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 31 

Abstract: 32 

Staphylococcus aureus is deliberated as one of the most challenging bacteria owing to its ability to develop 33 

resistance against antibacterial drugs. In an attempt to explore new approaches for enhancing the activity 34 

of antibiotics, here in this work, ampicillin is conjugated to Ag and Au nanoparticles (NPs) and its 35 

antibacterial potential was investigated against S. aureus. The antibacterial activity was assessed and the 36 

associated changes in the bacterial cell morphology were analyzed using atomic force microscopy (AFM) 37 

as well as other characterization techniques. Results showed that the antibacterial activity of ampicillin 38 

conjugated to gold and silver NPs was enhanced up to 10 and 5 times respectively, when compared with 39 

the non-conjugated antibiotic. The kinetics of the conjugated ampicillin were improved. Bacterial 40 

membrane destruction was scarcely evident after treating a cell culture with pure ampicillin for four hours. 41 

However, Ag conjugates have severely disrupted the cell membranes and Au conjugates have completely 42 

destroyed the cell morphology. The study gave an insight of the enhanced antimicrobial action of ampicillin 43 

and can be exploited for the devising nanoparticle’s based antimicrobial agents. More sophisticated 44 

approaches such as faster and more efficient diagnostics, non-antimicrobial methodologies to prevent and 45 

treat infections and a better understanding of staphylococcal pathogenesis will also be required to forestall 46 

the future of the bacterial resistance. 47 

Keywords: Bacterial resistance, ampicillin, antibacterial activity, Ag and Au nanoconjugates, 48 

AFM, cell morphology 49 
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 59 

Introduction 60 

 Nanotechnology has attracted significant attention because of the unique characteristics 61 

and increasing importance of nanomaterials in various fields especially in nanomedicine [1]. Their 62 

uniqueness is due to high surface area and more atoms at the particle boundaries. Among the 63 

different metallic NPs, silver and gold NPs have comprehensive range of uses in nano-scale 64 

strategies and tools due to their chemical inertness [2-5]. The worldwide increase in bacterial 65 

resistance to existing medicines is a long-standing problem for human health. Bacterial resistance 66 

to antimicrobial drugs has increased due to the irrational use of antibiotics, thus creating problems 67 

in the treatment of bacterial infections. The development and spread of resistance to antibiotics 68 

has compromised the clinical efficacy of currently existing antibiotics and highlighted the need for 69 

new antibacterial compounds [6]. β-Lactam antibiotics are the most widely used antibiotics for 70 

their effectiveness and safety profile, however occurrence of new, more antagonistic β-lactamases 71 

has reached the point where several marketed β-lactams are no longer clinically effective [7]. 72 

Therefore, immediate approaches are needed to develop new antimicrobial drugs to handle this 73 

problem. This has evoked a solid reaction from health consultants, who have implemented 74 

initiatives to inspire the discovery of new antibiotics. One of the capable approaches for restricting 75 

bacterial resistance is the application of metallic NPs as a powerful nano-weapon against multidrug 76 

resistant bacteria [8-10], because metallic NPs has the ability to target several bacterial structures 77 

[11]. There is a mounting evidence that the synergistic effect of antibiotics and NPs resulted in an 78 

increase in antibacterial activity of antibiotics [12-16] and gold and silver allay NPs, bound to 79 

antibiotics displayed enhanced antibacterial potential [17]. The Ag NPs of antibiotics including 80 

penicillin, vancomycin and amoxicillin, exhibited increased antibacterial activity against S. aureus 81 

and E. coli [18]. Our previous work has shown that the antibacterial effect of ceftriaxone against 82 

