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Stability analysis of heat transfer in nanomaterial flow of boundary layer 

towards a shrinking surface: Hybrid nanofluid versus nanofluid 

 

Aqeel ur Rehman and Zaheer Abbas1  

Department of Mathematics, The Islamia University of Bahawalpur, 

Bahawalpur 63100, Pakistan 

Abstract: Many boundary value problems (BVPs) have dual solutions in some cases containing 

one stable solution (upper branch) while other unstable (lower branch). In this paper, MHD flow 

and heat transfer past a shrinking sheet is studied for three distinct fluids: 2 3 /Al O ZnO kerosene 

hybrid nanofluid, 2 3 /Al O kerosene nanofluid, and /ZnO kerosene nanofluid. The partial 

differential equations (PDEs) are turned into ordinary differential equations (ODEs) using an 

appropriate transformation and then dual solutions are obtained analytically by employing the 

Least Square method (LSM). Moreover, stability analysis is implemented on the time-dependent 

case by calculating the least eigenvalues using Matlab routine bvp4c. It is noticed that negative 

eigenvalue is related to unstable solution i.e., it provides initial progress of disturbance and positive 

eigenvalue is related to stable solution i.e., the disturbance in solution decline initially. The impacts 

of various parameters, skin friction coefficient, and local Nusselt number for dual solutions are 

presented graphically. It is also noted that the results obtained for hybrid nanofluids are better than 

ordinary nanofluids. 

Keywords: Stability analysis; hybrid nanofluid; shrinking sheet; dual solutions; analytical 

procedure. 

NOMENCLATURE 

, , ,f F G  Functions in dimensionless form wq , rq  Heat flux at the lower plate and 

radiative heat flux 

u , v  Components of velocity in x  

and y  directions, respectively. 
Greek Symbols 
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T  Temperature function   Eigenvalue parameter 

,wT T  Wall and ambient temperature, 

respectively 
  Time parameter 

0B  Strength of magnetic field   Velocity ratio parameter 

xNu  Local Nusselt number   Similarity variable 

pC  Specific heat at constant pressure   Volume fraction of nanoparticle 

a  Stretching/shrinking velocity 

constant 
  Density 

b  Free stream velocity constant   Electrical conductivity 

1 5A   Constants in dimensionless form   Kinematic viscosity 

fC  Coefficient of skin friction   Dynamic viscosity 

1 2,R R  Residuals 1  Stefan–Boltzmann constant 

1 6W   Weight functions 1k  Mean absorption coefficient 

Re  Reynolds number Subscripts 

k  Thermal conductivity j  Indices for unknowns 

rP  Prandtl number 1 2,s s  Solid-nanoparticles for 2 3Al O  and 

ZnO , respectively 

R  Radiation parameter f  Base fluid 

M   Magnetic parameter n f  Nanofluid 

,e wu u   Free stream velocity, wall 

velocity 
h n f   Hybrid nanofluid 

 

1. Introduction 

The remarkable analysis in the flow of boundary layer past a stretching/shrinking sheet has 

been completed by many specialists as it has vast uses in industries and engineering. Some 

common examples are packaging of products, manufacturing of polymers, glass blowing, drawing 

of wires and aerospace coatings, etc. The real behavior of the surface depends on the rate of 

stretching/shrinking and cooling (exchange of heat) during the process of stretching/shrinking. 

Miklavcic and Wang [1] initiated the flow of fluid caused by a shrinking sheet and presented 
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numerical, exact, and close form solutions and they obtained dual solutions for the case of the 

shrinking sheet. The analysis of the flow of stagnation point past a shrinking sheet was studied by 

Wang [2]. He found dual solutions by taking some range of velocity ratio parameters. Ishak et al. 

[3] made an extension on the work of Wang [2] by taking micropolar fluid and finding multiple 

solutions. The solution in the analytical form for the flow of boundary layer caused by a shrinking 

sheet was given by Fang and Zhang [4]. They studied the close form solutions with special 

parameters. The MHD flow of fluid near the region of stagnation point towards a shrinking sheet 

was discussed by Lok et al. [5]. The study of flow problems through a permeable shrinking surface 

in the region of stagnation point having dual solutions was presented by Bhattacharyya and Layek 

[6] and they evaluated numerical solution by examining the impacts of suction/blowing and 

radiation. The slip effects on the flow of stagnation point caused by shrinking sheet were presented 

by Bhattacharyya et al. [7]. They also established dual solutions by employing shooting techniques 

to solve self-similar equations and they also noticed the increment in the range of dual solutions 

with slip parameter. Few other researchers [8–10] also found the dual solutions for shrinking sheets 

by using several physical effects. 

