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Abstract13

We explore the dynamics of an adiabatic neural cell of a perceptron artificial neural network in a14

quantum regime. This mode of the cell operation is assumed for a hybrid system combining classi-15

cal neural network having configuration dynamically adjusted by a quantum co-processor. Analyt-16

ical and numerical studies take into account non-adiabatic processes, as well as dissipation, which17

leads to smoothing of quantum coherent oscillations. The obtained results indicate the conditions18

under which the neuron possesses the required sigmoid activation function.19
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Introduction23

The implementation of machine learning algorithms is one of the main applications of modern24

quantum processors [1-9]. It has been shown that a relatively small quantum circuit may be capa-25

ble of searching for a large number of synaptic weights of an artificial neural network (ANN) [10-26

13]. The rate of the weight adjustment is an important parameter that determines the possibility27

of the ANN dynamic adaptation. Such tunability is required when working with rapidly changing28

content. The corresponding information flow naturally arises, e.g., within the framework of novel29

telecommunication paradigms, like software-defined radio [14,15] implying the changing of the30

signal frequency and modulation. An efficient architecture of the flexible hybrid system requires31

close spatial arrangement of the classical ANN with its control quantum co-processor, see figure32

1a. The superconducting technology is a promising platform for such a solution since both (the su-33

perconducting quantum machine learning circuits [15-21] and the superconducting ANNs [22-35])34

are rapidly developed nowadays.35

Robust implementation of the considered quantum-classical system would benefit from the utiliza-36

tion of a single technology suitable for superconducting qubits. In this case, the classical part can37

operate in an adiabatic mode ensuring minimal impact on quantum circuits. However, quantum38

effects, in turn, can significantly affect the operation of neuromorphic elements. In this work, we39

account for this by considering the neuron cell operation in a quantum regime. We investigate the40

dynamics of this cell in search of conditions that provide the required sigmoid activation function41

(conversion of the input magnetic flux into the average output current), suitable for the operation42

of the ANN as a perceptron [4]. The studied cell is called, respectively, a quantum neuron or 𝑆𝑄-43

neuron. Its closest analogue is the flux qubit used by D-Wave Systems in quantum annealers [36-44

38].45

An important incentive for this work is the previously obtained results on the classical adiabatic46

neurons with extremely small energy dissipation [39-42]. We especially note the demonstrated pos-47

sibility of the adiabatic evolution of the state for a neuron in a multilayer perceptron with Joseph-48
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Figure 1: (a) Sketch of a flexible hybrid system consisting of a classical ANN having configuration
(synaptic weights) dynamically adjusted by a quantum co-processor. (b) Schematic representation
of the 𝑆𝑄-neuron providing nonlinear magnetic flux transformation.

son junctions without resistive shunting [43]. It is precisely such heterostructure without resistive49

shunting that is used in the implementation of a quantum neuron based on flux qubit.50

The article is organized as follows. First, we present the scheme of the proposed quantum neuron,51

and also investigate the spectrum of the Hamilton operator for such a system. Next, on the basis of52

the numerical solution of the Schrodinger equation, we investigate dynamic processes in a quantum53

neuron. We pay special attention to the analysis of the activation function of the cell for two main54

modes (with one and two minima of the potential energy of the system). We use Wigner functions55

for a visual interpretation of the neuron’s dynamics. The region of the operating parameters for the56

proposed neuron circuit under the action of unipolar magnetic flux pulses are found. Finally, the57

influence of the dissipation on the features of the dynamic processes and characteristics of the cell58

is revealed.59

Methods60

Neuron model and basic equations61

A single-junction superconducting interferometer with normalized inductunce 𝑙, Josephson junc-62

tion without resistive shunting (JJ), additional inductance 𝑙𝑎, and output inductunce 𝑙𝑜𝑢𝑡 (see figure63

3



1b) is the basis of the quantum neuron. This circuit has been presented before as a classic super-64

conducting neuron for adiabatic perceptron [39,43].65

The classical dynamics of the system under consideration is described using the equation for the66

dynamics of the Josephson phase:67

𝜔−2
𝑝 ¥𝜑 + 𝜔−1

𝑐 ¤𝜑 + sin(𝜑) = 𝑏𝜑𝑖𝑛 (𝑡) − 𝑎𝜑, (1)68

where the coefficients are determined by expressions69

𝑎 =
𝑙𝑎 + 𝑙𝑜𝑢𝑡

𝑙𝑙𝑎 + 𝑙𝑜𝑢𝑡 (𝑙 + 𝑙𝑎)
, 𝑏 =

𝑙𝑎 + 2𝑙𝑜𝑢𝑡
2(𝑙𝑙𝑎 + 𝑙𝑜𝑢𝑡 (𝑙 + 𝑙𝑎))

