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Abstract 

Neurodegenerative diseases are characterized by slowly progressive neuronal death. 

Conventional treatment strategies often fail due to poor solubility, lower bioavailability, 

and the inability to effectively cross the Blood–Brain Barrier (BBB). Therefore, the 

development of new Neurodegenerative Disease Drugs (NDDs) requires immediate 

attention. Nanoparticle (NP) systems are increasingly of interest for transporting NDDs 

to the central nervous system. However, discovering effective Nanoparticle Neuronal 

Disease Drug Delivery Systems (N2D3S) is challenging due to the vast number of NP 

and NDDS compound combinations, as well as various assays involved. Artificial 

Intelligence/Machine Learning (AI/ML) algorithms have the potential to accelerate this 

process by predicting the most promising NDDS and NP candidates for assay. 

Nevertheless, the relatively limited amount of reported data on N2D3S activity 

compared to assayed NDDs makes AI/ML analysis challenging. In this work, the 

IFPTML technique, which combines Information Fusion (IF), Perturbation Theory (PT), 

and Machine Learning (ML), was employed to address this challenge. Initially, we 
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2 

conducted fusion into a unified dataset comprising 4403 NDDS assays from ChEMBL 

and 260 cytotoxicity NP assays from journal articles. Through a resampling process, 

three new working datasets were generated, each containing 500,000 cases. We 

utilized Linear Discriminant Analysis (LDA) along with Artificial Neural Networks (ANN) 

algorithms like Multi-Layer Perceptron (MLP) and Deep Learning Networks (DLN) to 

construct linear and non-linear IFPTML models, respectively. The IFPTML-LDA 

models exhibited Sensitivity (Sn) and Specificity (Sp) values in the range of 70% to 

73% (>375K training cases) and 70% to 80% (>125K validation cases), respectively. 

Conversely, the IFPTML-MLP and IFPTML-DLN achieved Sn and Sp values in the 

range of 85% to 86% for both training and validation series. Additionally, IFPTML-ANN 

models showed an Area Under the Receiver Operating Curve (AUROC) of 

approximately 0.93 to 0.95. These results indicate that the IFPTML models could serve 

as valuable tools in the design of drug delivery systems for neurosciences.  

Keywords 
Neurodegenerative disease; Nanoparticle; Machine Learning; LDA; ANN 
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Introduction 

Over the years, there has been a drastic change in diet and living standard of people 

worldwide. The inadequate diet, food consumption patterns, long working hours along 

with inactive lifestyle have headed for an inclination. It has brought about widespread 

disease in elderly population related to chronic degenerative/lifestyle/human-made 

diseases. The degenerative diseases are a type of heterogeneous disorder that is by 

progressive degeneration of structure and function of system/organs.[1] In spite of the 

fact that the initiating causes heading to these diseases are unidentified, oxidative 

damage seems reflected to play a vital role in the gradually progressive neuronal death, 

specifically the proliferation production of reactive oxygen and nitrogen species.[2] 

Among these, Alzheimer's and Parkinson's diseases can be considered as the most 

acute incurable. Traditional treatment approaches, such as acetyl-cholinesterase 

inhibitor drugs, often fail due to their poor solubility, lower bioavailability, and ineffective 

ability to cross the Blood–Brain Barrier (BBB).[3] In this sense, the development of new 

Neurodegenerative Diseases Drugs (NDDs) call for immediate attention.[4] The major 

obstacle encountered by NDDs is the selectivity of the BBB, which importantly limits 

the number of therapeutic substances able to reach the brain in order to induce a 

positive effect. Recently, many efforts have been made to develop systems that 

facilitate the passage of NDDs through the BBB.  

Interestingly, nano-particle (NP) systems are gaining increasing interest among the 

possible Nanomedicine strategies for NDDs transport to the central nervous system.[5] 

For simplicity, we are going to call them Nanoparticles Neuronal Diseases Drug 

Delivery Systems (N2D3S). N2D3S have the ability to protect NDDs from chemical and 

enzymatic degradation, direct the active compound towards the target site with a 

substantial reduction of toxicity for the adjacent tissues, and pass physiological barriers 

increasing bioavailability without resorting to high dosage forms.[6] Therefore, 

researchers are studying and developing a new treatment approach that uses N2D3S 

to diagnosis and treatment.[7-10] 

On the other hand, over the last few years, AI/ML models have been applied 

successfully to solve problems in different disciplines, specially, in the interface of 

chemistry and NDDs research.[11-14] In this sense, we consider AI/ML to be helpful 

in N2D3S to select the most efficient combination of NP and drug, taking into account 

the ADMET properties and ND-biological activity respectively.[15] Nevertheless, there 

are a relatively limited availability of NP experimental data reported in the scientific 
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literature so far in comparison to drug, which increases the difficulty of designing the 

system based on AI/ML techniques.  