In the 19th century, Maxwell [11] studied the influence of fluid’s thermal conductivity by 

taking various substances with improved conductivity. Latterly, to improve the fluid conductivity 

the idea of nanofluid as a new type of heat transfer fluid was given by Choi and Eastman [12]. 

They studied that nanofluid is formed when the nanoparticles are suspended in a base fluid. With 

the development in the process of nanotechnology-based transfer of heat, nanofluid is defined as 

a colloidal suspension of nanomaterials (1–100 nm) in a base fluid. By adding the nanoparticles 

like carbon material, metal oxides, and metals in base fluids, the outgrowth thermal conductivity 

of fluids increases in conventional heat transfer fluids and limits the ability of cooling. Nanofluids 

have vast applications in the manufacturing and engineering industries like fuel generators, cooling 

of electronics, and engine [13]. Therefore, nanofluids impact a great effort and interest to the 

researcher. Few other researchers have extended a great analysis of nanofluids [14–16]. 

In recent times, a new type of nanofluid called the hybrid nanofluid is introduced which is 

formed by suspension of assorted nanoparticles in the base fluid. Hybrid nanofluid enhances 

properties of heat transfer as well as provides extra substantial thermal, physical, and rheological 

features. This fluid captivated many researchers to extend the given problem for the transfer of 

heat. In this regard, an experimental analysis is conducted by Suresh et al. [17] on the synthesis, 
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characterization of 2 3 2/Al O Cu H O  nanocomposite powder by taking various percentages of 

volume concentrations. They determined the pH of nanofluids by studying the stability of 

nanofluids and found that the stability diminishes with increasing concentration of volume. 

Moreover, Suresh et al. [18] inspect the thermal and physical properties of 2 3 2/Al O Cu H O  

hybrid nanofluid. They also showed that the reliability and efficiency of thermal conductivity are 

enhanced with 2 3 2/Al O Cu H O  hybrid nanofluid. The three-dimensional flow of 

2 3 2/Al O Cu H O  a hybrid nanofluid past a stretching sheet with Lorentz force was numerically 

noticed by Devi and Devi [19]. Their findings reported that the optimal rate of heat transfer for 

hybrid nanofluid is gained by selecting different nanoparticles. Due to this regard, many 

investigators studied the hybrid nanofluids by taking physical assumptions over a 

stretching/shrinking sheet-like, Khashi’ie et al. [20], Zainal et al. [21], and Waini et al. [22]. 

In the last two or more decades, researchers started to apply a stability analysis on problems 

having multiple solutions. Some of them are stable and others are unstable. Due to the existence 

of dual solutions, stability analysis in fluid dynamics problems plays an important role and is 

roughly linked with some numerical errors. In this era, Merkin [23] was the first who perform 

stability analysis to check the stable solution. He calculated eigenvalues and obtained a stable 

solution for positive eigenvalues and an unstable solution for negative eigenvalues. Later, many 

researchers have done stability analysis for dual solutions in stretching/shrinking flows or mixed 

convection flows. The influences of transpiration on boundary layer flow towards surfaces in 

motion were discussed by Weidman et al. [24]. They found dual solutions and reported that the 

range of dual solutions decreases or increases by considering suction/blowing effects for zero 

transpiration. Within a porous media, an unsteady flow of mixed convection towards a vertical 

sheet near a region of stagnation point was discussed by Merill et al. [25]. They noticed dual 

solutions on large values of time by performing stability analysis and proved that the lower branch 

solution is unstable whereas the upper branch solution is stable. Later on, various researchers [26–

32] have performed good analyses on stability and found multiple solutions. They reported in their 

study that the stable solutions are physically substantial and unstable solutions are not. 

For the flow of boundary layer past a shrinking sheet with nonlinear differential equations, 

analytical solutions have a significant role. But in the case of strictly nonlinear coupled equations, 

it is very challenging work to find an analytical solution. In this regard, various analytical methods 



 

5 

have been employed to find estimated solutions to such nonlinear differential equations. The 

analytical outcomes of very weak nonlinear BVP were found by Nayfeh [33]. He used perturbation 

methods for this purpose but for a certain range of parameters, this method is not so efficient. The 

homotopy perturbation method was applied by Khan et al. [34] for the influence of thermal 

conductivity on the transfer of heat inside a hollow sphere with heat generation. Some other 

analytical techniques have also been employed for solving the nonlinear problems like 

linearization methods [35], Lindstedt–Poincare method [36], differential transformation method 

[37], and optimal homotopy perturbation method [38]. Moreover, some other simple and more 

accurate analytical methods are available for solving differential equations namely: weighted 

residual methods which consist of the Least square method, method of Moments, Collocation 

method, and Galerkin method. The least-square method was initiated by Bouaziz and Aziz [39]. 