, 𝑙𝑎 = 1 + 𝑙;

inductances are normalized to 2𝜋𝐼𝑐
Φ0
, 𝐼𝑐 is the critical current of the Josephson junction, Φ0 is the70

magnetic flux quantum. The inertial properties of the system are due to the junction capacitance,71

which, along with the critical current 𝐼𝑐, determines the plasma frequency of the JJ, 𝜔𝑝 =

√︃
2𝑒𝐼𝑐
ℏ𝐶
.72

In this case, the dissipative properties of the system are determined by the Josephson characteristic73

frequency 𝜔𝑐 = 2𝑒𝑅𝐼𝑐
ℏ
(here 𝑅 and 𝐶 are the normal state resistance and capacitance of the Joseph-74

son junction, respectively).75

Dynamic control of the system states is carried out by a changing external magnetic flux, 𝜑𝑖𝑛 (𝑡),76

normalized to the magnetic flux quantum Φ0:77

𝜑𝑖𝑛 (𝑡) = 𝐴
((
1 + 𝑒−2𝐷 (𝑡−𝑡1)

)−1
+
(
1 + 𝑒+2𝐷 (𝑡−𝑡2)

)−1)
− 𝐴, (2)78

where 𝐴 is the normalised amplitude of the external action, 𝑡1 and 𝑡2 are the characteristic rise/fall79

times of the control signal, which steepness is determined by the parameter 𝐷. The phase of the80

Josephson junction, 𝜑, obeys equation (1). The activation function of the neuron is determined by81

the dependence of the output current 𝑖𝑜𝑢𝑡 on the input flux 𝜑𝑖𝑛:82

𝑖𝑜𝑢𝑡 =
𝜑𝑖𝑛 − 2𝑙𝑎𝑖
2(𝑙𝑎 + 𝑙𝑜𝑢𝑡)

, 𝑖 = 𝑏𝜑𝑖𝑛 − 𝑎𝜑. (3)83
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Spectrum of the neuron Hamiltonian84

The quantum regime manifests itself through a discrete spectrum of allowed values for the total en-85

ergy of the system. The characteristic gaps in the spectrum of the effective Hamiltonian are signif-86

icantly larger than the thermal smearing in the studied case, and the level broadening due to the in-87

fluence of the environment is also relatively small. The described features affect the neuron ability88

to non-linearly transform the magnetic signal. In order to describe the quantum mechanical behav-89

ior of the system (1), we start from the case of a Josephson junction with a large shunted resistance90

(𝜔−1
𝑐 → 0). In this case, the equation (1) can be interpreted as the equation of motion for a particle91

with mass 𝑀 = ℏ2

2𝐸𝑐
(charge energy 𝐸𝑐 = (2𝑒)2

2𝐶 ) in potential92

𝑈 (𝜑, 𝜑𝑖𝑛 (𝑡)) = 𝐸𝐽
(𝑏𝜑𝑖𝑛 (𝑡) − 𝑎𝜑)2

2𝑎
+ 𝐸𝐽 (1 − cos 𝜑), 𝐸𝐽 =

𝐼𝐶Φ0
2𝜋

. (4)93

The dynamics of the system is governed by the Hamilton function, 𝐻 (𝑝, 𝜑, 𝜑𝑖𝑛 (𝑡)) =
𝑝2

2𝑀 +94

𝑈 (𝜑, 𝜑𝑖𝑛 (𝑡)). The canonical quantization procedure leads to the Hamiltonian:95

�̂� (𝑝, �̂�, 𝜑𝑖𝑛 (𝑡)) =
𝐸𝑐𝑝

2

ℏ2
+ 𝐸𝐽

(
(𝑏𝜑𝑖𝑛 (𝑡) − 𝑎�̂�)2

2𝑎
+ (1 − cos �̂�)

)
, (5)96

where the operators 𝑝 and �̂� obey the commutative relation [�̂�, 𝑝] = 𝑖ℏ.97

The form of the potential (4) in each moment of time, and hence the dynamic behavior of the sys-98

tem, is determined by the physical parameters of the circuit shown in figure 1. There is a range99

of inductances where the potential profile (4) has a double-well shape under the action of the in-100

put flux (2). Their values can be obtained from solution of the transcendental equation 𝜕𝑈 (𝜑)
𝜕𝜑