E. coli can be enhanced up to six times through conjugation with silver and gold NPs [19]. These 83 

findings are very important because such potent antibiotics can be made active in comparatively a 84 

small amount to treat infections, thereby decreasing side effects and minimizing the problem of 85 

drug resistance. In this paper, we present the enhancement of the antibacterial potential of 86 

ampicillin via conjugation to Au and Ag NPs. We have also explored the antibacterial action of 87 
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these nanoconjugates against S. aureus bacteria under atomic force microscope (AFM), which 88 

enabled us to obtain detailed and exciting close-up images of the nanoconjugates involved in 89 

various stages of antimicrobial actions. AFM is an appropriate tool for the study of living samples 90 

and a distinct vantage is that samples can be analyzed without fixation, vacuum and conductive 91 

coating. This technique is extremely efficient in getting images of tiny, highly fragile structures of 92 

bacteria, morphological changes suggestive of antibacterial activity [20-24] and a further detailed 93 

perception in the structure and mechanics of living specimens [25-26]. 94 

Results and discussion 95 

The morphological analysis and mechanism of action of the antimicrobial activity of ampicillin 96 

conjugated with AgNPs (Mpn-AgNPs) and AuNPs (Mpn-AuNPs) on staphylococcus aureus using 97 

AFM was studied for the first time. S. aureus is a sensitive strain of bacteria that infect humans 98 

and can cause respiratory diseases, food poisoning and skin infections [27]. S. aureus is notorious 99 

for its capability to develop resistance to antibiotics and has created a worldwide problem in 100 

clinical treatment [28]. Ampicillin was capped with Ag and Au NPs by mixing its aqueous solution 101 

with ionic solutions of Ag and Au in the presence of triethylamine as a reducing agent. UV-visible 102 

spectroscopy was used to monitor the conjugation of ampicillin with Ag and Au NPs. The UV-103 

visible spectra of the Mpn-AgNPs and Mpn-AuNPs exhibited surface plasmon bands (SPB) at 396 104 

nm and 540 nm, respectively (Fig. 4), which can be correlated with the typical plasmonic 105 

absorption of Ag and Au NPs [29-30].  The conjugation of ampicillin with Ag and Au NPs was 106 

further confirmed by FT-IR spectroscopy (Fig. 5). The FTIR spectrum of ampicillin exhibited 107 

absorption bands in region 3512 cm-1 and 3205 cm-1 which could be associated with stretching 108 

vibrations of O–H and N–H groups, respectively. The band at 2968 cm-1 can be assigned to the 109 

stretching vibrations of C–H groups, carbonyl group of the lactame ring showed the stretching 110 

vibration at 1774 cm-1 and the amide carbonyl group exhibited band at 1688 cm-1. The band at 111 

1372 cm-1 could be assigned to the stretching vibrations of C–N of the lactame and thiazole. 112 

The conjugation of ampicillin with Au and Ag NPs result in the decrease in absorbance intensities 113 

and merging of bands of O–H (3512 cm-1), N–H (3205 cm-1) and C=O (1774 and 1688 cm-1) 114 

stretching [31]. Ag and Au NPs were then characterized by AFM and their size were found to be 115 

around 15-50 nm (Fig. 6).  116 

http://en.wikipedia.org/wiki/Food_poisoning
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The aim of this study was to examine the boosted antibacterial action and kinetics of the ampicillin 117 

Ag and Au NPs through AFM against S. aureus, which has not yet been explored. The 118 

membranolytic properties in the mechanisms of action of the antibiotics ampicillin, magainin and 119 

human platelets extract have been studied by using Bacillus cereus and Escherichia coli as the 120 

bacterial targets [32]. Similarly chitosan NPs of ampicillin trihydrate were synthesized and claimed 121 

that they would be capable of sustained delivery of ampicillin [33]. Another study is based on 122 

functionalized ampicillin with Ag and Au NPs and their antimicrobial activity against different 123 

bacterial strains by determining their minimum bactericidal concentration (MBC) [34]. This paper 124 

is offering the first description on visualizing the effect of ampicillin and its Ag and Au NPs on S. 125 

aureus by AFM. The minimum inhibitory concentrations (MICs) of ampicillin and its Au and Ag 126 

NPs were determined through a zone of inhibition [35]. The MICs of pure ampicillin and 127 

conjugated ampicillin were found to be 50 ± 0.1, 60 ± 0.3 µg mL-1 (which corresponds to a 10.8 128 

µg ampicillin) and 75 ± 0.3 µg mL-1 (which correspond to a 4.52 µg ampicillin), respectively. 129 

While the MICs of bare Ag and Au NPs were calculated to be 85 ± 0.3 and 100 ± 0.2 µg mL-1, 130 

respectively (Fig. 7).  131 

The MIC for unconjugated ampicillin is in agreement with the literature value [36]. Although the 132 

