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Abstract 

The use of halogens in the crystal engineering of porphyrin scaffolds has been a topic 

of strong interest over the past decades. Previously, this was focused on the 

introduction of a variety of halogens on the meso-phenyl groups of the porphyrin. 

However, investigations into the effects of direct halogenation of porphyrins at the 

meso-position on their crystalline architectures have not been conducted to date. 

Herein we have characterized a series of direct meso-halogenated porphyrins using 

single crystal X-ray crystallography. This is accompanied by a detailed conformational 

analysis of all deposited meso-halogenated porphyrins in the CCDC. In this study we 

mailto:sengem@tcd.ie
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have used the Hirshfeld fingerprint plots together with normal-coordinate structural 

decomposition and determined crystal structures to elucidate the conformation, 

present intermolecular interactions, and compare respective contacts within the 

crystalline architectures. Additionally, we have used density functional theory 

calculations to determine the structure of several halogenated porphyrins. This 

contrasts conformational analysis with existing X-ray structures and gives a method to 

characterize samples that are difficult to crystallize. 

Keywords 

porphyrins; halogenation; crystal engineering; conformational analysis; macrocycles 

Introduction 

Crystal engineering using porphyrins as a scaffolding unit has been a topic of 

increasing interest over the past few decades. The first instance of this began with the 

seminal work of Byrn et al. proposing the idea that the highly ordered “porous” structure 

of porphyrin clathrates can be used as a form of “porphyrin sponge” [1]. This work 

described the use of a 5,10,15,20-tetraphenylporphyrin ‘host’ to trap a variety of 

solvent ‘guest’ within the crystal lattice, using strictly hydrogen-bonding and van der 

Waals forces. Since then, crystal engineering of porphyrins has focused on the use of 

a variety of noncovalent interactions such as hydrogen-bonds and halogen-bonds, or 

metal coordination interactions [2−13]. These complexes have been reported to be of 

use in a range of areas in material sciences, such as molecular sieves, due to the 

formation of a three-dimensional lattice in which more than 50% of the crystal volume 

consisted of open straight channels [5,6]. For example, one notable report is that by 
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Titi et al. on the self-assembly of meso-tetraaryl porphyrins through halogen bonding 

forming a chiral architecture based on C−I···N and C−I···π interactions [7]. 

In recent years there has been a strong uprising interest for substituting hydrogen-

bonding motifs with their halogen-bonding counterparts. This is due to their relative 

versatility in areas such as directionality, the tenability of the σ-hole, hydrophobicity, 

and donor atom size [14]. These traits allow for the design of novel supramolecular 

architectures which are directive and reproducible, without relying on the hydrogen-

bonding functionality which in some cases can be undesirable. Recent studies from 

our group have been carried out on the use of halogens as a binding motif in cubanes 

[15], bicyclo[1.1.1]pentane [16], and nonplanar porphyrins [17]. Another reason to 

investigate the effect of meso halogenation of porphyrins is due to the potential of 

induced distortion of the macrocyclic core. Due to their relatively large size and high 

electronegativity, halogens induce a conformational distortion of the porphyrin core that 

is significant compared to those induced by other substitution groups. As recently 

illustrated in a review by Kielmann and Senge [18], the conformation of the porphyrin 

core can play a key role in the binding of small molecules or on its efficiency as an 

organocatalyst as demonstrated by Roucan et al. [19]. With the continuing interest in 

nonplanar porphyrins [20] and their relevance for the in vivo functioning of porphyrin 

cofactors [21], there is a significant importance of the knowledge of the conformation 

when designing supramolecular materials. 

Studies on the effect of meso-halogenation have focused on the use of crystal data as 

a means of characterization [22], discriminating between enantiomers [23], or as a self-

contained structural discussion [24]. However, with all the advances made in the crystal 

engineering of planar porphyrins, investigation through exploration into the effect of 

meso-halogenation on the macrocycle architecture have, to date, not been carried out. 

Herein, we present a comprehensive discussion of the interactions formed and 
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conformation for all deposited meso-halogenated porphyrins in the CCDC, 

accompanied by data obtained from our group. Hirshfeld fingerprints [25] were 

obtained to elucidate the intermolecular interactions and compare the respective 

contacts. This is complemented with the use of density functional theory (DFT) 

calculation of structures that have currently not been determined due to difficulties of 

obtained crystals of sufficient quality for X-ray determination. 

Results and Discussion 

We present herein a comparative analysis of the crystallographic structural 

characteristics of 13 mesox-halo-substituted porphyrins combined with data obtained 

from the CCDC crystal structure database [26] that show and quantify a general 

structural motif that is consistent among the majority of mesox-halo-substituted 

porphyrins. Hirshfeld surface analysis (HSA) displayed that H···H, X···C, and X···H 

(where X is a halogen atom) interactions vastly contribute to the formation of the crystal 

networks. Additionally, DFT calculations were conducted for further exploration of the 

ground state geometries and concurrently frontier molecular orbitals (FMOs) and 

sigma-holes have been displayed. 

Crystal Structure Analyses 

5-Halo-substituted Porphyrins 

First, we are looking at the 5-halo-10,20-diphenyl porphyrins (Figure 1). In this series, 

we obtained structures of the free base bromo derivative 1 and discuss the nickel (II) 

bromo derivative 2 [27] and the free base iodo derivative 3 [22] from the CCDC [26]. 

Additionally, we have included the substituted derivative of 2 with an acetylene moiety 

(2A) to investigate the differences observed between alternative substitution types. 
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The labelled ORTEP and packing diagrams for compounds 1 and 2A are available in 

SI (Figure S1-S4). 

 

 

Figure 1: 5-Halo-substituted porphyrins. 

 

The first feature which is of interest is the crystal packing of each of the 5-halo-

substituted compounds which appear affected by both halogen type and metal 

insertion. In compound 1 the main motifs seen are the face-to-face stacking at 3.326(4) 

Å (Figure 2A) and the tilted edge-on interaction (~64°) (Figure 2B). The other motif 

seen is the inline interactions where layers of porphyrins are lined up with the bromine 

atoms pointing towards the phenyl rings in a ↑↓↑↓ repeating pattern (Figure 2C). 

However, in this structure, there is no apparent halogen bonding. 
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Figure 2: Expanded view of compound 1 in the crystal showing (A) stacking; (B) tilted 

edge-on interaction; (C) layers of porphyrin with ↑↓↑↓ repeating pattern. 