≡101

𝑎𝜑 − 𝑏𝜑𝑖𝑛 (𝑡) + sin 𝜑 = 0. The potential has more than one extremum in the case, when 𝑎 < 1, and102

therefore: 𝑙 > 𝑙∗ ≡
√︃
𝑙2𝑜𝑢𝑡 + 1 − 𝑙𝑜𝑢𝑡 . Note that for the classical regime the sigmoidal shape of the103

activation function is possible only when 𝑙 < 𝑙∗ [43].104

One of the goals of this work is to determine the parameters of the adiabatic switching of quantum105

neuron for 𝑙 < 𝑙∗ (single-well mode) and 𝑙 > 𝑙∗ (double-well mode). Within the adiabatic approach106

it is possible to numerically solve the time-independent Schrödinger equation (see Appendix 1) for107
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each moment of time to find “instantaneous energy levels”, 𝐸𝑛 (𝑡), and “instantaneous wave func-108

tions” of the system, 𝜓𝑛 (𝜑, 𝑡):109

�̂� (𝑝, �̂�, 𝜑𝑖𝑛 (𝑡))𝜓𝑛 (𝜑, 𝑡) = 𝐸𝑛 (𝑡)𝜓𝑛 (𝜑, 𝑡). (6)110

Figure 2: The energy spectrum and adiabatic (instantaneous) wave functions are represented at the
initial time 𝑡 = 0 (a, c) and at the rise of the applied flux, 𝑡1 = 500 (b, d) for the inductance value
𝑙 = 0.1 (a,b) and 𝑙 = 2.5 (c, d). The parameters of the system and the input magnetic flux are:
𝐸𝐶 = 0.5𝐸𝐽 , 𝑙𝑎 = 𝑙 + 1, 𝑙𝑜𝑢𝑡 = 0.1, 𝐷 = 0.008, 𝐴 = 4𝜋, 𝑡2 = 3𝑡1.

Figure 2 demonstrates the spectrum of instantaneous energy levels and wave functions of the sys-111

tem at the initial moment of time (figures 2a,c) and at the moment 𝑡1, when the input magnetic flux112

(2) is equal to 𝜑𝑖𝑛 = 2𝜋 (figures 2b,d). Note that for the case 𝑙 < 𝑙∗ (figures 2a,b), the form of the113

potential can be approximated by a parabolic function (single-well mode). The symmetry of the114

potential under external influence does not change, and only a shift in the energy levels with preser-115

vation of the interlevel distance is observed at the rise/fall periods of the signal. Different behavior116

is observed for 𝑙 > 𝑙∗ where at the rise/fall periods of the signal a double-well potential appears117

(figure 2c). Here two lowest close energy levels are separated by an energy gap from the rest of the118

level structure. This resembles the formation of the flux qubit spectrum [44].119
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Results and Discussion120

Dynamics of the quantum neuron without dissipation121

Dynamics (evolution of the system’s states, Ψ(𝑡)) of the quantum neuron (5) is associated with the122

nonlinear transformation of the input magnetic flux (2). We described it using the time-dependent123

Schrödinger equation:124

𝑖ℏ
𝜕

𝜕𝑡
Ψ(𝑡) = �̂� (𝑝, �̂�, 𝜑𝑖𝑛 (𝑡))Ψ(𝑡). (7)125

Eigenvectors of the system are found by numerical solution of equation (7) (see details in Ap-126

pendix 2). Thereafter, from the evolution of average values of the phase and current operators we127

found transfer characteristic 𝑖𝑜𝑢𝑡 (𝜑𝑖𝑛) of 𝑆𝑄-neuron (3), its activation function. Let’s explain the128

idea of our calculations. We further assume that the system is initialized at the initial moment of129

time. At cryogenic temperatures (∼mK) the system states are localised at lower energy levels.130

According to equation (3), the dependence of the average value of the output current 𝑖𝑜𝑢𝑡 on the131

input magnetic flux 𝜑𝑖𝑛 is calculated:132


〈�̂�(𝑡)〉 = 〈Ψ(𝑡) |�̂� |Ψ(𝑡)〉 ,

𝑖𝑜𝑢𝑡 ≡ 〈𝑖(𝑡)〉 = 𝑏𝜑𝑖𝑛 − 𝑎〈�̂�(𝑡)〉.
(8)133

We use the Wigner functions in order to visualize the adiabatic dynamics in the “phase-conjugate134

momentum” space, see ref. [45]. This function is determined by the Fourier transform of a bilinear135

combination of the wave functions:136

𝑊 (𝜑, 𝑝, 𝑡) = 1
2𝜋ℏ

∞∫
−∞

𝑑𝜉𝑒
𝑖 𝑝 𝜉

ℏ Ψ(𝜑 + 𝜉/2, 𝑡)Ψ∗(𝜑 − 𝜉/2, 𝑡). (9)137
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The wave function Ψ(𝜑, 𝑡) can be expanded in terms of the instantaneous eigenvectors 𝜓𝑛 (𝜑, 𝑡):138