An additional essential downside of developing N2D3S with AI/ML techniques is the 

great complexity of the data to be explored. As a result, N2D3S development by the 

additive approach requires an AI/ML technique to achieve multi-output and multi-label 

classification.[16-19] In addition, the AI/ML technique takes into account a pre-

processing step to perform Information Fusion (IF) of the preclinical essays for NDDs 

and cytotoxicity NP datasets. Nevertheless, most of AI/ML methods have been 

reported to date only consider the structural/molecular descriptors of the NDDs or NP 

as an input. Therefore, these authors exclude completely non-structural parameters, 

specifically experimental conditions of the preclinical assay in order to list NDDs or NP 

labels, correspondingly. Consequently, the resulting model cannot predict multi-output 

properties and/or labels such as different organisms, cell lines and so on.[20-32] 

Sizochenko et al. reported a new methodology for NP safety estimation in different 

organisms.[33] Predicting NP safety instead of biological activity is the objective of 

other studies as well.[32-34] 

As a new strategy to tackle this problem, González-Díaz et al. have developed IFPTML, 

a multi-output, and input-coded multi-label ML method, which stands for Information 

Fusion (IF)+Perturbation-Theory (PT) + Machine Learning (ML) algorithm.[35] In the 

recent investigation study, IFPTML model has shown to be a powerful tool in molecular 

sciences and in NDs research for big dataset analysis tasks, which includes both 

structural and non-structural parameters. For instance, mapping drug, target protein, 

coated NP drug release systems,[36-44]  multi-target networks of neuroprotective 

compounds for theoretical study of new asymmetric 1,2-rasagiline carbamates,[45] 

TOPS-MODE model of multiplexing neuroprotective effects of drugs and experimental-

theoretic study of new 1,3-rasagiline derivatives potentially useful in 

neurodegenerative diseases,[46] or QSAR and complex networks in pharmaceutical 

design, microbiology, parasitology, toxicology, cancer, and neurosciences and so 

on.[47] Furthermore, this new strategy also has been used for very similar system to 

this research work, such as NP systems taking into account  NP structure and coating 

agents, NP experimental conditions of synthesis loaded drug structure, co-therapy 

loaded drugs, assay conditions, etc.[48-52] Here we developed the IFPTML model for 

N2D3S proposal, containing simultaneously multiple NDD and NP components.  
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Results and Discussion  

In order to build the IFPTML models we carried out the following steps mentioned in 

Figure 1, step-by step which shows the general workflow of all computational 

procedures followed up in this research. Furthermore, for better understanding of all 

steps, we annotated them 2.1, 2.2., etc. in regard with their enumeration in the following 

materials and methods section. 
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Figure 1: IFPTML detailed information-processing workflow. Step 2.1 and 2.2 Data 

collection (NDDs ChEMBL dataset and NP cytotoxicity dataset). Step 2.3 Data pre-

processing and Information Fusion (NP and NDDS assay). Step 2.4 Objective and 

reference functions definition. Step 2.5 PTO calculation.  

 

 

NDDs ChEMBL dataset. 

Firstly, we collected the data of preclinical assay for NDDs from ChEMBL dataset (see 

step 2.1. in Figure 1).[53-55]This dataset contained 4403 preclinical assays for 2566 

NDDs (unique drugs) making approximately 1.71 assays for each drug. The 

information downloaded from ChEMBL included discrete variables cdj used to specify 

the conditions/labels of each assay. These variables are cd0 = biological activity 

parameter, cd1 = target protein involved in NDs, cd2 = cell line for NDDs assays and cd3 

= organism. Each one of these assays included one out of n(cd0) = 46 possible 

biological activity parameters (EC50, Ki(nM), etc.). They also involved some of the n(cd1) 

= 21 target proteins, n(cd2) = 7 cell lines (SH-SY5Y, CHO-K1, HEK293, PC-12, CHO, 

HEK-293T and HuT78), n(cd3)=7 organisms(Homo sapiens, Rattusnorvegicus, Mus 

musculus, Caviaporcellus, Canis lupus familiaris, Macacafas cicularis and 

Caenorhabditiselegans). The information downloaded from ChEMBL also included 

another set of discrete variables used to codify the nature/quality of data. These 

variables are cd4 = type of target, cd5 = type of assay, cd6 =data curation, cd7 = 

confidence score and cd8 = target mapping. Specifically, the target types are n(cd4) 