 

By the addition of a nickel(II) metal center to compound 1, we obtain the structure of 

compound 2 [27]. In this structure a variety of changes in the overall porphyrin 

conformation are observed due to the metal center insertion. The first of these is the 

stacking between the porphyrin rings (at 3.581(3) Å), which now features the bromine 

atoms pointing in opposite directions with a ruffled conformation of the porphyrin 

macrocycle (Figure 3A). Moreover, a similar motif of bromine atoms pointing towards 

the phenyl rings in a ↑↓↑↓ repeating pattern is visible in this structure and seems to be 



7 

a staple of this series (Figure 3B). Secondly, the edge-on interaction in this structure 

has changed, where the pyrrole moiety is pointing towards the face of the porphyrin 

macrocycle as seen in Figure S5A. This is accompanied by a Br···H short contact 

[Br1···H12–C24; 3.291 (1) Å, 137.4 (7)°] which combines to form the packing seen in 

Figure S6. 

 

 

Figure 3: Expanded view of compound 2 in the crystal showing (A) stacking; (B) layers 

of porphyrin with ↑↓↑↓ repeating pattern. 

 

In compound 3 the packing of these structural archetypes is changed [22]. The stacking 

between macrocycle planes is similar to that of 2 (at 3.569(2) Å) (Figure 4A). 

Additionally, the edge-on interactions show the same tilted motif seen in compound 1. 

However, this is combined with a new halogen directed close packing between the 

iodine atom and the edge of the porphyrin ring in a repeating step-wise pattern which 

is not seen in the other two structures (Figure 4B). While this may be difficult to 

visualize in the crystal packing (Figure S7), it is clear from the Hirshfeld surface 

analysis that there are marked decreases in the X···H contacts and an increase in the 

X···C (where X is a halogen atom) between compounds 1 and 3 (Figure S8). 
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Figure 4: Expanded view of compound 3 in the crystal showing (A) stacking; (B) edge-

on interactions. 

 

The differences observed for bond lengths and angles incurred by increasing the atom 

size are minimal between Br (1) and I (3); in most cases it is less than 0.01 Å change 

(Table S1). Of note, in this case, is the marked decrease in the ∠CaCmCa of 2° seen in 

compound 3. Generally, all atom displacements (Δ24, ΔN, ΔCa, ΔCb, and ΔCm) [20] 

show a significant increase along with the pyrrole tilt angle moderately increasing when 

substituting a bromine atom for an iodine atom. This, however, does not change the 

core size to any large degree. To further investigate these subtle differences, we can 

look at their Normal-coordinate Structural Decomposition (NSD) profiles (Figure S9) 

[28]. It can be observed that in the out-of-plane (OOP) distortion modes, the overall 

DOOP is almost tripled between compound 1 and 3 due to an increase in the saddle 

(B2u) conformation, while little change has occurred in the in-plane (IP) with a 

moderate increase in the B2g. While an increase in the size of the substituted halogen 

has a moderate effect, a much larger effect is observed due to metal insertion. This is 

seen as a general decrease in the bond lengths, bond angles, and core size, 

corresponding to a significant increase in atom displacement and pyrrole tilt angles. 
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This is essentially due to the ruffling caused by inserting a nickel(II) center [29–31] and 

is reflected in the NSD by a large increase in the contribution of the B1u OOP mode. 

While the differences between halogen size and metal insertion are apparent, we were 

fortunate to obtain the structure of the acetylene substituted derivative of compound 2 

(2A). In this structure, we can look at the changes between 2A and its bromo derivative 

2. The first thing to note is how planar this structure is (see Table S1). Even with the 

inclusion of nickel(II) in compound 2A most of its bond lengths, bond angles, and core 

size are reduced, similar to compound 2, as seen in Table S1. However, the atom 

displacement is more akin to that of compound 3 showing little deviation within the 

macrocycle core. The combination of these features results in a packing like the one 

observed in compound 1 (Figure S4) with the same stacking, edge-on interaction and 

layers of porphyrin with ↑↓↑↓ repeating pattern (Figure S10). This is also reflected in 

the NSD where the largest contribution is seen in the B1u OOP mode, but it is not 

much more significant than compound 3. In the IP distortion modes, it has the lowest 

DIP contribution. This indicates that the effect a meso-substituted halogen has on the 

porphyrin macrocycle can be observed in the NSD with increasing halogen size evident 

in both the OOP and IP (Figure S9). Additionally, the combination of a metal center 

and a halogen atom seems to have a greater impact than the sum of its individual 

effects in the OOP, while marginal differences are observed in the IP. 

5-Halo-15-phenyl-substituted Porphyrins 

Next, we are looking at the 5-halo-15-phenyl porphyrins with a varied selection of 

10,20-substitution. We have obtained the crystal data for a selection of Cl, Br, and I 

porphyrins with either tolyl, hexyl, or phenyl substituents in the 10,20-position 

(compounds 4-8) (Figure 5). The labelled ORTEP and packing diagrams for 

compounds 4-8 are available in SI (Figure S11-S20). 
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Figure 5: 5-Halo-15-phenyl-substituted porphyrins. 

 

The structure of compound 4 is a shift from the previous 5-halo-10,20-diphenyl 

porphyrins series. Due to the phenyl substituent added the edge-on interactions 

previously observed are no longer present. There is a combination of four motifs: a 

tilted alignment of porphyrin rings (Figure S21A), chlorine atoms pointing towards the 

tolyl group (Figure S21B), the chlorine overlap (Figure S21C), and the tilted overlap 

between phenyl rings (Figure S21D). These features combine to make a complex 

packing system seen in Figure S12. The addition of the tolyl group breaks the high-

ordered packing previously observed. The chlorine atom does not appear to have any 

substantial interactions present in the crystal structure. 

The structure of compound 5 only differs from the structure of compound 1 by the 

addition of a phenyl moiety. In this structure, the same porphyrin overlap seen in Figure 

2A is apparent (Figure S22A) with a separation of 3.359(2) Å between the porphyrin 

layers. This is coupled with a short contact between the bromine atoms and the meta-

hydrogen of the phenyl ring tethering porphyrin molecules to the one above it (Table 

1). Considering the bond lengths, angles, and atom displacement there are only 

marginal differences in each case except for a notable increase in the atom 

displacement and pyrrole tilt angles (Table S2). This is represented by an increase in 
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OOP distortion mainly in the Eg(y) distortion mode and a second contribution to the 

Eg(y), while there are no changes to the IP modes (Figure S23). 