They employed this method for predicting the longitudinal fin performance and found this method 

more simple and accurate than others. Furthermore, the detailed study on the Least square method 

was completed by Hatami and Ganji [40–42] and they employed this method on different problems 

of fluid mechanics. 

The main focus of the present paper is to use an analytical method namely: Least square 

method to find the dual solutions of MHD flow and heat transfer past a shrinking sheet for three 

distinct fluids. Also to check the reliable solution using stability analysis and evaluate the 

corresponding eigenvalues for both solutions. 

2. Mathematical model 

Consider a two-dimensional flow of boundary layer and heat transfer for three different fluids 

near a region of stagnation point caused by stretching/shrinking surface. Aluminum oxide 2 3( )Al O  

and zinc oxide ( )ZnO  are chosen as the nanomaterials with Kerosene oil as the base fluid. The 

surface is placed along a horizontal axis and the vertical axis is considered normal to the surface 

as displayed in Fig. 1. The surface is stretched or shrunk having velocity ( )wu x a x , here 0a   

determines shrinking and 0a   determines stretching surface. For the orthogonal flow of 

stagnation point, fluid flow over the surface with velocity ( )eu x b x here 0b   determines the 

stagnation flow strength. An external magnetic field with strength 0B  is also taken in the normal 
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direction to the surface. Since it is an earlier assumption that the magnetic Reynolds number is too 

low, which causes the higher magnetic diffusion than magnetic advection, due to which induced 

magnetic field is ignored. 

Under all assumptions stated above, the governing Navier–Stokes and energy equations for the 

case of steady flow with radiation are written as: 

 

Fig. 1: Problem’s geometry 

 

0
u v

x y

 
 

 
,          (1) 

 
2

2

02

1 hn f hn fe
e e

hn f hn f hn f

d uu u u
u v u B u u

x y d x y

 

  

  
     
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,    (2) 

2

2

1

( )

r

p p hn fhn f

qT T k T
u v

x y C y C y 

    
        

,     (3) 

here u  and v  denotes velocity components of fluid along the horizontal and vertical axis, 

respectively, and T  indicates temperature. The subscripts hnf , nf  and f  indicate hybrid 

nanofluid, nanofluid, and base fluid respectively. Physical meanings of all other parameters are 

given in nomenclature. 

Associated boundary conditions (BCs) are: 

For 0 : , 0, ,

For : 0,  0, .

w wy u u v T T

y u v T T

   

   
     (4) 
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Table 1: The physical and thermal properties of magnetic nanomaterials and base fluid [32]: 

 

Materials  3/k g m     1( )m      1( )k W m K 
   1( )pC J k g K 

 

2 3Al O  3970 101 10  40 765 

ZnO  5700 310 1 10   25 523 

kerosene oil 783 106 10  0.15 2090 

 

Table 2: The effective properties of nanofluid and hybrid nanofluid are defined below [32]: 

 Nanofluid Hybrid nanofluid 

Dynamic 

viscosity  
2.5

11

f

n f








  

 
2.5

21

n f

hn f








 

Density  1 1 11n f f s         2 2 21hn f n f s        

Electrical 

conductivity 

   
   

1 1 1

1 1 1

1 2 2 1

1 2

s f

n f f

s f

   
 

   

   
 
   
 

 
   
   

2 2 2

2 2 2

2 1 2 1

2 1

f s

hn f n f

f s

   
 

   

   
 
   
 

 

Thermal 

conductivity 

 
 

1 1 1

1 1 1

2 2

2

f s f s

n f f

f s f s

k k k k
k k

k k k k





   
 
   
 

 
 
 

2 2 2

2 2 2

2 2

2

n f s n f s

hn f n f

n f s n f s

k k k k
k k

k k k k





   
 
   
 

 

Heat 

capacity 
1 1 1( ) ( ) (1 ) ( )p n f p f p sC C C        2 2 2( ) (1 ) ( ) ( )p hn f p n f p sC C C        

 

The radiative heat flux is denoted by rq  and is given by Rosseland approximation [43]: 

4

1

1

4

3
r

T
q

k y

 
 


.           