=6(single protein, organism, tissue, non-molecular and ADMET) and the assay types 

are n(cd5) =3 (Binding, Functional and ADMET). In addition, data curation has until 

n(cd6) = 3 different values (auto-curation, expert and intermediate), confidences score 

n(cd7) = 4 (9 =Direct single protein target assigned, 1 =Target assigned is non-

molecular, 0 =Default value-Target assignment has yet to be curated and 8 = 

Homologous single protein target assigned) and target mapping n(cd8) =3 (protein, 

non-molecular and homologous protein).Furthermore, this database included the 

molecular descriptor Ddk = [Dd1, Dd2, Dd3] in order to define the chemical structure of 

NDDS compound. Specifically, we used two types of molecular descriptor for the ith 

compound: Dd1 = Logarithm of the n-Octanol/Water Partition coefficient (LOGPi) and 

Dd2 = Topological Polar Surface Area (PSAi). The detailed information of this dataset 

was released in Supporting Information (SI) file SI00.xlsx, datasheet ChEMBL. 
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NP cytotoxicity dataset 

Simultaneously, we downloaded the data of preclinical assays for cytotoxicity NPs from 

different sources (see step 2.2. in Figure 1). Concretely, we selected 62 papers from 

scientific literature Pubmed and SciFinder. [56-58] This dataset included 260 

preclinical assays for 31 unique NPs. Therefore, the number of essays for each NP is 

about 8.39. Moreover, the data covered a huge range of properties of NP such as 

morphology, physicochemical properties, coating agents, length, and time of assay. 

These properties were defined as discrete variables cnj  applied to identify the 

conditions/labels of each assay.  Then, we enumerated all the particular conditions of 

each assay as a general vector cnj = [cn1, cn2, cn3 …..cnmax]. Precisely, these variables are 

cn0= biological activity parameter, cn1 = cell line, cn2 = NP shape, cn3 = measurement 

condition and cn4 = coating agent. Each one of these assays involved at last one out of 

n(cn0) = 5 possible biological activity parameters (CC50, EC50, IC50, LC50 and TC50). 

They also include n(cn1) = 53 cell lines (A549 (H), RAW 264.7, Neuro-2A (M), etc.) and 

n(cn2) = 10 NP shapes (spherical, irregular, slice-shaped, needle, rod, elliptical, 

pseudo-spherical, polyhedral, pyramidal and strip). In addition, they contain n(cn3) = 8 

NP measurement conditions (dry, H2O, DMEM, RPMI, 1% Trion X-100/H2O, 

H2O/TMAOH, Egg/H2O and H2O/HMT) and n(cn4) = 16 agents coating (UC, PEG-

Si(OMe)3, PVA, sodium citrate11-mercaptoundecanoic acid, PVP, propylamonium 

fragment, undecylazide fragment, CTAB, N,N,N-trimethyl-3(1-propene) ammonium 

fragment, potato starch, N–acetylcysteine, CMC-90, 2,3-dimercaptopropanesulfonate, 

3-mercaptopropanesulfonate and thioglycolic acid). The full information of this dataset 

was shown in Supporting Information (SI) file SI00.xlsx, datasheet NP. 

 

DNDS pairs resampling. 

IF phase aimed at detected biological parameters.  

Firstly, we described and acquired the objective value in order to design the IFPTML 

model for N2D3S. We defined the target function by applying the vectors of descriptors 

for all cases Dk to use as the input variable in the ML model. The target function is 

commonly achieved by a mathematical conversion of the original theoretical or 

observed feature of the scheme under analysis. [59-61]In the recent IFPTML model, it 

includes two groups of observed values, specifically vij(cd0) and vnj(cn0). In addition, it 

contains two types of input vectors such as Ddk and Dnk for the preclinical assay NDDS 

and NP. Moreover, in this dataset was a large number of different biological parameters 
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cd0 and cn0. For example, there are properties such as Half the maximum Inhibitory 

Concentration(IC50(nM)), half the maximum Effective Concentration (EC50(nM)) or the 

Lethal Concentration of a substance for an organism (LC50(nM)) and so on. Another 

difficulty is that the majority of vij(cd0) and vnj(cn0) values collected are numbers with 

decimals. Furthermore, in order to acquire the optimum N2D3S, we prioritize some 

properties and reduce others. In this context, we use the parameter desirability to 

tackle this problem.  

The desirability value was established d(cd0) = 1 or d(cn0) = 1 if maximized the value of 

vij(cd0) or vnj(cn0) was needed, otherwise d(cd0) = -1 or d(cn0) = -1. Due to the fact that 

the different NDDs and NP properties/characteristics possess large number of 

designations or labels cd0 and cn0, increase the unreability of the data and make it more 

laborious to build up a regression model. For example, putting it into context with a 

specific case of biological activity parameters (cd0) with d(cd0) = 1 are Bmax 

(fmol/mg)(the total number of receptors expressed in the same units), Activity (%), Cp 

(nM),etc. Whereas desirability parameters d(cd0) = -1 that we want to minimize are for 

example EC50(nM), IC50(nM), Imax (%), etc. To address this problem, we used a cutoff 

value to divide AD or NP assays into favorable and non-favorable. It is worth 

mentioning that the usage of cutoff is a mainstream practice in drug discovery process. 