With the introduction of a hexyl group to the 10,20-position of the porphyrin ring, the 

complete packing arrangement is changed. Compounds 6 and 7 both show a 

preference for interacting in a head-to-head fashion with a Br···H interaction seen 

between the bromine atoms and the pyrrole unit for 6 (Figure S24A) or the hexyl chain 

for 7 (Figure S24B) (see Table 1 for distances and angles). However, the main feature 

of this type is the packing, where the porphyrin macrocycles are stacked with hexyl 

chains aggregating with each other (6, 3.270(5) Å, Figure S24C) (7, 3.316(4) Å, Figure 

S24D). Looking at the bond lengths and angles (Table S2) there are common changes 

observed when introducing a nickel(II) metal center. However, the atom displacements 

and pyrrole tilt angles are reasonably constant. This suggests that the hexyl groups 

have a larger impact on the conformation and tend to alleviate ring strain by inducing 

a more planar conformation. This can be visualized in the NSD where the OOP of 6 

and 7 are almost equal and it is only in the IP modes that they differ with an increase 

in the B2g and corresponding decrease in the A1g distortion modes (Figure S23). 

 

Table 1: List of hydrogen···halogen interactions seen in compounds 5-7. 

 D···H–A Distance (Å) Angle (°) 

5 Br1···H203–C203 3.138(3) 136.1(1) 

6 Br1···H7–C7 3.191(2) 123.9(5) 

7 Br1···H20F–C202 2.979(4) 134.0(2) 

 

The final structure in this series is the iodine and hexyl combination (compound 8). In 

this structure, the stacking is above with a separation of 3.255(5) Å (Figure S25). 

Interestingly, this structure features both arrangements previously seen with a close 
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packing observed between both pyrrole (Figure S26A) and hexyl (Figure S26B) units 

depending on the residue in the asymmetric unit. Considering the bond lengths and 

angles (Table S2), there are almost no differences between compound 6 and 8 

suggesting that little effect is caused by increasing the size of the halogen atom. This 

is also seen in the NSD where the overall profiles are similar to compound 6, in the IP 

with only a small difference observed in the OOP due to a shift from the Eg(x) to the 

Eg(y) closer aligned to compound 4. 

To elucidate the intermolecular interactions, the Hirshfeld surface analyses were 

obtained (Figure S27). These fingerprint plots showed that X···H (halogen···hydrogen) 

contacts appear in a relatively similar percentage for compounds 4-8 and X···C 

(halogen···carbon) contacts for compounds 4 and 5 display a relatively low percentage 

compared with compounds 6-8 where no interaction appear. Additionally, C···H 

(carbon···hydrogen) contacts displayed a decrease in the percentage with a 

descending order from compound 4 to 8 whereas H···H (hydrogen···hydrogen) 

contacts are the most numerous contributors between the interacting atoms. 

Regarding the substitution at positions 10 and 20, it is pointed out that the hexyl groups 

affect the pattern of C···H (decrease of the percentage) and H···H (increase of the 

percentage) contacts. 

5,15-Di-halo-substituted Porphyrins 

In this series, we investigate the effects of 5,15-di-halo-substitution that contain a 

variety of aryl or alkyl substituents at the 10,20-positions (compounds 9-15) (Figure 6). 

The labelled ORTEP and packing diagrams for compounds 9, 10, 11, and 13 are 

available in SI (Figure S28-S36). The main feature of this series is the increase in the 

number of X···H interactions and the appearance of X···X (halogen···halogen) 

interactions which are outlined in Table S3. 
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Figure 6: 5,15-Di-halo-substituted porphyrins. 

 

The structure of compound 9 shows three motifs driven by Br···H interactions (Figure 

S37) that when combined (Figure S38) establish the packing pattern (Figure S29). As 

with compound 1, the stacking between the porphyrin layers is organized with the 

bromine atoms overlapping with each other at a separation of 3.306(3) Å among the 

porphyrin macrocycles. In compound 9 we see a structure that is similar to both 

compounds 1 and 5 in basic architecture. This is reflected in the bond lengths, angles, 

and atom displacement (Table S4) where a similar distance is observed for both 

compounds 1 and 5. It is in the atom displacement that the effect of the di-bromination 

is apparent. The addition of a phenyl ring to the 15-position (compound 5) increases 

the disorder observed. However, when this is changed to a bromine atom, an 

alleviation of ring strain is observed resulting in a structure that is more planar than 

compound 1. Substituting the phenyl groups for a tolyl as in compound 10 results in a 

similar structure with bond lengths, etc. (Table S4) except for a marginal increase in 

the atom displacement and pyrrole tilt angles. While these changes are only minimal, 
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there is a variation of the packing compared to 9 with a more V-shaped pattern (Figure 

S31). This is directed by a combination of Br···H interaction between the bromine and 

the methyl moiety rather than aromatic hydrogens (Figure S39A) and the tilted edge-

on interaction (Figure S39B). Comparing the NSD profiles of both samples their IP 

profiles are almost identical, but the extra distortion can be seen in the OOP with an 

increasing contribution of the Eg(x). 

Compound 11 adopts a packing arrangement that is unique among the compounds 

studied in this section. As seen in Figure S41A, one central porphyrin is surrounded 

on four sides by four other porphyrin molecules. This is tethered through a selection of 

Br···H interactions which are outlined in Table S3. The second motif seen in this 

structure is a Br···H interaction which is reciprocated between two porphyrin molecules 

(Figure S41B) and Br···Br contact on the opposite side (Figure S42). The bond lengths 

etc. are typical of nickel(II) porphyrins, however, it appears that the distortion of 

compound 11 is much greater than the other nickel(II) porphyrins within this series. 

The distortion of this structure is almost twice large as the second-largest distortion 

(compound 2) which is reflected in both the OOP and IP (Figure S40) and can be seen 

in the larger increase of the atom displacements and pyrrole tilt angles (Table S4). 

The structure of compound 12 is an interesting example of the effects that long alkyl 

chains have on the overall packing. This is seen as the preferred alignment of alkyl 

chain with each other, reminiscent of a lipid bilayer (Figure S43) [23]. There are four 

motifs that contribute to the overall packing seen in Figure S44. The first two (Figure 

S43A and B) are directed through alkyl interactions with a head-to-head overlap 

(Figure S43A) and the stacked system (Figure S43B). The third motif is the close-

packed side-on alignment which is due to the space occupied by the bromine atom, 

although there is no indication of potential halogen interactions. The final motif is a 

head-to-head Br···H contact between the porphyrin macrocycles (Figure S44) which 
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tether the porphyrin together extending the network to be an 

alkyl···porphyrin···alkyl···porphyrin type system. 