The variation of temperature ( 4T ) is taken as Taylor’s expansion, then ignoring the terms of 

higher-order and after that, the expansion of ( 4T ) about T  gives 
4 3 44 3T T T T    and 

2
31

0 2

1

16

3

rq T
T

y k y

 
 

 
 .        (5) 

Eq. (3) then becomes 

32 2
1 0

2 2

1

161

( ) ( ) 3

hn f

p hn f p hn f

k TT T T T
u v

x y C y C k y



 

   
  

   
.    (6) 
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Now the similarity transformations are introduced in the following forms: 

     , , ,f

w f

T T b
u f ' b x v f b y

T T
     








    


,   (7) 

here prime specifies differentiation of function with respect to variable  . The dimensionless form 

of governing equations are presented as follows: 

 1 32

2 2

1 1 0
A A

f ''' f ' f f '' M f '
A A

      ,       (8) 

 4 5 0rA R '' A P f '    ,       (9) 

where the magnetic number M , Prandtl number rP  and radiation parameter R  are given as 

2 3

0 1

1

16
, ,

3

f p

r

f ff

B TC
M P R

b k k k

 



 
   

 
.      (10) 

And the constant parameters 1 2 3 4, , ,A A A A  and 5A  are: 

1 2 3 4 5

( )
, , , ,

( )

hn f hn f hn f hn f p hn f

f f f f p f

k C
A A A A A

k C

   

   
      .   (11) 

BCs: 

For 0: 0, 1,

For : 1, 0.

f f '

f '

  

 

   

  
       (12) 

Here, 
a

b
    represents the velocity ratio parameter. 

The physical terms of attention are coefficient of skin friction fC   and local Nusselt number xNu   

and both of them are given below: 

1 2 1 2

1 4(0), (0)x f x xRe C A f '' Re Nu A '    ,     (13) 

here x e fRe u x   indicates the local Reynolds number. 

3. Stability analysis 

Stability analysis has been performed by many researchers like Awaludin et al. [28], Hamid 

et al. [29], and Waini et al. [30] to check the stable and unstable solutions. For this purpose, an 

additional dimensionless time variable bt   is considered, due to which the flow problem 
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becomes unsteady. Prandtl theory is utilized and pressure gradient is eliminated from component 

forms and then equations for unsteady flow are gained as 

 
2

2

02

1 hn f hn fe
e e

hn f hn f hn f

d uu u u u
u v u B u u

t x y d x y

 

  

   
      

   
,  (14) 

32 2
1 0

2 2

1

161

( ) ( ) 3

hn f

p hn f p hn f

k TT T T T T
u v

t x y C y C k y



 

    
   

    
.    (15) 

Now for a dimensionless form of the above equations, new transformations with time-variable   

are used as 

     , , , , , , ,f

w f

T T b
u f ' b x v f b y bt

T T
         








     


. (16) 

Using the above transformation (16) in Eqs. (14) and (15) gives 

23 2 2
1 3

3 2

2 2

1 1 0
A Af f f f f

f M
A A     

       
         

        
,    (17) 

 
2

4 5 52
0r rA R A P f A P

  

  

  
   

  
,      (18) 

and the associated boundary conditions in the case of unsteady flow are: 

For 0 : (0, ) 0, (0, ) , (0, ) 1,

For : ( , ) 1, ( , ) 0.

f
f

f

     


     



   




  



   (19) 

Following Awaludin et al. [28], Hamid et al. [29] and Waini et al. [30], the unknown functions 

are: 

0

0

( , ) ( ) ( , ) ,

( , ) ( ) ( , ) .

f f F e

G e

 

 

    

      





 

 
       (20) 

Here,   is the unidentified eigenvalue parameter, 0 ( )f   and 0 ( )   are steady solutions of a 

problem given in Eqs. (8)(9) and both are larger than the functions ( , )F    and ( , )G   . 

Substituting Eq. (20) into Eqs. (17)(18), the following linearized problem is obtained: 

 
3 2 2

1 3

0 0 03 2

2 2

2 0
A AF F F F F

f f '' F f ' M
A A


     

    
      

     
,   (21) 
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 
2

4 5 0 02
0r

G G G
A R A P f F ' G 

  

   
      

   
,    (22) 

along with BCs: 

For 0 : (0, ) 0, (0, ) 0, (0, ) 0,

For : ( , ) 0, ( , ) 0.

F
F G

F
G

   


    



   




  



   (23)  

To investigate the stability of steady flow solutions 0 ( )f   and 0 ( )  , set 0   in Eqs. (21)(23). 

Hence 0( , ) ( )F F    and 0( , ) ( )G G    represents the initial growth or decay of the solution. 