Ψ(𝜑, 𝑡) =
∑︁
𝑛

𝑐𝑛 (𝑡)𝜓𝑛 (𝜑, 𝑡)𝑒𝑥𝑝
−
𝑖

ℏ

𝑡∫
0

𝐸𝑛 (𝑡′)𝑑𝑡′
 , (10)139

where the coefficients 𝑐𝑛 (0) are determined from the initial conditions for the wave function140

Ψ(𝜑, 0). Changes of the coefficients 𝑐𝑛 (𝑡) in time are determined by the system of 𝑁 coupled equa-141

tions142

𝑖
𝑑𝑐𝑛 (𝑡)
𝑑𝑡

=
𝑖

ℏ

𝑑𝜑𝑖𝑛 (𝑡)
𝑑𝑡

𝑁∑︁
𝑚=0


1

𝜔𝑛,𝑚 (𝑡)

(
𝜕�̂�

𝜕𝜑𝑖𝑛

)
𝑛.𝑚

𝑐𝑚 (𝑡)𝑒𝑥𝑝
𝑖

𝑡∫
0

𝜔𝑛,𝑚 (𝑡′)𝑑𝑡′

 , (11)143

where the time-dependent matrix elements appear. Their rate of change is given by ℏ𝜔𝑛,𝑚 (𝑡) =144

𝐸𝑛 (𝑡) − 𝐸𝑚 (𝑡). Note that if the adiabaticity condition,145 ���� 1
ℏ𝜔𝑛,𝑚 (𝑡)

(
𝜕�̂�

𝜕𝜑𝑖𝑛

)
𝑛.𝑚

���� << 1, (12)146

are satisfied for pairs of levels then transitions between them become improbable.147

We consider the case where only two lower levels are taken into account. In this case, the remain-148

ing energy levels lie noticeably higher than the selected doublet. In addition, adiabaticity condi-149

tions (12) should be satisfied. When these conditions are met, the following expression can be writ-150

ten to approximate the wave function:151

Ψ(𝜑, 𝑡) = 𝑐0(𝑡)𝜓0(𝜑, 𝑡)𝑒𝑥𝑝
−
𝑖

ℏ

𝑡∫
0

𝐸0(𝑡′)𝑑𝑡′
 + 𝑐1(𝑡)𝜓1(𝜑, 𝑡)𝑒𝑥𝑝

−
𝑖

ℏ

𝑡∫
0

𝐸1(𝑡′)𝑑𝑡′
 (13)152
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and we can get the expression for the Wigner function:153

154

𝑊 (𝜑, 𝑝, 𝑡) = |𝑐0(𝑡) |2 𝐾0,0(𝜑, 𝑝, 𝑡) + |𝑐1(𝑡) |2 𝐾1,1(𝜑, 𝑝, 𝑡)+155

+𝑐0(𝑡)𝑐∗1(𝑡)𝐾0,1(𝜑, 𝑝, 𝑡)𝑒𝑥𝑝
𝑖

𝑡∫
0

𝜔0,1(𝑡′)𝑑𝑡′
+𝑐1(𝑡)𝑐∗0(𝑡)𝐾1,0(𝜑, 𝑝, 𝑡)𝑒𝑥𝑝

−𝑖
𝑡∫
0

𝜔0,1(𝑡′)𝑑𝑡′
 ,
(14)

156

157

where158

𝐾𝑛,𝑚 (𝜑, 𝑝, 𝑡) =
1
2𝜋

∞∫
−∞

𝑑𝜉𝑒𝑖𝑝𝜉𝜓𝑛 (𝜑 + 𝜉/2, 𝑡)𝜓∗
𝑚 (𝜑 − 𝜉/2, 𝑡). (15)159

Further we demonstrate two effects in this approximation: (1) one can construct a superposition160

of the basis states and observe the manifestation of the interference of quantum states in the oscil-161

lations of the output characteristic; (2) there are oscillations of the output characteristic due to the162

influence of nonadibaticity.163

Single-well potential164

Figure 3 demonstrates the calculated activation functions of the 𝑆𝑄-neuron operating in the quan-165

tum regime in a single-well mode (𝑙 < 𝑙∗) for three different initial states of the system. Numeri-166

cal analysis has shown that the activation functions for the quantum neuron, initialised in the basic167

states, takes a sigmoidal shape (black and red curves in figure 3). It is in a good agreement with the168

classical regime of operation [43].169

Note that when the input flux (2) changes from 0 to 4𝜋, the phase 𝜑 on the Josephson junction170

changes from 0 to 2𝜋 and vice versa. The complete coincidence of the two paths of the system evo-171

lution occurs with a significant increase in the rise time "↑" (𝜑 = 0 → 2𝜋) and the fall time "↓"172