In the next three compounds 13, 13A, and 14 the main structure only differs by the 

steric demand due to one meso aryl unit (3,4,5- trimethoxyphenyl (13 and 13A), 2,4,6-

trimethoxyphenyl (14)) on one side [24]. Compound 13 is a recollection of the older 

sample 13A and is almost identical in structure. Both feature a parallel alignment of 

porphyrins tied together with the reciprocated Br···H contacts with the pyrrole 

hydrogens and a second contact between the bromine and the p-methoxy hydrogens 

(Figure S45A, Figure S46A). Both structures also feature the hexyl chain overlapping 

with the face of the porphyrin ring (Figure S45B, Figure S46B, Figure S47). Compound 

14 forms a similar parallel alignment as the one seen in compounds 13 and 13A (Figure 

S48A) with the o-methoxy hydrogens interacting with the bromine atom. Additionally, 

there is the presence of weakly π-stacked dimers in the crystal with a hexyl chain on 

the same face as a neighboring aryl group (Figure S48B). This results in a closer 

contact between the porphyrin layers compared to the packing of compounds 13 and 

13A (Figure S49). However, these deviations are in line with crystal packing and minor 

steric effects to be expected for this class of compounds. 

The final compound in this series is 15. In this structure, the porphyrins rings are set 

up in an edge-on interaction with both sides of the porphyrin ring tethered through the 

bromine atoms and the aryl units (Figure S50) [32]. On the side containing the axial 

THF molecule these interactions hold the pyrrole unit towards the face of the porphyrin 

(Figure S50A). On the opposite side, the pyrrole units are held above the central metal 

atom through one Br···H contact (Figure S50B). This forms a repeating pattern of face-

to-edge interactions with only minimal interference from the axial ligand (Figure S51A) 

and a hydrogen-bonded network between the methoxy moieties (Figure S51B). Both 

features are expressed throughout the crystal packing (Figure S52). 
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Hirshfeld surface analysis maps the corresponding intermolecular interactions with 

H···H contacts being the dominant ones with minor alterations in the percentage 

between this series of halogenated porphyrins (Figure S53). Only compound 12 

displays a higher percentage of H···H contacts together with a lower percentage of 

X···H contacts compared with the rest of the compounds. C···H contacts for 

compounds 9-11 are slightly higher than the respective ones of compounds 12-15, and 

X···C contacts do not display any significant difference amongst them. It is shown that 

the alkyl group, this time the hexadecyloxy group, can affect the pattern of C···H 

(decrease of the percentage) and H···H (increase of the percentage) contacts. 

5,10-Di-halo-substituted Porphyrins 

In this series, we are investigating the effects 5,10-di-halo-substitution that contain 

either a p-tolyl or 3,5-di-tert-butylphenyl group in the 15,20-position (compounds 16-

19) (Figure 7). The structure of compound 16A is a TMS-acetylene derivative of 

compound 16 which is included to analyze the difference in halogen and alternative 

substitutes. The labelled ORTEP and packing diagrams for compound 16A are 

available in SI (Figure S54 and S55). The hydrogen···halogen interactions are listed in 

Table 2. 
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Figure 7: 5,10-Di-halo-substituted porphyrins. 

 

Compounds 16-18 are a series of structures that only differ by the type of metal center 

in the porphyrin core [33,34]. In compound 16 the stacked porphyrin layers are 

orientated in a parallel arrangement with a 3.704(4) Å separation (Figure S56A) whilst 

a lateral alignment where the bromine atoms are pointing towards the tolyl groups in a 

linear network is observed (Figure S56B). The two other motifs seen are the bromine 

pyrrole interactions which is reciprocated in a head-to-head alignment (Figure S56C) 

and the bromine tolyl interaction in a head-to-tail alignment (Figure S56D), which 

combine to form the packing illustrated in Figure S57. By substituting the bromine 

atoms with a TMS-acetylene group the apparent lateral alignment of 16A is distorted 

due to the larger steric demand of the TMS moiety (Figure S58A). Additionally, while 

this structure expresses the same head-to-tail overlap between stacked moieties 

(separation between layers at 3.573(3) Å), shows a greater degree of overlap (Figure 

S58B). In compound 17, the stacking has alternated to a head-to-tail overlap with 

3.562(5) Å separation between the porphyrin layers (Figure S59A). Moreover, there is 

a head-to-tail linear network (Figure S59B) which is tied together with a Br···H contact 

with the aryl hydrogens. The combination of the vertical stacking and the lateral 

network forms the crystal packing (Figure S60). Compound 18 exhibits the same lateral 

alignment seen in the previous two structures, with all axial solvents pointing in the 

same direction (Figure S61A). The differences occur due to the presence of the axial 

methanol solvent in which the solvent hydrogen atoms interact with the bromine atom 

creating a staggering network (Figure S61B). Two other stacking motifs are noted in 

this structure on either side of the porphyrin face. The first is the stacking between two 

molecules where axial solvents are sandwiched between the porphyrin layers at a 

separation of 4.432(4) Å (Figure S62A). On the opposite side of the porphyrin, there is 
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a weak stacking interaction at a separation of 3.215(3) Å (Figure S62B). These features 

are expressed in the crystal packing in a repeating pattern (Figure S63). 

 

Table 2: List of hydrogen···halogen interactions in compounds 16-19. 

 D···H–A Distance (Å) Angle (°) 

16 Br2···H9–C12 3.076(17) 138.2(4) 

 Br2···H26–C34 3.115(17) 171.6(4) 

17 Br2···H11–C25 2.915(16) 148.6(5) 

18 Br1···H19–C33 3.053(9) 134.6(3) 

 Br2···H23–C35 3.113(8) 159.3(3) 

19 Br1···H13–C19 3.032(5) 159.3(2) 

 Br1···H20–C23 3.118(4) 133.6(5) 

 

The final compound in this series contains a 3,5-di-tert-butylphenyl in the 15,20-

position of the porphyrin ring (compound 19) [35]. This structure is a step up in steric 

bulk compared to compounds 16-18. With this addition, the inline alignment of 

porphyrins previously seen has changed to a step-wise pattern though a Br···H 

interaction with the four nearest neighbors (Figure S64). The stacking seen in this 

structure is directed mainly to accommodate the large size of the aryl subunit creating 

a slightly offset stacking pattern with a separation of 3.4526(7) Å (Figure S65). This 

creates a tightly packed structure (Figure S66). 