In this regard, the following linear eigenvalue problem is to be solved 

 1 3

0 0 0 0 0 0 0 0

2 2

2 0
A A

F''' f ' F' f '' F f F'' M F'
A A

      ,     (24) 

   4 0 5 0 0 0 0 0 0rA R G'' A P F ' f G' G      ,      (25) 

with BCs: 

0 0 0

0 0

For 0 : (0) 0, (0) 0, (0) 0,

For : ( ) 0, ( ) 0 .

F F' G

F' G



  

   

  
   (26) 

By finding the smallest eigenvalues, stability of the dual solutions is applied for certain values of 

parameters like: , , rM P  and R . Harris et al. [26] stated in their study that to calculate the 

eigenvalues, an extra boundary condition is used. For this purpose, 0 (0) 1F''   a condition is 

applied to the problem and then it is solved using the bvp4c function in Matlab software. 

4. Least square method 

The Weighted Residual technique such as the Least square method is an approximation 

technique that gives the most useable procedure that applies to nonlinear dynamical models. The 

central idea of this method is to obtain an estimated solution of the differential equation. 

Consider a differential equation 

( )D F f ,          (27) 

subjected to the boundary conditions 

j jB F g .          (28) 
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In order to discover an estimated solution to the given problem, consider a linear combination set 

(linearly independent) of a basis functions. That is, 

0

1

ˆ
m

j j

j

F F c 


  .         (29) 

Here 0F  is selected in a manner that the boundary conditions are satisfied, exactly if possible. 
j  

are the linearly independent functions, also called trial functions, and are supposed to be known. 

The coefficients jc  are unknowns and can be obtained by solving a system of equations. 

When substituted Eq. (29) in Eq. (27), it will not satisfy the equation. Hence an error or residual 

R , which is a continuous function of spatial coordinates, exists and is written as 

ˆ( ) 0R D F f   .         (30) 

In one spatial coordinate, the approximating functions may be the trigonometric functions or the 

polynomials of the form 

1( ) j

j     or ( )j sin j   .      (31) 

The notion in the least square method is to make the error (residual) equal to zero over the entire 

domain (say) X  in an average sense. 

( ) ( ) 0j

X

R W d    , 1,2,3,...j m .      (32) 

Where weight functions and the unknown coefficients jc  are exactly equal. We take the sum of 

the squares of residuals rather than the sum of residuals. So, this sum is minimized and given as 

2( ) ( ) ( )
X X

E R R d R d       .       (33) 

Now to get the minimum of the given function, the derivative of Eq. (33) concerning the unknown 

coefficients jc  is set to be zero. That is, 

2 ( ) 0
j jX

E R
R d

c c
 

 
 

  ,  1,2,3,...j m .     (34) 

Comparing Eq. (34) with Eq. (32), the weight functions become 

2j

j

R
W

c





.         (35) 
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Since the coefficient ‘2’ can be ignored as it vanishes in the given equation. Thus, the weight 

functions are given by 

j

j

R
W

c





.          (36) 

5. Solutions 

The domain of the problem under consideration is [0, ] . To convert this domain into a finite 

domain [0,1] , a transformation     is needed [46].   is called a similarity variable and   

indicates the edge of the boundary layer or physical infinity. Using the above transformation, BVP 

has given in Eq. (8)(9) with Eq. (12} now becomes: 

23 2
1 33 2 3

3 2

2 2

( ) ( ) ( ) ( )
( ) 0

A Ad f d f d f d f
f M

A d d d A d

   
     

   
    

   
        

   
,  (37) 

 
2

4 52

( ) ( )
( ) 0r

d d
A R A P f

d d

   
 

 
   .     (38) 

BCs: 

( )
For 0: ( ) 0, , ( ) 1,

( )
For 1: , ( ) 0.

d f
f

d

d f

d


     




   







   

  

    (39) 

Using Eq. (29), trial functions satisfying the boundary conditions given in Eq. (39) take the form: 

  

2 3 4 5
2 3 4 5 6

1 2 3 4

2 3

5 6

(1 ) 3 4 5 6ˆ ( ) ,
2 2 3 4 5

ˆ( ) 1 ( ) ( ). (40)

f c c c c

c c

     
        

      




           
                

       

       

 

Substitution of Eq. (40) in Eqs. (37)(38) give the two residuals: 
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2 2 23
1 1 4 1 3 2 4 1 2

1

3 4 3 3 3 4 22
3 4 3 4 4 3 2

1

4 4 5 3

1 3 4 4 3 1

( , ) 6 30 (2 1) 8 (3 1) 24 (5 3) ( 1)(3 4

5 6 ) ( (20 24 30 15 4 (3 2)
60

(6 3) )(60 72 60 75 30

A
R c c c c c c M c c

A

A
c c c c c c c

A

c c c c c c

         

 
           

       




  

 

          

          

        2

2

2 3 4 4 5

1 2 3 3 4 4

2

(2 3) 20 (3 4)

30 60 30 ) (3 ( 1) 4 ( 1) 5 5 6 6

) ),

c

c c c c c c

   

               

     

   

  

  

          

  

  

and 

 5 2

2 1 6 5 6 5 6

4

22 3 4 5
3 4 5 6

1 2 3 4

( , ) 2 6 1 (2 1) (3 1)
( )

(1 )3 4 5 6
.