As a result, acquiring the final target function, the pre-process of all observed vij(cd0) 

and vnj(cn0) values is crucial in order to remove or reduce imprecisions. Finally, the IF 

processing phase for these parameters vij(cd0) and vnj(cn0) enable us to achieve a target 

function of the N2D3S.  

On the other hand, we used the cutoff to rescale the parameters of vij(cd0) and vnj(cn0) 

to achieve the Boolean (dummy) functions f(vij(cd0)) obs and f(vnj(cn0))obs. These values 

were obtained as: f(vij(cd0))obs = 1, if vij(cd0)> cutoff and d(cd0) = 1 or vij(cd0) < cutoff and 

desirability d(cd0) = -1, f(vij(cd0)) = 0 otherwise. Similarly, vnj(cn0) was:  f(vnj(cn0))obs = 1 

if vnj(cn0) > cutoff and d(cn0) = 1 or vnj(cn0) < cutoff and d(cn0) = -1, f(vij(cd0), vnj(cn0)) = 0 

else. The values f(vij(cd0))obs = 1 and  f(vnj(cn0))obs = 1  means to have a positive desired 

effect of both NDDs and NP. As a result,the target function was described as f(vij(cd0), 

vnj(cn0))obs = f(vij(cd0))obs·f(vnj(cn0))obs. Therefore, the outcome of the IF-scaling f(vij(cd0), 

vnj(cn0))obs is determined by the ith NDDs compound, the nth NP conditions, the rest of 

cases, f(vij(cd0), vnj(cn0))obs = 0, indicating that as minimum, one of the above-mentioned 

conditions fail. 

Objective and reference functions definition 
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IF phase for combining the reference.  

After we had the target function, the next step is to describe the input variables of the 

IFPTML model. As the input variables for this model is the reference function f(vij(cd0), 

vnj(cn0))ref. The f(vij(cd0), vnj(cn0))ref plays an important role due to the fact that this 

function characterize the expected probability f(vij(cd0), vnj(cn0))ref = p(f(vij(cd0), vnj(cn0))ref 

= 1) of achieving the interested level of activity for a specific property acquired from a 

well-known systems. IFPTML used as reference the value from well-known system or 

sub-set systems. Afterwards, this model includes the effect of different deviations 

(perturbations) of the query function from the reference function. Accordingly, f(vij(cd0), 

vnj(cn0))ref can be considered a function related to observed (not predicted) outcomes. 

In the early section, we mentioned the step of IF-scaling taking into account to 

transform the original vij(cd0) and vnj(cn0) values into f(vij(cd0))obs and f(vnj(cn0))obs 

functions. When we acquire the f(vij(cd0))obs and f(vnj(cn0))obs for all the cases in our 

dataset, the next steps is to quantify each of positive outcomes n(f(vij(cd0)) = 1) and 

n(f(vnj(cn0)) = 1). Subsequently, in order to obtain the reference or expected functions, 

we divide the previous values by the entire number of cases for the NDDS and NP 

systems separately. We describe these functions as: f(vij(cd0))ref = p(f(vij(cd0))ref = 1) = 

n(f(vij(cd0))ref = 1)/n(cn0)j and f(vnj(cn0))ref = p(f(vnj(cn0))ref = 1) = n(f(vnj(cn0))ref = 1)/n(cn0)j. 

In this context, we can calculate the function of reference directly to recognize the 

probabilities product for both subsystems f(vij(cd0), vnj(cn0))ref = p(f(vij(cd0), vnj(cn0))ref = 

1) = p(f(vij(cd0))ref = 1)·p(f(vnj(cn0))ref = 1). It is worth mentioning that the usage of the 

function of reference at this point is another representation of the IF (combination) of 

NDDS and NP datasets.  

 

PTO calculation 

IFPTML N2D3S data analysis phases. 

As we mentioned in the previous section, we acquired the results of many cytotoxicity 

preclinical assays of different NPs.[62-64] Complementarily, we obtained the data of 

preclinical assay for NDDs from ChEMBL database.[53-65-66] It included the 

calculation of the vectors Dnk and Ddk of structural descriptors for each NPs and NDDs. 