Overall, in this series one of the main features that is consistent is the network between 

the bromine atoms and the tolyl groups with only minor differences due to the insertion 

of a metal center and axial solvent molecules. This is seen in the Hirshfeld surface 

analysis, where only small variations in the percentage of contacts formed between 



19 

compounds 16-18 with a marginal increase in the H···H and a decrease in C···H 

contacts in compound 19 due to the bulky tert-butyl groups (Figure S67). With regards 

to bond lengths, angles, and atom displacement, there are only minor differences seen 

due to the inclusion of the metal center with compound 18 showing the lowest distortion 

with a small decrease in the atom displacement (Table S6). This is further compounded 

when moving to compound 19 with the large steric groups appearing to cause much 

more planar conformation of the porphyrin macrocycle. This is exemplified in the NSD 

profiles (Figure S68) where there is a general trend of decreasing distortion in the OOP 

from 16 to 19 with the only outlier seen in the minor increase of B1u contribution for 

the palladium derivative (17). In the IP this is further demonstrated with a significant 

decrease in the A1g contribution of 17 giving the palladium derivative the lowest overall 

DIP contribution. This indicates that while there are minor differences within 

conformation of these porphyrins, overall crystal packing is more reliant on the 

substituent groups and axial ligands. A final point in this series is the large increase in 

distortion comparing 5,10-di-halo-substituted (16) to 5,15-di-halo-substituted (9) 

derivatives due to the ‘trans’ nature of the substituents. 

Other Halogeno-substituted Porphyrins 

In the CCDC database, there are a few other notable examples which whilst they are 

interesting, they do not constitute a significant library to support a complete discussion 

(compounds 20-23, Figure 8) [36–38] Other examples do exist in the CCDC, such as 

strapped systems [39], but have been omitted due to the alternate functionality muting 

any effect the halogen would have on the porphyrin molecule. The bond lengths, 

angles, and atom displacements are outlined in Table S7. 
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Figure 8: Honorable mentions. 

 

In the structure of compound 20, while containing a halogen, it is apparent that the 

fluorine atom is too small to overly impact the overall packing. This structure has a 

planar conformation similar to that of 2,3,7,8,12,13,17,18-octaethylporphyrin [40]. Due 

to the high disorder in the crystal structure (the fluorine atom is disordered over the 

four meso positions) an accurate accounting of the interaction profile is not possible. 
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However, there is the appearance of an F···H interaction between the ethyl groups and 

the fluorine atom which is projected throughout the crystal packing (Figure S69). In 

compounds 21 and 22, the number of β-halogen atoms create two different packing 

patterns. The first is the head-to-head interactions directed through the chlorine atoms 

interacting with the tert-butyl hydrogens (Figure S70A). With the addition of a second 

beta halogen, this motif drastically changes to become a face-to-edge interaction with 

the halogen atoms pointing towards the center of the porphyrin ring (Figure S70B). 

This second β-halogen creates a much more ordered packing pattern compared to 21 

(Figure S71). The final structure (23) is the only example of a porphyrin dimer with a 

di-halogeno-substitution. Interestingly, this structure despite the extended dual-core 

and tilt of the porphyrin rings behaves quite like a 5,15-di-halo-substituted porphyrin. 

The bromine atoms are seen to interact with the tert-butyl and pyrrole hydrogen atoms 

in a head-to-tail arrangement (Figure S72) which is propagated through the crystal 

packing (Figure S73). Finally, the structure of 24 is included due to the presence of 2A 

and 16A (Figure S74-S75). As a series of TMS-ethynyl structures, the features are 

generally similar to each other. 

DFT Calculations and NSD Analysis 

The limited availability of meso-halogenic porphyrin crystal structures in the CCDC 

makes it difficult to study a complete series. While we can develop certain trends based 

on the current data sets, the gaps present are a current limitation. To combat this, we 

decided to expand these series with ab-initio computational molecular modelling. We 

focused on the structural modelling of three series. The ground-state geometries of 

several members of these series were optimized at the wB97-XD/cc-pVDZ level of 

theory and combined with NSD analysis to approximate the IP and OOP distortion 

modes. With the first series (Series 1) we looked at the effect of increasing the size 
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and number of the halogen substituents (Figure 9) beginning with 5,15-diphenyl 

porphyrin (1:1) and moving through the halogen series with both mono- and di-

substituted halogens and their metal counterparts. Series 2 contains a selection of 5-

phenyl substituted porphyrins with 1-3 meso bromine substitutes on the alternate 

positions (Figure 10). This is combined with the 5,10-diphenyl substituted porphyrins 

with either one or two bromine atoms substituted at the alternate meso positions. The 

final series (Series 3, Figure 11) demonstrates the increasing size of halogen atoms 

for 5,10-di-halo-15,20-diphenyl substituted porphyrins which were carried out to 

demonstrate the difference in halogen size has on the overall impact of the porphyrin 

macrocycle. The frontier molecular orbitals (HOMO and LUMO) at the ground-state 

optimized geometries, as well as figures of the electrostatic potential maps showcasing 

the sigma-hole regions, can be found in Tables S8-S10 and Figures S76-S83. While 

an in-depth systematic analysis of the electronic structure is out of the scope of this 

work, we have included this data in the supporting information for completion. 

However, we were able to extract atom coordinates and NSD data which can be 

compared to the existing crystal structures [28,41]. 

Series 1 

In series 1 (Figure 9) the conformations of the mono- and di-substituted are only 

marginally different. The difference between the meso-free and fluorine derivatives is 

minimal. For the chloro to iodo derivatives, the di-substitution only exhibits a marginal 

decrease in the out-of-plane distortion relative to the mono-substitution, with the larger 

halogen inducing more planar conformation (see Figure S84, Table S11-S13). Upon 

the introduction of a metal center [nickel(II) in this case] the inverse is observed. The 

insertion of nickel introduces distortions of the porphyrin core similar to those that have 

been previously reported [29]. However, there is a secondary trend observed with the 
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increase of halogen size showing a larger out-of-plane distortion, whilst the di-

substitution mode having a larger impact in general. Interestingly, it appears that the 

effect of di-substitution is more pronounced than that of the mono-substitution with the 

immediate larger halogen. For example, di-Cl (1:10) has a larger distortion than the 

mono-substituted bromo-porphyrin (1D). In the in-plane distortion modes, the story is 

much simpler. The introduction of a metal center reduced the overall impact in the in-

plane distortion modes until this is alleviated by the effect of a larger halogen. 