(𝜑 = 2𝜋 → 0) of the input signal. For the superposition of the basic states, as seen in figure 3,173

oscillations are observed in the shape of the activation function. In this regard, for clarity of inter-174

9



pretation of the obtained results of the quantum dynamics, we consider the evolution of the system175

in the phase space.176

Figure 3: The neuron activation functions for 𝑙 = 0.1 and different initial states: the black curve
corresponds to the ground initial state 𝜓0(𝜑, 0), the red one — to the first excited state 𝜓1(𝜑, 0),
and green curve corresponds to the superposition of states (𝜓0(𝜑, 0) + 𝜓1(𝜑, 0))/

√
2. Parameters of

the input magnetic flux are 𝐷 = 0.008, 𝐴 = 4𝜋, 𝑡1 = 500, 𝑡2 = 3𝑡1.

If the adiabaticity condition (12) is satisfied and the system was initially at the lowest level177

|𝑐0(0) |2 = 1 (figure 4a), then the dynamics of the Wigner function reflects the distribution in phase178

and conjugate momentum related to this level. Similar reasoning can be given for the case when179

the first excited level (figure 3b) is populated. Here, the center of the probability density |Ψ(𝜑, 𝑡) |2180

and the distribution of the Wigner function (figure 4a,b) shift smoothly, from 𝜑 = 0 to 2𝜋, when the181

cell is exposed to the input magnetic flux. The system remains localized in the initial state, and as a182

result the activation function takes a sigmoidal form without any oscillations (black and red curves183

in figure 3). If the system is initialised in the superposition of lowest states (figure 4c) then the in-184

terference term in the Wigner function is emerged, see the last two terms in (14). This is expressed185

as oscillations on the Wigner function between the maximum (red area) and minimum (blue area),186

see figure 5. Coherent oscillations on the current-flux dependence are also the evidence of this phe-187

nomenon (see the green curve in figure 3).188
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Figure 4: The Wigner functions𝑊 (𝜑, 𝑝, 𝑡 = 0) of the considered system initialized at the initial
moment of time 𝑡 = 0 (a) in the ground state 𝜓0(𝜑, 0), (b) in the first excited state 𝜓1(𝜑, 0) and (c)
in the superposition of lowest states (𝜓0(𝜑, 0) + 𝜓1(𝜑, 0))/

√
2 for 𝑙 = 0.1. Other parameters are

similar to those shown in figure 3.

Figure 5: The evolution of the Wigner function under the influence of the input flux 𝜑𝑖𝑛 for the 𝑆𝑄-
neuron initialized in the superposition state (𝜓0(𝜑, 0)+𝜓1(𝜑, 0))/

√
2 at the moments 𝑡 = 0 (absence

of 𝜑𝑖𝑛) (a); 𝑡 = 1000 (the plateau of 𝜑𝑖𝑛) (b); 𝑡 = 1500 (the middle of the decreasing branch of 𝜑𝑖𝑛)
(c); 𝑡 = 2000 (absence of 𝜑𝑖𝑛) (d). The rest parameters are similar to those shown in figure 3.

Double-well potential189

For the double-well potential, when 𝑙 > 𝑙∗, the problem of quantum dynamics and the formation of190

the sigmoidal activation function is also studied. We start with the parameters of the input flux as191

presented in figure 3. Numerical simulations demonstrate a distortion of the sigmoidal form of the192

activation function even when the 𝑆𝑄-neuron is initialized in the ground state, see figure 6.193

In the process of evolution, a significant rearrangement occurs in the spectrum of energy levels194

(anti-crossing between the ground and the first excited levels) during the formation of a double-195

well potential (see figure 2). This corresponds to the rise period of the signal along the path196

𝜑 = 0 → 2𝜋. Note that in this case the adiabaticity condition (12) is violated. This is a conse-197

quence of the increase in the input flux 𝜑𝑖𝑛, which leads to the excitation of the overlying states.198
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Figure 6: The activation functions of the neuron with 𝑙 = 2.5 initialized (a) in the ground state, see
the black "↑" (𝜑 = 0 → 2𝜋) and orange "↓" (𝜑 = 2𝜋 → 0) curves; (b) in the first excited state,
see the red "↑" and gray "↓" curves; (c) in the superposition of the basis states, see the blue "↑" and
brown "↓" curves, respectively. Input flux parameters are 𝐷 = 0.008, 𝐴 = 4𝜋, 𝑡1 = 500, 𝑡2 = 3𝑡1.
"↑" corresponds to the rise branch of 𝜑𝑖𝑛, "↓" corresponds to the fall branch of 𝜑𝑖𝑛.