In addition, we constructed the vectors cnj and cdj in order to list each label and assay 

condition for all the pre-clinical assays of both the NPs and NDDs. Subsequently, we 

obtained the values ΔDdk(cdj) and ΔDnk(cnj)of the respective moving average deviation 

PTOs. 
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The NDDS vector lists each element: Ddk = [Dd1, Dd2]. Precisely, these elements are 

the NDDS structural descriptors, which have allowed the development of various 

strategies to characterize and classify potential bioactive molecules structure, as in this 

work.[67] These structural descriptorsare:Dd1 = Logarithm of the n-Octanol/Water 

Partition coefficients (LOGPi) and Dd2 = Topological Polar Surface Area (PSAi). On 

other hand, the cytotoxicity NP vector lists the elements as: Dnk = [Dn1, Dn2, Dn3, Dn4, 

Dn5, Dn6, Dn7, Dn8, Dn9, Dn10, Dn11, Dn12, Dn13, Dn14, Dn15, Dn16, Dn17, Dn18, Dn19, Dn20]. 

Specifically, they are: Dn1 = NMUn (number of monomer units), Dn2 =Lnp (NP length), 

Dn3 = Vnu (NP Volumen), Dn4 = Enu (NP Electronegativity). They also contain Dn5 = 

Pnu, Dn6 = Uccoat (unsaturation count), Dn7 = Uicoat (unsaturation index), Dn8 = Hycoat 

(hydrophilic factor), Dn9 = AMR coat (Ghose–Crippen molar refractivity), Dn10 = 

TPSA(NO)coat(topological polar surface area using N,O polar contributions), Dn11 = 

TPSA(Tot)coat (topological polar surface area using N,O,S,P polar contributions) and 

Dn12 = ALOGPcoat. In this list also include Dn13 = ALOGP2coat (squared Ghose–

Crippen octanol/water partition coefficient (logP^2)), Dn14 = SAtotcoat (total surface 

area from P_VSA-like descriptors), Dn15 = SAacccoat (surface area of acceptor atoms 

from P_VSA-like descriptors), Dn16 = SAdoncoat (surface area of donor atoms from 

P_VSA-like descriptors), Dn17 = Vxcoat (McGowan volume), Dn18= VvdwMGcoat (van 

der Waals volume from McGowan volume), Dn19 = VvdwZAZcoat (van der Waals 

volume from Zhao–Abraham–Zissimos equation) and Dn20 = PDIcoat (packing density 

index).   

 

PT data preprocessing  

Apart from the Ddk and Dnk vectors, the IFPTML study takes into account all vectors cdj 

and cnj as parts of the non-numerical experimental conditions and labels for both NDDS 

and NP preclinical assays as well. Later, we calculated the PTOs of the NDDS and NP 

preclinical assays including this extra information. We used (Equation 1 and Equation 

2) in order to obtain the NDDS and NP Moving Average (MA) PTOs. PT model begins 

with the expected value of a well-known activity and adds the effect of different 

perturbations/variations in the system. Consequently, the model includes two different 

of input variables: the reference or expected-value function f(vij)ref  and the PT operators 

ΔDk(cj). Specifically, they are applied for accounting NDDS and NP structural and 

assay information. In addition, the PTOs ΔD(Ddk) and ΔD(Dnk) label NDDS and NP 
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structural and/or physicochemical characteristics on the variables ΔD(Ddk) and ΔD(Dnk), 

correspondingly. Furthermore, the PTOs ΔD(Ddk) and ΔD(Dnk) classify NDDS and NP 

biological assay data with the variables<D(Ddk)cdj> and <D(Dnk)cnj>, separately. 

The<D(Ddk)> and <D(Dnk)> are the representation the average operator for counting 

all cases with the equivalent subset of methodology conditions cdj and cnj, 

correspondingly. Accordingly, they ought to provide exact values for particular assay 

with minimum one altered element in methodology condition of the vector cdj or cnj. In 

this sense, they can specify which assay we are referring to.[48-52] Another kind of 

PTOs involved in this model is the NDDS-NP coat Moving Average Balance (MAB) 

PTO ΔΔD(Dca1, Dca2, Ddk) (Equation 3). The MAB PTO takes into consideration the 

likenesses between the information of NDDS and the NP coating agent. Furthermore, 

PTOs centered straightly on MA and/or linear and non-linear conversions of MA have 

been applied for NDDS and NP development in the previous research work.[44-50-51] 

The MAS is the another way of expressing the combination between IF and PT 

cumulative procedure of  NDDS and NP datasets. 