Increasing the halogen size shows a larger increase in the A1g contribution which 

helps alleviate the decrease in B2g contributions as a result of Ni(II) insertion. As for 

bond lengths and angles, there are little differences observed due to the increase in 

halogen size or the number of substituents. It is only in the Δ24 and the pyrrole tilt 

angles both of which decrease with larger halogen atoms. Comparing mono- to di-

substitutions the general trend is a decrease in pyrrole tilt angle and Δ24. 

 

 

Figure 9: Series 1 – 5,15-Di-halo-substituted porphyrins. 
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Finally, when comparing the calculated data (1D-3D) to that obtained via crystal 

structure analysis, there are small discrepancies (Table S14). In essence, the 

calculated data is a good approximation; however, the use of an idealized structure 

rather than an actual structure loses some of the accuracies that trends in NSD and 

other crystallographic explorations rely on. For example, most of the calculated data is 

only accurate to the first second decimal place while in some cases large differences 

are observed. This is most apparent when looking at the Δ24 of 3 and 3D where and 

difference of 5 times is observed between the simulated and crystal data. A clear trend 

is observed for the dihedral angle between the porphyrin and the phenyl rings. This 

dihedral angle is 69.2° for the unsubstituted diphenyl and increases as the halogen 

size and number of substituents increases, becoming almost perpendicular for the di-

iodo substituted (87.6°) (Table S8). Interestingly, this trend disappears when the metal 

is inserted, as a dihedral angle of approximately 81° is observed regardless of 

substitution. In conclusion, while the more desirable method is to use the actual crystal 

structures, the use of calculated data for structures that do not exists currently in the 

CCDC is a good approximation of the actual structure. 

Series 2 

In this series, we considered progressively increasing the number of halogens, taking 

5-phenyl porphyrin as the base, and analyzed the effect on in-plane and out-of-plane 

distortions (Figure 10). With the addition of one to three bromine atoms to the free 

meso-positions of the porphyrin, there is only a marginal shift in the out-of-plane 

distortion modes, with 5,10,15-substituted derivative having the largest (2:6) and 5,10-

substituted derivative having the smallest contributions (1:11) (Figure S85, Table S15). 

The largest of these contributions is seen in the B2u mode with a smaller but equal 
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contribution to the wave x and y modes. This is also represented in the bond lengths 

and angles with only minor deviations apparent (Table S15). For the in-plane distortion 

modes, while there is a larger contribution than seen in the out-of-plane modes, there 

is little difference by increasing the number of bromine atoms. The most obvious 

change is seen in the B2g mode where the largest contribution is 2:1 with 2:3 being 

the second largest. Both 2:2 and 2:4 have much smaller contributions. The largest 

contributions for the in-plane is seen in the A1g modes where a small increase from 

2:1 to 2:4 is observed. 

 

 

Figure 10: Series 2 – Increasing number of halogen substituents. 

 

With the addition of the phenyl group to this series, there are much more apparent 

changes in both the in-plane and out-of-plane distortion modes. The structure of 2:5 

and 2:6 (15,20-diphenyl) both show a marked increase in the out-of-plane distortion 

with the largest contribution seen in the B2u and Eg(y) modes. with the second addition 

of a bromine atom (2:6), there is a much larger contribution to the B2g mode while no 

change is observed in the Eg(y) mode. In the in-plane modes, there is a minor 

decrease in the DIP, which is due to a complete absence of a contribution in the B2g 

mode seen in compound 2:6 while both have almost equal contributions in the A1g 

mode. Moving towards the 10,20-diphenyl derivatives (1D and 1:11), it appears that 
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these structures are more comparable to the 2:1-2:4. However, instead of the B2u 

being the largest mode, the contributions are seen in the Eg(x) and Eg(y) modes. In 

the in-plane mode, the largest contribution is seen in the A1g with a secondary 

contribution in the B2g. This indicates that while there is a minor effect of increasing 

the number of substituents, a larger impact is seen by the phenyl derivatives. 

Therefore, the halogen substituents only marginally impact the porphyrin core with the 

in-plane demonstrating the largest shift. 

Series 3 

When considering the 5,10-di-halo-15,20-diphenyl substituted porphyrins (Figure 11) 

there is a clear trend with regards to the influence of increasing halogen size on bond 

lengths, angles, and out-of-plane displacements (Table S16). The general trend is a 

marginal increase in the bond lengths and angles with the fluorine derivative being the 

lowest and iodine being the largest suggesting the influence of larger halogens has 

only a minor increasing effect. In the atom displacement, this trend is continued except 

for ΔN decreasing from fluorine to iodine derivatives. A clearer picture emerges when 

examining the NSD charts (Figure S86). 

 

Figure 11: Series 3 – 5,10-Di-halo-substituted porphyrins. 

 

In the distortion modes, the steady increase from fluorine to iodine is evident in both 

the in-plane and out-of-plane NSD profiles. This is due to the increased Eu(x), (pyr-

translation), and A1g (breathing) contribution and a drop in the B1g (N-stretching) in 
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the in-plane distortions. An increase in the B2u (saddle) distortion mode out-of-plane 

is accompanied by a minor decrease in the A2u (domed) and Eg(y) (wave y) modes. 

This indicates that the introduction of halogen atoms to the 5,15-position on the 

porphyrin macrocycle increases the saddling present, compared to 5,15-derivatives as 

mentioned above. However, there is only a marginal impact on this by introducing 

larger halogen atoms. 

Conclusion 

In the simplest models (5-halo examples), increasing halogen size changes the overall 

packing and moves from a close packing arrangement to a directional stacking within 

the crystal structure. While there are no obvious interactions between halogens, there 

does appear to be a marked increase with contacts between larger halogens and the 

porphyrin ring. From a conformational standpoint, most bond lengths and angles are 

not significantly altered by increasing the halogen size; however, there is a noticeable 

increase in the atom displacements, which increases distortion. However, these effects 

are not as considerable as the introduction of a nickel(II) metal center to the porphyrin 

core. Additionally, it is apparent that while the halogen may be a large part of each of 

these structures, it is highly dependent on the other substituents present in forming the 

interaction profile. For example, phenyl moieties generally form close packing 

complexes rather than direct interactions and alkyl moieties form a plethora of 

halogen···hydrogen interactions. Additionally, the substitution pattern greatly affects 

the overall conformation. By comparing the DFT calculated geometries with crystal 

structures we have found that DFT is a good approximation. The use of an idealized 

structure results in the loss of some accuracy as seen in the NSD. Most of the DFT 

calculated data is only accurate to the first or second decimal while in other cases 
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larger differences are observed. While the more desirable method is to use the actual 

crystal structures, the use of DFT calculated geometries for structures that currently 

do not exist in the CCDC is a good approximation. 