In this case, the system ceases to be localized in the initial state, which is clearly shown in fig-199

ure 7 during the evolution of the Wigner function in the phase space. It can be seen that the system200

evolves adiabatically from the ground state until reaches 𝜑𝑖𝑛 = 2𝜋, when a double-well potential201

profile (4) is formed. In this case, the rate of change of the potential exceeds the rate of state locali-202

sation. Due to the tunneling effect, the wave function is redistributed from the left to the right local203

minimum of the potential profile (see figure 2). Figure 7b-c clearly shows that the Wigner function204

has negative values due to the formation of a superposition state during evolution (see also the in-205

sets in figure 6 for the population coefficients |𝑐0(0) |2 and |𝑐1(0) |2 for basis levels). Because of this206

reason, the activation function in figure 6 exhibits oscillations associated with the interference of207

the wave functions. These oscillations are more irregular than ones in the figure 3 (see the green208

curve). This is due to the occurrence of interference phase effects of a larger number of states par-209

ticipating in the superposition corresponding to the violation of the adiabaticity condition (12).210

Note that if the rate of the potential changes is less than the rate of the localised state movement211

and the adiabaticity condition (12) is satisfied, then we can get the sigmoidal activation function212

even in with double-well potential (see figure 8). In this case, there is a good match between the213

forward "↑" and the backward "↓" characteristics of the 𝑆𝑄-neuron.214
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Figure 7: The evolution of the Wigner function of the 𝑆𝑄-neuron with 𝑙 = 2.5 initialized in the
ground state under the action of the input flux 𝜑𝑖𝑛 at the moments 𝑡 = 0 (absence of 𝜑𝑖𝑛) (a); 𝑡 =
500 (the middle of the increase of 𝜑𝑖𝑛) (b); 𝑡 = 1000 (the plateau of 𝜑𝑖𝑛) (c); 𝑡 = 2000 (absence of
𝜑𝑖𝑛) (d). The input flux parameters are equal to those shown in the figure 6.

Activation function of the quantum neuron215

We also study the quality of approximation of the neuron activation function by the sigmoidal func-216

tion for different parameters of the cell (in the framework of the adiabaticity conditions). The ap-217

proximation function is:218

𝜎(𝜑𝑖𝑛) =
𝑝1

1 + 𝑒−𝑝2𝜑𝑖𝑛+𝑝3 + 𝑝4, (16)219

Figure 8: The activation function of the neuron with 𝑙 = 2.5 initialised at 𝑡 = 0 in the ground state.
Here the parameters are 𝐷 = 0.0002, 𝐴 = 4𝜋, 𝑡1 = 10000, 𝑡2 = 3𝑡1.
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where 𝑝𝑖 are the parameters of the numerical approximation. Our goal is to compare the ideal ac-220

tivation function 𝜎(𝜑𝑖𝑛) and the activation function of the considered cell 𝑖𝑜𝑢𝑡 (𝜑𝑖𝑛). We use the221

square of the standard deviation 𝑆𝐷 for this purpose:222

𝑆𝐷 = 𝐷𝑖𝑠[(𝜎(𝜑𝑖𝑛) − 𝑖𝑜𝑢𝑡 (𝜑𝑖𝑛))2], (17)223

where 𝐷𝑖𝑠[(...)] means the dispersion of a data set. Analysis of figures 6 and 8 allows us to con-224

clude that the parameters affecting the activation function shape are primarily the rise/fall rate of225

the signal 𝐷 (see (2)) and the inductance value 𝑙, which determines the shape of the potential pro-226

file. In this regard, we obtain the plane of parameters 𝑆𝐷 (𝑙, 𝐷), presented in figure 9, where the227

color indicates the value of the square of the standard deviation from the “ideal sigmoid”. The area228

with 𝑆𝐷 < 0.0001 (area outside the dark zone in figure 9) corresponds to the formation of the sig-229

moid activation function of the required form.230

Figure 9: The value of the square of the standard deviation, 𝑆𝐷, of the 𝑆𝑄-neuron activation func-
tion from the mathematical sigmoid (16) for various inductance 𝑙 values and rise/fall rates, 𝐷, of
the input flux 𝜑𝑖𝑛 (𝑡). At the initial moment, the system was initialized in the ground state. The pa-
rameters of the system and the input flux are as follows: 𝐴 = 4𝜋, 𝑙𝑎 = 𝑙 + 1, 𝑙𝑜𝑢𝑡 = 0.1.