2 3 4 5 2

rA P
R c c c c c c

A R

c c c c


   

     
      






         


         
                 

        

  

Using Eq. (36), the weight functions are obtained: 

1 1 1 1 2 2
1 2 3 4 5 6

1 2 3 4 5 6

, , , , ,
R R R R R R

W W W W W W
c c c c c c

     
     
     

.  (41) 

Substitution of the weights along with the residuals in Eq. (32) gives a system of six nonlinear 

equations in six unknowns 1 6( )c c . By applying Newton’s method [34], the unknowns 1 6( )c c  

are evaluated. Finally, ˆ ( )f   and ˆ( )   for dual solutions are obtained in the following forms: 

For 2 3 /Al O ZnO kerosene hybrid nanofluid: 

The first solution ( 1 21.2, 1, 0.5, 0.1rP R         and 0.01M  ) 

2 3 4
2 3 4 5

5
6

2 3

3 4 5ˆ ( ) 7.2 6.6 1.90699 12.76200 6.76692
2 3 4

6
0.10759 ,

5

ˆ( ) 1 1.20773( ) 0.31052( ).

f
  

     




      

     
             

     

 
  

 

     

  (42) 

The second solution ( 1 21.2, 1, 0.5, 0.1rP R         and 0.01M  ) 
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2 3 4
2 3 4 5

5
6

2 3

3 4 5ˆ ( ) 12 11 33.9765 31.434 0.564293
2 3 4

6
7.57447 ,

5

ˆ( ) 1 2.82165( ) 0.889414( ).

f
  

     




      

     
             

     

 
  

 

     

 (43) 

For /ZnO kerosene nanofluid: 

The first solution ( 1 21.2, 1, 0.5, 0, 0.1rP R         and 0.01M  ) 

2 3 4
2 3 4 5

5
6

2 3

3 4 5ˆ ( ) 7.2 6.6 1.92462 13.6033 7.68807
2 3 4

6
0.355034 ,

5

ˆ( ) 1 1.3207( ) 0.42405( ).

f
  

     




      

     
             

     

 
  

 

     

  (44) 

The second solution ( 1 21.2, 1, 0.5, 0, 0.1rP R         and 0.01M  ) 

2 3 4
2 3 4 5

5
6

2 3

3 4 5ˆ ( ) 12 11 2.62652 66.9822 90.6693
2 3 4

6
36.0774 ,

5

ˆ( ) 1 2.66095( ) 1.89097( ).

f
  

     




      

     
             

     

 
  

 

     

 (45) 

For 2 3 /Al O kerosene nanofluid: 

The first solution ( 1 21.2, 1, 0.5, 0.1, 0rP R         and 0.01M  ) 

2 3 4
2 3 4 5

5
6

2 3

3 4 5ˆ ( ) 7.2 6.6 1.95054 11.3837 5.24249
2 3 4

6
0.30265 ,

5

ˆ( ) 1 0.932766( ) 0.010247( ).

f
  

     




      

     
             

     

 
  

 

     

  (46) 

The second solution ( 1 21.2, 1, 0.5, 0.1, 0rP R         and 0.01M  ) 



 

15 

2 3 4
2 3 4 5

5
6

2 3

3 4 5ˆ ( ) 12 11 23.9419 3.15035 40.1955
2 3 4

6
23.6605 ,

5

ˆ( ) 1 2.29968( ) 0.610238( ).

f
  

     




      

     
             

     

 
  

 

     

 (47) 

 

6. Results and Discussion 

An analytical method namely the Least square method [45] is applied to a nonlinear system 

of ODEs. Newton's method [44] is used to linearize the system. Dual solutions are obtained for 

2 3 /Al O ZnO kerosene hybrid nanofluid, 2 3 /Al O kerosene nanofluid, and /ZnO kerosene 

nanofluid. Furthermore, a stability analysis is applied to the time-dependent problem to determine 

a reliable solution. The comparison of three distinct fluids such as 2 3 /Al O ZnO kerosene hybrid 

nanofluid, 2 3 /Al O kerosene nanofluid, and /ZnO kerosene nanofluid is also made and displayed 

in graphs. Dual solutions occur for a shrinking case ( 0)   which is displayed in the methodology 

section. For the validation of numerical outcomes, a comparison of skin friction coefficient is done 

with the work of Wang [2] and presented in Table 3. This table depicts that the numerical findings 

are in good agreement, where the values in brackets specify the second solution. 