Future work in this area should focus on optimizing the DFT calculations in order to 

minimize errors and expanding on the investigations done using this method. 

Furthermore, we can focus on increasing the library of simulated data and use this as 

a model to predict the most appealing structures for generating halogen bonded 

supramolecular networks followed by targeted synthesis and crystallization of such 

compounds. 

Experimental 

Synthetic Procedures 

The synthesis of 5-bromo-10,20-diphenylporphyrin (1) [42], [5-ethynyl-10,20-

diphenylporphyrinato]nickel(II) (2A) [43], 5-bromo-10,20-dihexyl-15-phenylporphyrin 

(5) [44], [5-bromo-10,20-dihexyl-15-phenylporphyrinato]nickel(II) (6) [44], 5-bromo-

10,15,20-triphenylporphyrin (7) [45], 5-iodo-10,20-dihexyl-15-phenylporphyrin (8) [44], 

5,15-dibromo-10,20-diphenylporphyrin (9) [46], 5,15-dibromo-10,20-bis(4-

methylphenyl)porphyrin (10) [47], [5,15-dibromo-10,20-di(pentan-3-

yl)porphyrinato]nickel(II) (11) [48], 5,15-dibromo-10-hexyl-20-(3,4,5-

trimethoxyphenyl)porphyrin (13) [24], 5,10-bis(4-methylphenyl)-15,20-

bis((trimethylsilyl)ethynyl)porphyrin (16A) [49], and 10,15,20-trihexyl-5-

((trimethylsilyl)ethynyl) porphyrin (24) [50] have previously been reported. 
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Synthesis of 5-Chloro-10,20-bis(4-methylphenyl)-15-phenylporphyrin (4) 

Pre-dried 5,15-bis(4-methylphenyl)-porphyrin, (100 mg, 0.2 mmol, 1 eq.) was dissolved 

in 37 mL dry THF. A solution of 0.7 mL PhLi (1.8 M in dibutyl ether, 1.28 mmol, 6.4 eq.) 

was added at 0 oC under stirring, resulting in a color change from purple to 

green/brown. Following complete addition, the cold bath was removed and stirring was 

continued for an additional 45 min. Subsequently, pre-dried DDQ (291 mg, 1.28 mmol, 

6.4 eq.) was added, resulting in a color change from green/brown to dark purple/brown. 

Stirring was continued for 1 h., and the solvent was removed under reduced pressure. 

The residue was filtered through silica gel using DCM. Column chromatography was 

performed through silica gel (hexane:DCM, 15:1–2:1, v/v). Further column 

chromatography was carried out on silica gel (hexane:DCM, 15:1–1:1, v/v) yielding the 

purple solid 4 (51 mg, 51%). Further purification was carried out by recrystallization 

from DCM and methanol to give purple crystals of the title compound. mp > 300 oC; Rf 

= 0.48 (SiO2, hexane:DCM, 2:1, v/ v); 1H NMR (400 MHz, CDCl3, δ) −2.69 (s, 2H; NH), 

−2.72 (s, 6H; CH3), 7.57 (d, 3J = 7.7 Hz, 4H; Hm-tolyl), 7.72–7.79 (m, 3H; Hm-phenyl and 

Hp-phenyl), 8.08 (d, 3J = 7.9 Hz, 4H; Ho-tolyl), 8.18 (d, 3J = 6.5 Hz, 2H; Ho-phenyl), 8.78 (d, 3J 

= 4.7 Hz, 2H; Hβ-pyrr), 8.84 (d, 3J = 4.7 Hz, 2H; Hβ-pyrr), 8.94 (d, 3J = 4.7 Hz, 2H; Hβ-pyrr) 

and 9.64 (d, 3J = 4.7 Hz, 2H; Hβ-pyrr); 13C NMR (100 MHz, CDCl3, δ) 112.2, 120.7, 120.9, 

126.8, 127.7, 127.8, 127.9, 134.6, 134.7, 134.8, 137.7 and 138.9 ppm; UV-Vis (DCM) 

λmax (log ε) 469 (5.01), 567 (3.92), 617 (3.94), 700 nm (3.57); HRMS−MALDI (m/z) M+ 

calcd for C40H29ClN4, 600.2081; found, 600.2050. 

The reaction entailed an attempt to prepare a meso-meso linked bisporophyrin via 

reaction of the starting material with PhLi followed by in situ oxidation to a radical anion 

and dimerization [51]. While formation of 5,10,15-trisubstituted porphyrins and 

5,10,15,20-tetrasubstituted porphyrins was anticipated as side products, the detection 

of the title compound 4 was unexpected. The mechanism of the formation of 4 is not 
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easy to clarify, and presently, there is no indication of whether the reaction proceeds 

via a homolytic or heterolytic process. Notably, similar unexpected chlorination 

reactions have been described in the past [52,53]. While the metallated form of the 

product has been previously reported [52], this appears to be the first instance of the 

free base counterpart. One such study, using (5,15-bis(4-

methylphenyl)porphyrinato)zinc(II), alludes to nucleophilic substitution by Cl to form 

the chlorinated product, with the only possible source of the exogenous Cl atom during 

the study being DCM [52]. Another suggests that the chlorinated product may be 

formed from a Cl radical generated during the reaction, although it was not stated if the 

origin of the radical was DCM or DDQ [53]. Here, it was shown that the source of Cl to 

yield the meso-chlorinated porphyrin was DDQ, given the absence of DCM. 

Investigations into why similar compounds as 4 were not frequently observed in 

previous research, and into the targeted synthesis of species 4 by DDQ are currently 

ongoing. 

Crystallography 

Crystals were grown using techniques following the protocol developed by Hope [54]. 