From the analysis of figure 9, it can be concluded that the higher the value of the inductance 𝑙, the231

slower the process of adiabatic switching of the quantum neuron. For superconducting circuit pa-232
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rameters: 𝐼𝐶 = 0.35 𝜇𝐴, 𝐶 = 10 fF, 𝜔𝑝 ∼ 1011 s−1, the adiabatic switching time is ∼ 5 ns for233

𝑙 = 0.1 (see figure 3, the regime without oscillations) and ∼ 100 ns for 𝑙 = 2.5 (see figure 8).234

Influence of dissipation effects on the quantum neuron dynamics235

In the classical regime, the dissipation mechanism in the neuron has been considered using the236

Stewart-McCumber model [46]. In order to take into account the dissipation in a quantum system,237

we “place” it in a bosonic bath. For further analysis, we use a linear model of the interaction be-238

tween the quantum neuron and the bath:239

�̂�𝑖𝑛𝑡 = 𝑘�̂�
∑︁
𝑖

(𝑏𝑖
† + 𝑏𝑖), (18)240

where 𝑏𝑖
† and 𝑏𝑖 are creation and annihilation operators of the 𝑖-th bosonic mode, 𝑘 is the coupling241

constant. With an adiabatic change of the input flux, the 𝑆𝑄-state can be described in terms of the242

instantaneous eigenbasis 𝜓𝑛 (𝜑, 𝑡), see equation (6), using a density matrix:243

𝜌(𝑡) =
∑︁
𝑚,𝑛

𝜌𝑚𝑛 (𝜙, 𝑡) |𝜓𝑚 (𝑡)〉 〈𝜓𝑛 (𝜙, 𝑡) | . (19)244

Under the Born-Markov approximation, dissipative dynamics is described by the generalized mas-245

ter equation for the density matrix [47]. Furthermore, by keeping only the secular terms and using246

the random phase approximation, we reduced it to the Pauli master equation:247

¤𝜌𝑚𝑚 =
∑︁
𝑛≠𝑚

𝜌𝑛𝑛𝑊𝑚𝑛 − 𝜌𝑚𝑚
∑︁
𝑛≠𝑚

𝑊𝑛𝑚, (20)248

where dots denote differentiation by normalized time,𝑊𝑚𝑛 is the transition rate from the state 𝑛 to249

𝑚 given by the expression250

𝑊𝑚𝑛 = 𝜆 |〈𝜓𝑛 |�̂� | 𝜓𝑚〉|2 [𝜃 (𝜔𝑛𝑚) (�̄�(𝜔𝑛𝑚) + 1) + 𝜃 (𝜔𝑚𝑛)�̄�(𝜔𝑚𝑛)] . (21)251
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Here 𝜆 =
𝜋𝑔𝑘2

ℏ2𝜔𝑝

√︃
4𝐸𝐽

𝐸𝐶
is the renormalized coupling constant, 𝜃 is the Heaviside step function,252

�̄�(𝜔) = 1
𝑒ℏ𝜔/𝑘𝑇 −1 is the Planck’s distribution and 𝑔 is the density of bosonic modes, which is sup-253

posed to be constant. Under adiabatic approximation, the transition rates𝑊𝑚𝑛 between the neuron254

states are calculated in the instantaneous eigenbasis. Numerical simulations are performed for the255

temperature of the bosonic thermostat 𝑇 = 50 mK.256

We have investigate the relaxation of the excited states for both the single-well (𝑙 < 𝑙∗, figure 10a,c)257

and double-well (𝑙 > 𝑙∗ figure 10b,d) potential shapes. The key result is the suppression of the os-258

cillations of the activation function for the neuron initialized in a superposition of two basic states.259

The dynamics of changes in the populations |𝑐𝑘 (𝑡) |2 of the energy levels for this case is shown in260

the insets of figure 10 (see figure 6 for comparison). This relaxation takes the full cycle of switch-261

ing of the input flux (𝜑𝑖𝑛 = 0⇔ 4𝜋) due to dissipative processes.262

Figure 10: The neuron activation function for 𝑙 = 0.1 (a, c) and 𝑙 = 2.5 (b, d) when the cell is ini-
tialized in the first excited level (a, b) and in the superposition of two basic states (c, d). The input
flux parameters are as follows: 𝐷 = 0.008, 𝐴 = 4𝜋, 𝑡1 = 500, 𝑡2 = 3𝑡1; the renormalized coupling
constant 𝜆 = 0.005. The insets present the corresponding populations |𝑐𝑘 (𝑡) |2 of the energy levels.