 

ΔD(Ddk) = ΔD(Ddk) − 〈D(Ddk)𝐜dj
〉        (1) 

ΔD(Dnk) = ΔD(Dnk) − 〈D(Dnk)𝐜nj
〉        (2) 

ΔΔD(Dca1, Dca2, Ddk) = ΔD(Ddk) − [ΔD(Dca1) + ΔD(Dca2)]        (3) 

 

IF phase and proposal of training and validation series subsets 

To develop model using the ML technique, the each of samples cases are designated 

as the training (subset = t) or validation (subset = v) series. The process of cases 

assignment ought to be haphazard, illustrative, and stratified.[68] Due to the nature of 

this combinatory system our sampling also have to take into account the IF-scaling 

procedure. Initially, we obtained the NDDS activity dataset from an open database 

ChEMBL, which has been arbitrarily abstracted from the primary published literature 

all over the world.[69] The cytotoxicity NP preclinical assays also were acquired 

randomly from journal articles. Afterwards, we prepared the each and every case as 

the following labels cd0, cd1, cd2, cd3, cd4, cd5, cd6, cd7, cd8, cn0, cn1, cn2, cn3 and cn4. These 

cases were organized by ranking the labels alphabetically from A to Z (as we 

mentioned before, they are non-numeric variables in nature). The preference order of 

the labels on the procedure of ranking was cd0 => cn0 => cd1 => cn1 => cd2 => cn2=> cd3 

=> cn3. In other words, we organized the cases firstly by cd0, then by cn0, and so forth. 



12 

This preference order considers the IF step by interchanging labels from AD and NP 

datasets. Afterwards, we assigned three of four equal parts cases to subset = t 

(training) and one-quarter subsets = v (validation)from all list. Subsequently, this 

random assignment improves the likelihood that nearly all the categories of individual 

label are denoted by subset = t and subset = v (stratified or proportional random 

sampling). In addition, this boost the possibility that practically all cases for each label 

are in a distribution of 3/4 in set = t and 1/4 in set = v, known as representative 

sampling. It is worth mentioning that the 75% and 25% proportion between training and 

validation is the most used one in the big data analysis. [68] 

 

IFPTML-LDA model 

IFPTML N2D3S model utilizes as input variables, the PTOs which are specified in the 

previous section to codify information of the putative N2D3S with its corresponding 

subsystems NDDS and NP. Combining objective function f(vij, vnj)obs and reference 

function f(vij, vnj)ref, then by adding IF PTOs ΔΔD(D1c, D2c, Ddk), we obtained the output 

function f(vij, vnj)calc. This function carries out dataset cross-cut classification of NDDS 

and NP information. The generic equation for IFPTML linear model is the following 

(equation 4): 

f(vij, vnj)𝑐𝑎𝑙𝑐
= 𝑎0 + 𝑎1 · f(vij, vnj)𝑟𝑒𝑓

+ ∑ 𝑎𝑘,𝑗 ·
𝑘=𝑘𝑚𝑎𝑥,𝑗=𝑗𝑚𝑎𝑥
𝑘=1,𝑗=1 ∆D(𝐷𝑘𝑖)𝑐𝑑𝑗

+

 ∑ 𝑎𝑘,𝑗 ·
𝑘=𝑘𝑚𝑎𝑥,𝑗=𝑗𝑚𝑎𝑥
𝑘=1,𝑗=1 ∆D(𝐷𝑘𝑛)𝑐𝑛𝑗

+  ∑ 𝑎𝑘,𝑗 ·
𝑘=𝑘𝑚𝑎𝑥,𝑗=𝑗𝑚𝑎𝑥
𝑘=1,𝑗=1 ∆∆D(𝐷𝑘𝑖, 𝐷𝑘𝑛)𝑐𝑑𝑗,𝑐𝑛𝑗

 (4) 

 

Generalities for IFPTML models training and validation series 

In many big data systems, the LDA model is the most used tool to seek the preliminary 

model due to the simplicity of this technique. In this sense, within this model we applied 

FSW process that can select automatically the most essential input variables for 

N2D3S in study. We obtained all the results by using the software STATISTICA 6.0.[68] 

Afterwards, we applied the Expert-Guided Selection (EGS) heuristic in order to retrain 

the LDA method using the most crucial parameters selected by FSW along with other 

missing aspects. All the IFPTML models sought were achieved by calculating the 

different statistical parameters, specifically Sensitivity (Sn), Specificity (Sp), Accuracy 

(Ac), Chi-square (χ2), and the p-level.[70-71] 

 

IFPTML-LDA vs. cross linear model 
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In the introduction section, we indicated the use of ML approaches as a promising 

strategy in order to tackle practical problems of Nanotechnology, such as reducing the 

number of experiments.[72-77] Specifically, in this paper the IFPTML method was used 

to combine NDDs with NP preclinical assays. In the recent year, Speck-Planche et al. 