The crystal was mounted on a MiTeGen MicroMount and single-crystal X-ray 

diffraction data were collected on a Bruker APEX 2 DUO CCD, Rigaku CCD, or Bruker 

D8 Quest ECO diffractometer using graphite-monochromated Mo Kα (λ= 0.71073 Å) 

and Incoatec IμS CuKα (λ = 1.54178 Å) radiation at 100(2), 112(2), and 123(2) K with 

an Oxford Cryosystems Cobra low-temperature device. Data were collected by using 

omega and phi scans and were corrected for Lorentz and polarization effects by using 

the APEX software suite [55–58]. Using Olex2, the structure was solved with the XS 

or XT structure solution program, using direct methods and refined against │F2│ with 

XL using least-squares minimization [59]. The C- and N-bound H atoms were placed 
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in their expected calculated positions and refined as riding model: N–H = 0.88 Å, C–H 

= 0.95–0.98 Å, with Uiso (H) = 1.5Ueq (C) for methyl H atoms and 1.2Ueq (C, N) for all 

other atoms other H atoms. Details of data refinements can be found in Table S17-

S20. All images were prepared by using Olex2 [58]. 

CCDC 2069451–2069463 contain the supplementary crystallographic data for this 

paper. These data can be obtained free of charge from The Cambridge 

Crystallographic Data Centre via http://www.ccdc.cam.ac.uk/data_request/cif. 

Details on Refinement and Modelling 

Compound 1: The bromine atoms were modelled over both meso positions in a 96:4% 

occupancy. The phenyl group atoms (C204, C203, C202, C205, and C206) fixed using 

the restraint ISOR. Compound 2A: No modelling necessary. Compound 4: The 

internal nitrogen atoms were modelled over two positions in a 50% occupancy. 

Compound 5: The internal nitrogen atoms were modelled over two positions in a 

90:10% occupancy. The terminal carbon atom of the hexyl chain (C106) was modelled 

over two positions using restraints SIMU in a 50% occupancy. The phenyl group was 

modelled over two positions using restraints ISOR, SIMU, and SADI in a 50% 

occupancy. Compound 6: No modelling necessary. Compound 7: The internal 

nitrogen atoms were modelled over two positions in a 50% occupancy. Compound 8: 

The iodine atom I1_2 was modelled over two positions using restraints SADI and 

constraint EADP in an 80:20% occupancy. The phenyl group (C151_2–C156_2) was 

modelled over two positions using restraints SADI and constraint EADP in a 50% 

occupancy. The phenyl group (C151_1–C156_1) was modelled over two positions 

using restraints SADI and constraint EADP in a 50% occupancy. The internal nitrogen 

atoms were modelled over two positions in a 50% occupancy. Compound 9: The 

internal nitrogen atoms were modelled over two positions in a 50% occupancy. 

http://www.ccdc.cam.ac.uk/data_request/cif
http://www.ccdc.cam.ac.uk/data_request/cif
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Compound 10: No modelling necessary. Compound 11: The pentan-3-yl moiety 

(C104–C106) was modelled over two position using restraints SIMU in a 50 % 

occupancy. Compound 13: The internal nitrogen atoms were modelled over two 

positions in a 50% occupancy. Compound 16A: The internal nitrogen atoms were 

modelled over two positions in a 75:25% occupancy. Compound 24: The internal 

nitrogen atoms were modelled over two positions in a 50% occupancy. The methyl 

groups of the TMS moiety were modelled over two positions using restraints SIMU and 

SADI in an 80:20% occupancy. 

Previous Structures 

Details on the refinement of NESHUO (2) [27], UDERUR (3) [22], NOGWEN (12) [23], 

HUMWES (13A) [24], HUMWAO (14) [24], LASMOK (15) [32], RAKGAN (16) [33], 

ZOXQUA (17) [34], ZOXCAS (18) [34], BASDOR (19) [35], YISZAD(20) [38], 

QUGMEM (21) [37], QUGMIQ (22) [37], and MORBEC (23) [36] were previously 

reported. 

Hirshfeld Surface Analysis 

The two-dimensional fingerprint plots and associated Hirshfeld surfaces [25,60] were 

calculated using CrystalExplorer [61]. The intermolecular contacts in crystal packing 

were visualized using dnorm surface. The di(outside) and de(outside) represent the 

distance to the Hirshfeld surface from nuclei. The proportional contribution of the 

contacts over the surface is visualized by the color gradient (blue to green) in the 

fingerprint plots. 

Normal-coordinate Structural Decomposition (NSD) Analysis 

The theoretical background and development of this method have been described by 

Shelnutt and co-workers [62,63]. NSD is a method that employs the decomposition of 
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the conformation of the macrocycle by a basis set composed of its various normal 

modes of vibration, affording clear separation of the contributing distortions to the 

macrocycle conformation in a quantitative fashion. For calculations, we used our newly 

developed NSD generation program [28,41]. Tables S21-S23 contain the complete 

NSD out-put of compounds herein. Figure S87-S141 contains the file out-put of all 

compounds within this paper as obtained from the program. 

DFT Calculations 

The DFT calculations were performed using Gaussian 16 [64]. The wB97XD functional 

and a cc-pVDZ (cc-pVDZ-PP for iodine) basis set were used to optimize the ground 

state (S0) geometries using a tight convergence criterion. Frequency calculations were 

performed at the optimized geometries in order to confirm that the local minima were 

found. The molecular electrostatic potential (MEP) surfaces were generated by 

mapping the electrostatic potentials onto the 0.04 e/au3 molecular electron density 

surfaces using the VMD software [65]. 

Supporting Information 
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Supporting Information File 3: 

File Name: SI_File 3_Compound 1 

File Format: .cif 

Title: Crystal structure determination compound 1. 

 

Supporting Information File 4: 

File Name: SI_File 4_Compound 2A 

File Format: .cif 

Title: Crystal structure determination compound 2A. 

 

Supporting Information File 5: 

File Name: SI_File 5_Compound 4 

File Format: .cif 

Title: Crystal structure determination compound 4. 

 

Supporting Information File 6: 

File Name: SI_File 6_Compound 5 

File Format: .cif 

Title: Crystal structure determination compound 5. 

 

Supporting Information File 7: 

File Name: SI_File 7_Compound 6 

File Format: .cif 

Title: Crystal structure determination compound 6. 
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Supporting Information File 8: 

File Name: SI_File 8_Compound 7 

File Format: .cif 

Title: Crystal structure determination compound 7. 

 

Supporting Information File 9: 

File Name: SI_File 9_Compound 8 

File Format: .cif 

Title: Crystal structure determination compound 8. 

 

Supporting Information File 10: 

File Name: SI_File 10_Compound 9 
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Title: Crystal structure determination compound 9. 

 

Supporting Information File 11: 

File Name: SI_File 11_Compound 10 

File Format: .cif 

Title: Crystal structure determination compound 10. 

 

Supporting Information File 12: 

File Name: SI_File 12_Compound 11 

File Format: .cif 
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