MICs of Ag and Au conjugates were more than pure ampicillin, the conjugates contain only a 133 

small weight fraction of the ampicillin (18 % for Mpn-AgNPs and 6.03% for Mpn-AuNPs), which 134 

specifies that ampicillin conjugated to Ag and Au NPs is about 5 and 10 times more active than 135 

pure ampicillin, respectively. Further confirmation was carried by AFM which explored the more 136 

persuasive and rapid action of the conjugates. Morphological characterization of the control S. 137 

aureus samples showed typically round cells with normal shapes and flat membranes with a mean 138 

length of 1.052 µm, mean width of 1.082 µm and mean height of 0.104 µm and with a maximum 139 

height of 0.719 µm, as shown in Fig. 8. Bacterial cultures were then treated with pure ampicillin, 140 

its Ag and Au conjugates and bare Ag and Au NPs to study the comparative action and kinetics 141 

under AFM. Bacteria treated with MIC dose of unconjugated ampicillin for 1 hour showed slight 142 

effect and only small lesions were seen on bacterial cell surface (Fig. 9a). Cell Morphological 143 

degradation increased with time as a 2 hours treatment have further affected bacterial cells and 144 

after 4 hours considerable damages of cell bodies were observed (Fig. 10a, 11a). After 8 hours 145 

time period the cell morphologies were completely degraded and distorted (Fig. 12a). On the other 146 
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hand bacterial cultures treated with MIC dose of Mpn-AgNPs for 1 hour and 2 hours were found 147 

to affect the cells more than pure ampicillin (Fig. 9b, 10b) with complete destruction of bacterial 148 

cells after 4 hours treatment (Fig. 11b). A relatively stronger effect was observed in case of Mpn-149 

AuNPs of MIC dose on the bacterial cells in 1 hour and 2 hours treatment (Fig. 9c, 10c), and a 150 

complete rupture of bacterial cells in 4 hours (Fig. 11c). Unconjugated Ag and Au NPs of MIC 151 

doses did not show any observable effect but only minimal morphological changes and only a very 152 

slight influence was observed even after treatment for 8 hours (Fig. 12b, c). 153 

The interaction of NPs with a bacterial cell still needs further exploration, however many studies 154 

have shown that at first metal NPs adsorb to surface of a microorganism due to resultant 155 

electrostatic pressure and high affinity of metals towards Sulphur in the proteins [37]. After that, 156 

NPs get inside into the cell causing perforations and lead to the release of the cellular matrix [38-157 

40]. Here in this case ampicillin reacts with the outer peptidoglycan layer of S. aureus thereby 158 

enhancing the membrane’s permeability. Subsequently the NPs get into the cells through 159 

membranes and may be attached to the bacterial DNA and protein; thus, causing death of the cells 160 

by disturbing metabolism and vital functions [41-43]. Consequently, the mutual action of 161 

ampicillin and Ag and Au NPs lead to enhanced antibacterial potential [44] Transmission Electron 162 

Microscopy was used for studying the antibacterial potential of silver NPs against E. coli [38], but 163 

it represented E. coli when they were lifeless. Here in this study AFM explored noticeable 164 

investigation of S. aureus by providing a thorough topographic demonstration of shape, surface 165 

and phase imaging morphology that allowed analyses of height, width, length and boundary 166 

stiffness. 167 

Conclusion 168 

Ampicillin was conjugated with Ag and Au NPs and were characterized by UV-visible, 169 

FT-IR and AFM. The NPs were found to be very stable. The antibacterial potential of the 170 

synthesized NPs was studied against S. aureus and it was found that conjugated ampicillin 171 

exhibited antibacterial activity 5-10 times higher than the free drug. The kinetics and 172 

morphological changes in the bacterial cell were studied under AFM. The study gave an insight of 173 

the enhanced antimicrobial action of ampicillin and can be exploited for the devising 174 

nanoparticle’s based antimicrobial agents. More sophisticated approaches such as faster and more 175 
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efficient diagnostics, non-antimicrobial methodologies to prevent and treat infections and a better 176 

understanding of staphylococcal pathogenesis will also be required to forestall the future of the 177 

bacterial resistance. 178 

 179 

Experimental section 180 

Materials 181 

Silver nitrate (AgNO3) and Tetrachloroauric acid trihydrate (HAuCl4.3H2O) was purchased 182 

from Merck, triethylamine (TEA) from Scharlau and ampicillin (Mpn) were supplied by 183 