The results of the coefficient of skin friction and the local Nusselt number in graphical 

form are presented in Figs. 2 and 3 to give a range of dual solutions. In these figures, the solid 

lines correspond to 1st solution and dotted lines correspond to 2nd solution. The main focus of this 

paper is to implement stability analysis on the problem to check stable or physically reliable 

solutions. For this purpose, Tables 4 and 5 show the least eigenvalues which are found for distinct 

values of parameters. Positive eigenvalues correspond to the stable solution (1st solution) due to 

initial decline in solution and negative eigenvalues correspond to an unstable solution (2nd solution) 

due to initial progress of disturbance in solution. To validate the results, a comparison is made 

with the published work of Awaludin et al. [28] for the eigenvalues with 1 2 0M R       and 

depicted in Table 4. Clearly, this table shows that both results are in good agreement. Processing 
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time is also noted and presented in this table to ensure that the Least square method converges fast 

as other analytical techniques such as the Homotopy analysis method (HAM). 

Table 5 displays the calculated eigenvalues of the present BVP for both solutions under the 

effects of MHD and radiation. This table gives the comparison of three different fluids. The 

smallest positive and smallest negative eigenvalues are found to give 1st stable and 2nd unstable 

solution as described earlier. From this table, it is noticed that the increment in the values of 

parameters results from higher eigenvalues. 

Figs. 2 and 3 depict the plots of the coefficient of skin friction and the local Nusselt number 

against   for dual solutions with three distinct fluids when 1, 0.1rP M   and 0.5R  . It is 

noticed that the coefficient of skin friction and the local Nusselt number for 2 3 /Al O ZnO kerosene 

hybrid nanofluid 1 2( 0.1)    is higher than 2 3 /Al O kerosene nanofluid 1 2( 0.1, 0)   and 

lower than /ZnO kerosene nanofluid 1 2( 0, 0.1)   . A significant change is observed in 1st 

solution whereas a very small variation is observed in 2nd solution. From Fig. 2, it is noted that 

values of the coefficient of skin friction increases for 1   up to a certain value and then begin to 

decrease after this value. Fig. 3 illustrates that the rate of heat transfer for the first solution is 

enhanced by increasing   while the second solution is very close to zero. The dual solutions range 

for 2 3 /Al O ZnO kerosene hybrid nanofluid is 1.3172 1.13    , 2 3 /Al O kerosene nanofluid 

is 1.3312 1.13     and /ZnO kerosene nanofluid is 1.3188 1.13    . Hence a larger 

range of dual solutions is observed with 2 3 /Al O kerosene nanofluid. 

The comparison of 2 3 / keroseneAl O ZnO  hybrid nanofluid 1 2( 0.1)   , 

2 3 / keroseneAl O  nanofluid 1 2( 0, 0.1)    , and / keroseneZnO  nanofluid 1 2( 0, 0.1)    

with 1, 0.2, 1.35rP M      and 0.5R   is shown in Figs. 4 (a, b)  and 5 (a, b) , where Figs. 4a 

and 4b display the graph of a velocity profile ( )f '   for the first and second solution, respectively 

whereas Fig. 5a represents the first and Fig.5b represents the second solution for the temperature 

profile ( )  . It is determined from Fig. 4(a,b) that the velocity profile ( )f '   becomes higher with 

/ZnO kerosene nanofluid and lower with 2 3 /Al O kerosene nanofluid while it lies in between for 

hybrid nanofluid. And for ( )  , an opposite trend is noticed in Figs 5a and 5b such that the 
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temperature profile ( )   for hybrid nanofluid is smaller than 2 3 /Al O kerosene nanofluid but larger 

than /ZnO kerosene nanofluid. 

Figs. 6 and 7 show the impacts of velocity ratio parameter   on ( )f '   and ( )  , 

respectively for 2 3 / keroseneAl O ZnO  hybrid nanofluid 1 2( 0.1)   , 2 3 / keroseneAl O  

nanofluid 1 2( 0.1, 0)    , and / keroseneZnO  nanofluid 1 2( 0, 0.1)    with 1rP  , 

0.05M   and 0.5R  . It is examined from Fig. 6 that the velocity profile increases   while Fig. 