In the figure 10b,c there is an obvious suppression of the oscillations on the activation function,263

which were observed due to the anti-crossing of the energy levels in the double-well potential. In264

addition, coherent oscillations on the activation function of the neuron (see figure 3 and figure 6c)265
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arising during evolution from the superposition state are also smoothed out. Previously, these oscil-266

lations were associated with the interference of the phases of the 𝑆𝑄-states. However, the possible267

dispersion of the initial phases makes the activation function to be sigmoidal due to the averaging268

over random phases, see figure 10c,d.269

Conclusions270

We have shown that an adiabatic superconducting neuron of a classical perceptron, under certain271

conditions, retains the sigmoidal shape of the activation function in the quantum regime (when the272

spectrum of allowed energy values is discrete). Moreover, the sigmoidal transformation of the ap-273

plied magnetic flux into the average output current can be obtained both for single-well and double-274

well potential energy of the cell. The influence of the initial quantum state of the neuron on the275

shape of the activation function is especially noticeable for the case of a superposition of basic276

states. We have also showed how dissipation suppresses “quantum” oscillations on the activation277

function, just as damping suppresses plasma oscillations in classical Josephson systems. The ob-278

tained results pave the way for a classical perceptron and a control quantum co-processor (designed279

for the rapid search of the perceptron synaptic weights) to work in a single chip in a mK cryogenic280

stage of a cryocooler.281
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Appendix 1385

To solve equation (6), we used the finite difference method [48], where continuous wave function386

𝜓(𝜑) is transferred to a discrete grid 𝜙𝑛 = 𝜙(𝜑𝑛) with a step Δ𝜑:387

−(𝜓𝑛+1 + 𝜓𝑛−1) + (2 + 𝜈𝑛)𝜓𝑛 = 𝜖𝑛𝜓𝑛. (22)388

Here we introduced notations: 𝜈𝑛 = 2𝑀Δ𝜑2𝑉𝑛/ℏ2, 𝜖𝑛 = 2𝑀Δ𝜑2𝐸/ℏ2. The boundaries 𝜓0 =389

𝜓𝑁+1 = 0 for (22) are sufficiently removed from the region of actual motion of interest, and the390

wave functions of localized states are weakly affected by the introduced restrictions.391

Appendix 2392

We have analyzed the evolution process on the basis of the Cayley algorithm [49]. The evolution393

operator of the system on a discrete time grid with a step Δ𝑡 is represented as:394

�̂� (Δ𝑡) = 𝑒− 𝑖�̂�Δ𝑡
ℏ ≈ 𝐼 − 𝑖�̂�Δ𝑡/2ℏ

𝐼 + 𝑖�̂�Δ𝑡/2ℏ
, (23)395

where 𝐼 – is the unit matrix corresponding to the dimensionality of the Hamiltonian of the system396

(5), �̂�, according to 𝑡 → 𝜔𝑝

√︃
2𝐸𝐶

𝐸𝐽
𝑡.397

According to (7), the Schrödinger time-dependent equation, and hence the dynamics of the the sys-398

tem, can be found from the following equation:399

𝜓
𝑗+1
𝑛+1 = 𝑅

𝑗+1
𝑛 𝜓

𝑗+1
𝑛 + 𝑆 𝑗+1𝑛 , (24)400
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where the auxiliary quantities are defined as401

402

𝑅
𝑗+1
𝑛−1 = − 1

𝑢𝑛 + 𝑅 𝑗+1𝑛

, 𝑆
𝑗+1
𝑛−1 = −𝐹

𝑗+1
𝑛 − 𝑆 𝑗+1𝑛

𝑢𝑛 + 𝑅 𝑗+1𝑛

403

𝐹
𝑗+1
𝑛 = −(𝜓 𝑗

𝑛+1 + 𝜓
𝑗

𝑛−1 + 𝑢
∗
𝑛𝜓

𝑗
𝑛), 𝑢𝑛 = −2 − 2𝑀Δ𝜑2𝑉𝑛

ℏ2
+ 4𝑖𝑀Δ𝜑2

ℏΔ𝑡
, (25)404

405

with boundary conditions 𝜓 𝑗+10 = 𝜓
𝑗+1
𝑁+1 = 0.406
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