Pharmagen Limited, Lahore, Pakistan. Staphylococcus aureus ATCC 11632 (provided by H.E.J. 184 

Research institute of Chemistry (ICCBS), University of Karachi, Karachi Pakistan was used to 185 

evaluate the antibacterial activity of ampicillin and its silver and gold nano-conjugates. We used 186 

deionized water throughout experiment for the synthesis of NPs and further analysis. 187 

 Synthesis of silver NPs stabilized with Ampicillin (Mpn-AgNPs) 188 

Solution of ampicillin (1 mM) and AgNO3 (1 mM) were prepared in deionized water. These 189 

two solutions were mixed using optimized ratio (9:1 Ag:ampicillin mole ratio). The reaction 190 

mixture was stirred for 30 minutes and then 0.1 mL of triethylamine was added to it. The color of 191 

the reaction mixture turned to yellowish red; the reaction was carefully monitored through UV-192 

visible spectroscopy. The reaction mixture was stirred for 2 hours then the suspensions were 193 

centrifuged to collect NPs. Unreacted precursors and reaction by-products were removed by 194 

washing the NPs repeatedly. 195 

Synthesis of gold NPs stabilized with Ampicillin (Mpn-AuNPs) 196 

1 mM solution of HAuCl4.3H2O and a 1 mM solution of ampicillin were prepared in 197 

deionized water. These two solutions were mixed using optimized ratio (12:1 Au:ampicillin mole 198 

ratio). The reaction mixture was stirred for 30 minutes and then 0.1 mL of triethylamine was added 199 

to it. The reaction start immediately and colorless reaction mixture turned to purple red; the 200 

reaction was monitored by UV-visible spectroscopy. The reaction mixture was stirred for 2 hours 201 
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and the suspensions were centrifuged to collect NPs. Unreacted precursors and reaction by-202 

products were removed by washing the NPs repeatedly. 203 

 Characterization 204 

The synthesized ampicillin Ag and Au conjugates were characterized by UV-vis 205 

spectroscopy; the spectra were collected by a Thermo Scientific Evolution 300 spectrophotometer. 206 

FT-IR spectra were acquired with a Bruker Victor 22 spectrophotometer. Finally the shape and 207 

size of NPs were determined by AFM (AFM, Agilent Technologies 5500, USA). The instrument 208 

was used in ACAFM mode. The samples were dried on freshly cleaved mica surface for analysis 209 

at ambient temperature. Si cantilever of force constant 42 N/m, length 125 µm and resonance 210 

frequency 330 KHz was maintained throughout the analysis. 211 

Quantification of the weight of ampicillin in the conjugates. 212 

A known volume of suspension was centrifuged and the precipitated NPs were collected. 213 

The supernatant was repeatedly centrifuged to remove the synthesized NPs. The supernatant was 214 

then freeze-dried, and the residues weighed. Using this method the ampicillin was estimated as 18 215 

wt% for Ag NPs and 6.03 wt% for Au NPs conjugates. 216 

 Stability of the NPs 217 

UV-visible spectroscopy was used to describe temperature, salinity and pH stability of the 218 

suspensions. Coagulation is usually accompanied by color change and shift of the surface plasmon 219 

towards longer wavelengths [45]. The Ag and Au conjugates of ampicillin were found to be stable 220 

at 100oC and 50oC temperature, respectively (Fig. 1), in a 3-12 pH range (Fig. 2) and salt 221 

concentration up to 50 mM (Fig. 3). 222 

Minimum Inhibitory Concentration (MIC) by Agar well diffusion method. 223 

To calculate MICs, the agar-well diffusion method was employed [46]. MICs for ampicillin 224 

were measured with or without silver and gold NPs. In brief, nutrient agar was used as a medium 225 

to grow a lawn of S. aureus ATCC 11632 at a concentration of 106 cells in one mL and duplicate 226 

dilutions were used to calculate minimum inhibition zones. The 60 mm well was made by using a 227 
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borer. The 500 µg ml-1 stock solution of ampicillin and its Ag & Au NPs were used to avoid 228 

nonspecific merged zones of inhibition. In each well different amounts of various concentrations 229 

ranging from 500-5 µg ml-1 were added. The plates were incubated at room temperature for 2 hours 230 

to allow the diffusion process to take place before it was incubated for 24-48 hours at 37 ºC ± 1. 231 