described multiple IFPTML approaches of the toxicity activity and drug delivery of NPs 

with large number of species in a wide variety of experimental conditions. However, 

this study did not take into account the NDDs.[49-62-78] On the other hand, Nocedo 

et al., reviewed IFPTML method to explore the NDDs activity against numerous 

species and in different conditions of the assay, but this research they did not 

contemplate NP as part of the system.[79] Accordingly, in these models could not take 

into consideration both components (NDDs and NP) of the N2D3S system together. In 

our group, Dieguéz-Santana et al. for the first time, they applied successfully the 

IFPTML technique to study the combination of multiple antibacterial drug vs. 

cytotoxicity NP preclinical essay.[80] For this reason, in this paper, we used this new 

approach to develop a complex N2D3S systems, containing simultaneously both 

NDDs and NP components. In this system involved as we mentioned in the introduction, 

several NDDs assay, NP types alongside coating agents, NP morphology etc. To 

complete IF-scaling process, we calculated the objective function f(vij, vnj)obs = 

f(vij)obs·f(vnj)obs. The main purpose of these functions is to increase the effect of certainty 

and maintain the homogeneity of scales. Once the PTOs were obtained, we applied 

the ML methods so as to fit this f(vij, vnj)obs function an achieve the IFPTML models. On 

the other hand, as indicated in the previous section, we classified NDDs preclinical 

assays cdj onto two different partitions (sub-sets) of variables cI and cII. The partition cI 

shows the biological characteristic, which contains cd0 = NDDs biological activity 

parameters (IC50, Ki, Potency, Time etc.), cd1 = type of protein involves in NDs etc. 

However, the partition cII defines the data quality; which contains cd4 = type of target, 

cd5 = type of assay etc. For preclinical cytotoxicity NP essays cnj form only one partition 

cIII, that describes its nature and involves multiple cn0 = NP biological activity 

parameters (CC50, IC50, LC50, EC50, etc.), cn1 = cell lines, cn2 = NP morphology and cn3 

= NP synthesis conditions. In addition, we acquired two type of IFPTML-LDA models 

for designing the N2D3S systems. On the one side, we obtained the IFPTML-LDA by 

calculating the PTOs ΔDk(cj) through the difference between the average value 

<Dk(cj)> and the partition cn within of their own set. As result, the best IFPTML-LDA 

model found is described below. (Equation 5) 
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f(vdij, vnij)𝑐𝑎𝑙𝑐
= −4.46387 + 16.30655 · f(vdij, vnij)𝑟𝑒𝑓

+ 0.00003 · ∆DPSA(𝐜𝐼)𝑑𝑗
+

 0.00450 ·  ∆Dt(𝐜III)𝑛𝑗
+  0.00062 ·  ∆DLnp(𝐜III)𝑛𝑗

+ 0.00675 ·  ∆DVnpu(𝐜III)𝑛𝑗
+

0.00431 ·  ∆DVxcoat(𝐜III)𝑛𝑗
− 0.00537 ·  ∆DVvdwMGcoat(𝐜III)𝑛𝑗

  (5) 

 

Ntrain =375000   χ2= 24273.63    p-level < 0.05 

On the other side, we tested the possibility to improve the results of statistical 

parameters for IFPTML-LDA algorithm, for this we calculated the PTOs ΔDk(cj) by 

performing all the possible combinations among the average value <Dk(cj)> of both 

vectors Dnk and Ddk with each partition. As a result, we obtained 3 different 

combinations of crossing PTOs for each sample, one for NDDS (∆Ddk(cIII)) and two for 

NP (∆Dnpk(cI) and ∆Dnpk(cII)). For simplicity, they are under the name of IFPTML-LDA 

with cross (see more details in Figure 1). The best IFPTML-LDA sought with cross 

model is the following. (Equation 6) 

f(vdij, vnij)𝑐𝑎𝑙𝑐
= −4.44505 + 14.28457 · f(vdij, vnij)𝑟𝑒𝑓

+ 0.00216 · ∆DPSA(𝐜𝐼)𝑐𝑑𝑗
+

 0.00241 ·  ∆Dt(𝐜III)𝑐𝑛𝑗
+  0.01201 ·  ∆DLnp(𝐜III)𝑐𝑛𝑗

+ 0.16549 ·  ∆DVnpu(𝐜III)𝑐𝑛𝑗
−

0.02389 ·  ∆DVxcoat(𝐜III)𝑐𝑛𝑗
+ 0.04902 ·  ∆DVvdwMGcoat(𝐜III)𝑐𝑛𝑗 +  2.040821 ·

 ∆DEnpu(𝐜II)𝑐𝑑𝑛
+  0.03229 ·  ∆DAMRcoat(𝐜II)𝑐𝑑𝑛

  (6) 

 

Ntrain =375000   x2 = 43587.01    p-level < 0.05 

 

The output function is f(vdij, vnij)calc which provide a real numeric value that will probably 

be applied to countingN2D3S systems. This function was acquired by calculating the 

objective function f(vij(cd0), vnj(cn0))obs with the ML method making use of the PTOs. 