7 depicts that the temperature profile decreases when   is increased. It is concluded from these 

figures that the behavior of   is the same for all three types of fluid. 

Fig. 8 displays the influence of radiation parameter R  on ( )  in case of hybrid nanofluid 

for dual solutions at 1 2 0.1, 1, 1.25rP        and 0.1M  . It is observed that the increment 

in the values of radiation parameter increases ( )   for 1st solution but in the case of 2nd solution 

( )   decreases initially and then after a certain point, it begins to increase. 

 

Table 3 Comparison of coefficient of skin friction (0)f ' '  with 1 2 0R M      . 

  Wang [2] Present study 

1 0 0 

0.5 0.71330 0.71330 

0 1.23258 1.23258 

0.25 1.40224 1.40224 

0.5 1.49567 1.49567 

0.75 1.48930 1.48930 

1 
1.32882 

[0] 

1.32880 

[0] 

1.15 
1.08223 

[0.11670] 

1.08220 

[0.11670] 

 

 

Table 4: Comparison for smallest eigenvalues   with 1 2 0M R      and 1rP  . 

   
Awaludin et al. [28] Present study 

CPU time (s) 
1st solution 2nd solution 1st solution 2nd solution 

1 1.3690 --- 1.3690 --- 22.801 

1.1 1.0463 0.8437 1.0463 0.8437 23.701 

1.2 0.5780 0.5173 0.5780 0.5173 23.167 
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1.24 0.2121 0.2036 0.2121 0.2036 23.366 

1.245 0.1030 0.1010 0.1030 0.1010 23.790 

1.246 0.0622 0.0614 0.0622 0.0614 23.303 

 

 

Table 5: Comparison of smallest eigenvalues   for three fluids with 0.1, 0.5M R   and 1rP   

 
2 3 /Al O ZnO kerosene 

1 2( 0.1)    

2 3 /Al O kerosene 

1 2( 0.1, 0)    

/ZnO kerosene 

1 2( 0, 0.1)    

   1st solution  2nd solution 1st solution 2nd solution 1st solution 2nd solution 

1.18 1.0182 0.8281 1.0723 0.8614 1.0247 0.8323 

1.20 0.9381 0.7787 0.9963 0.8152 0.9457 0.7821 

1.21 0.8952 0.7501 0.9562 0.7907 0.9032 0.7551 

1.23 0.8059 0.6874 0.8712 0.7344 0.8131 0.6931 

1.25 0.7033 0.6141 0.8724 0.6681 0.7982 0.6215 

1.27 0.5851 0.5237 0.6713 0.5901 0.5961 0.5324 

1.29 0.4416 0.4053 0.5472 0.4932 0.4551 0.4170 

1.30 0.3480 0.3268 0.4756 0.4331 0.3651 0.3410 

1.31 0.2234 0.2141 0.3892 0.3612 0.2486 0.2373 

  

 

 

 

Fig. 2. Comparison of three distinct fluids for (0)f '' . 
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Fig. 3. Comparison of three distinct fluids for (0)' . 

 

Fig. 4a. Comparison of three distinct fluids for 1st solution of ( )f '  . 

 

Fig. 4b. Comparison of three distinct fluids for 2nd solution of ( )f '  . 
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Fig. 5a. Comparison of three distinct fluids for 1st solution of ( )  . 

 

Fig. 5b. Comparison of three distinct fluids for 2nd solution of ( )  . 

 

Fig. 6. Variations of   on ( )f '   for three distinct fluids. 
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Fig. 7. Variations of   on ( )   for three distinct fluids. 

 

Fig. 8. Variations of radiation parameter R  on ( )   for hybrid nanofluid. 

 

7. Conclusion 

The BVP presented in Eqs. (8)(9) and Eq. (12) are solved analytically using the Least square 

method (LSM). This analytical method is so simple and easy that it can be applied to any BVP. 

This method takes less time for finding solutions than the homotopy analysis method (HAM). Dual 

solutions are computed with the influence of MHD and radiation for three different fluids and the 

range of dual solutions is larger with 2 3 /Al O kerosene nanofluid. Moreover, stability analysis is 

applied to check stable or physically reliable solutions. The eigenvalues are evaluated for various 

parameters, where the positive eigenvalues are related to stable solutions and negative eigenvalues 
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are related to the unstable solution. Higher eigenvalues are found with the effects of MHD. ( )   

enhances with the enhancement of radiation parameter R   for 1st solution but declines initially for 

2nd solution and then after a certain value, it begins to increase. 
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