mail.ru</u>

\* Corresponding author

## **EPR** spectral simulations

I. EPR spectral simulations for quintet molecules with g = 2.003, D = 0.209 - 0.225 cm<sup>-1</sup> and E = 0.039 - 0.035 cm<sup>-1</sup>

Figure S1 shows the simulated EPR spectrum of quintet dinitrene **16** with  $D = 0.209 \text{ cm}^{-1}$ , and  $E = 0.039 \text{ cm}^{-1}$  for  $\Gamma(E) = 75$  MHz and microwave frequency  $v_0 = 9.605832$  GHz. Assignments of EPR transitions were made in accordance with the literature data [1]. EPR spectral simulations for quintet molecules with g = 2.003, D = 0.213-0.225 cm<sup>-1</sup>, E = 0.038-0.035 cm<sup>-1</sup> are shown in Figure S2.

<sup>&</sup>lt;sup>1</sup> Chapyshev, S. V.; Neuhaus, P.; Grote, D.; Sander, W. J. Phys. Org. Chem. **2010**, 23, 340–346. doi:10.1002/poc.1622



Figure S1: EPR spectra: (a) Experimental spectrum from photolysis of triazide 11; (b) simulated spectrum of quintet dinitrene 16 (S = 2, g = 2.003,  $D = 0.209 \text{ cm}^{-1}$ ,  $E = 0.039 \text{ cm}^{-1}$ ,  $\Gamma(E) = 75 \text{ MHz}$ ,  $v_0 = 9.605832 \text{ GHz}$ ). "A" denotes (additional) off-principal-axis transitions.



Figure S2: EPR spectra: (a) Experimental spectrum from photolysis of triazide 11; (b)–(f) simulated spectra of quintet molecules with E/D = 0.039/0.209 (b), 0.038/0.213 (c), 0.037/0.217 (d), 0.036/0.221 (e) and 0.035/0.225 (f).

II. EPR spectral simulations for the mixtures of quintet dinitrenes 16 and 17

17 17 17 17 **16/17** = 1/1 17 17 17 **16/17** = 5/1 17 17 **16/17** = 6/1 Ţ **16** = 100% 0 40'00 8000 H/G

with E/D = 0.036/0.221



## III. E-Strain effects in EPR spectra of nitrenes 15, 16 and 18

The *E*-strain parameters  $\Gamma(E)$  were determined by computer line-shape tuning until the best ratio between the intensities of the diagnostic lines was achieved:  $Z_1$ ,  $Z_2$  and  $X_2$  transitions for septet trinitrene **18** (Figure S4),  $Y_1$  and  $Y_2$  transitions for quintet dinitrene **15** (Figure S5) and  $X_1$  and  $Y_2$ transitions for quintet dinitrene **16** (Figure S6).



**Figure S4:** Simulated EPR spectra for septet trinitrene **18** ( $D = -0.1021 \text{ cm}^{-1}$ ,  $E = -0.0034 \text{ cm}^{-1}$ ) for (a)  $\Gamma(E) = 0$  and (b)  $\Gamma(E) = 40 \text{ MHz}$ . "A" denotes (additional) off-principal-axis transitions.



**Figure S5:** Simulated EPR spectra of quintet dinitrene **15** ( $D = 0.215 \text{ cm}^{-1}$ ,  $E = 0.0545 \text{ cm}^{-1}$ ) for (a)  $\Gamma(E) = 0$  and (b)  $\Gamma(E) = 75 \text{ MHz}$ . "A<sub>1</sub>" denotes an (additional) off-principal-axis transition.



**Figure S6:** Simulated EPR spectra of quintet dinitrene **16** ( $D = 0.209 \text{ cm}^{-1}$ ,  $E = 0.039 \text{ cm}^{-1}$ ) for (a)  $\Gamma(E) = 0$  and (b)  $\Gamma(E) = 75$  MHz. "A" denotes (additional) off-principal-axis transitions.