The zones of inhibition were measured by using a millimeter scale. 232 

 233 

Antibacterial activity and Morphological changes of Staphylococcus aureus under AFM 234 

S. aureus ATCC 11632 were grown on Tryptic soya agar (Oxoid UK) at 37 ±0.5 ºC for 24 235 

hours in static condition and marked as stock S. aureus culture. On freshly cleaved mica slide, 10 236 

µL drop(s) of polylysine was added and left to dry. Then, freshly incubated culture of S. aureus 237 

on tryptic soya agar (Oxoid UK) inoculated in sterilized distilled water to make 106 cfu of S. aureus 238 

and 5-10 µL droplets of this solution were transferred onto a freshly cleaved mica surface. The 239 

sample was characterized by atomic force microscopy to check its morphology of bacterial cells. 240 

MIC (50 µg) dose of ampicillin were added into test tubes of nutrient broth containing 106 cfu of 241 

S. aureus bacteria and incubated it for 1-8 hours respectively at 37 ±0.5 ºC after incubation 5-10 242 

µL drops of each dose transferred on freshly cleaved mica coated with polylysine separately and 243 

left it for dry and was characterized by AFM. The same procedure was applied for Ampicillin 244 

conjugated with AgNPs, MIC (60 µg) dose was treated with 106 cfu of S. aureus for 1, 2, and 4 245 

hours respectively and were characterized by AFM to check the cell changes and noted the effects 246 

of these conjugates. On the other hand Mpn-AuNPs (75 µg) were treated with 106 cfu of S. aureus, 247 

and incubated at 37±0.5 ºC. 5-10 µL of this suspension was transferred on freshly cleaved mica 248 

coated with polylysine and left it for dry and then was characterized by atomic force microscopy. 249 

On this way we recorded, control, treated with ampicillin, ampicillin conjugated with Ag and Au 250 

NPs and bare Ag & Au NPs images of S. aureus in similar condition using AFM (AFM, Agilent 251 

Technologies 5500, USA) in the ACAFM mode. We used high frequency Si cantilever having 252 

length of 125 µm, force constant 42 N/m and resonance frequency 330 KHz. All samples were 253 

prepared and analyzed in a same condition.  254 

 255 
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Figures caption 414 

Fig. 1: Heat stability of Mpn-AgNPs (A) and Mpn-AuNPs (B) 415 

Fig. 2: PH stability of Mpn-AgNPs (A) and Mpn-AuNPs (B) 416 

Fig. 3: Salt stability of Mpn-AgNPs (A) and Mpn-AuNPs (B) 417 

Fig. 4: UV-visible spectrum of Mpn-AgNPs (A) and Mpn-AuNPs (B) 418 

Fig. 5: FT-IR spectra of Mpn-AgNPs (A) and Mpn-AuNPs (B) 419 

Fig. 6: AFM images of Mpn-AgNPs (A) and Mpn-AuNPs (B) 420 

Fig. 7: Minimum inhibitory concentration of Ampicillin (1), Mpn-AgNPs (2) Mpn-AuNPs (3) 421 

bare AgNPs (4) and bare Au NPs (5) 422 

Fig. 8: AFM images of S. aureus before treatment (control), Tophography (A), 3D (B) 423 

Fig. 9: AFM images of S. aureus treated for 1h with (A) ampicillin (B) Mpn-AgNPs (C) Mpn-424 

AuNPs  425 

Fig. 10: AFM images of S. aureus treated for 2h with (A) Ampicillin (B) Mpn-AgNPs and (C) 426 

Mpn-AuNPs  427 

Fig. 11: AFM images of S. aureus treated for 4h with (A) ampicillin (B) Mpn-AgNPs and (C) 428 

Mpn-AuNPs  429 

Fig. 12: AFM images of S. aureus treated for 8h with (A) ampicillin (B) bare AgNPs and (C) 430 

bare AuNPs  431 
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