The characteristic of IFPTML models was defined by the statistical parameters such 

as Sensibility (Sn), Specificity (Sp), Accuracy (Ac), Chi-square test(χ2), and the p-

level.[68] These statistical parameters for each sample (standard IFPTML-LDA and 

with cross IFPTML-LDA) were collected in Table 1. The statistical parameters obtained 

for both methods were in the accurate range described in the scientific report for the 

classification model of ML algorithm.[70-71] In the standard IFPTML-LDA contains all 

the indispensable variables for defining the NDDS structure and the most significant 

parameters for NP such as morphology, size, assay conditions along with others. 

Nevertheless, with cross IFPTML-LDA system not only we include all the essential 

variables but also two crossing PTOs. These new PTOs are chosen by the FSW 

method, which can select the most influential variable in the system in study.  

Table 1: IFPTML-LDA N2D3S model results summary. 

Data Stat. Param. Without cross Param. Cross 
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Sub Set Predicted Sub Set Predicted 

Sample Set Sub-set Param.  (%) 0 1 (%) 0 1 

1 t 0 Sp 73 255190 94292 72.2 252534 97042 

    1 Sn 71 7398 18120 74.4 6517 18907 

  v 0 Sp 73.3 85369 31125 72.3 84183 32315 

    1 Sn 70.3 2522 5984 73.9 2218 6284 

2 t 0 Sp 70 244548 105076 79.5 277907 71717 

    1 Sn 62.1 9528 15848 70.1 7584 17792 

  v 0 Sp 70 81640 35009 79.7 92929 23720 

    1 Sn 63.1 3081 5270 70.7 2451 5900 

3 t 0 Sp 70.6 246551 102809 79.6 277921 71439 

    1 Sn 62.3 11616 15974 70.1 7668 17972 

  v 0 Sp 70.7 82370 34174 79.6 92726 23818 

    1 Sn 62.7 3828 5300 70.4 2500 5956 

Avg. t 0 Sp 71.2 248763 100726 77.1 269454 80066 

    1 Sn 65.1 9514 16647 71.5 7256 18224 

  v 0 Sp 71.3 83126 33436 77.2 89946 26618 

    1 Sn 65.4 3144 5518 71.7 2390 6047 

 

The result summary collected in Table 1 contains the statistical parameters for 

IFPTML-LDA without and with cross for the best models found (equation 2). The 

IFPTML-LDA presented in this paper, had Sn and Sp≈ 70 – 73% values in both training 

and validation series. On the other hand, the IFPTML-LDA with cross showed 

significantly higher values of Sn and Sp ≈ 70 – 80% in both series. In addition, by only 

adding two PTOs onto the standard model, the IFPTML-LDA could improve almost 7% 

of Sp value in training/validation series. However, the Sp and Sn values of with cross 

model are slightly unbalanced in comparison with the standard one but the Sp and Sn 

values remain approximately constant within the same training and validation series.  

 

 

IFPTML linear vs. non-linear models 

In order to obtain the ANN model, we used the same PTOs variables as in the LDA 

model. Furthermore, as an alternative of non-linear model we created the ANN by 

using the same software STATISTICA. The ANN can also be used as a new strategy 

to confirm and validate the linear hypothesis. Both are comparable due to the fact that 

the Linear Neural Networks (LNN) technique are analogous to LDA models and they 

are linear equations. Accordingly, the IFPTML-LNN model is a useful tool to assess 

the degree of strength of the linear relationship between PTOs and the N2D3S 
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objective function. IFPTML-LNN models showed in this work, presented remarkably 

lower Sn and Sp ≈ 64 – 65% values in the training and validation series if we compare 

with the IFPTML-LDA models, see details in Table 2.  

 

Table 2: The best result of IFPTML-ANN N2D3S systems models found. 
 

Sample IFPTML-ANN Sub 
Stat

. 
Val. 

f(vij(cd0), 
vnj(cn0)) 

Observed 
AUROC 

 Modelsa set  (%) Pred. 1 0 

01 
LDA 7:7-1:1 

 
FSTW + EGS 

t Sp 0 73.0 94272 
255178 

 

  Sn 
1 71.0 18057 7367 

- 

 v Sp 
0 73.3 31125 85319 

 

  Sn 
1 70.3 5980 2522 

- 

 MLP 7:7-11-1:1 

 
BP96b 

t Sp 
0 

86.1 
300836 48740 

0.943 

  
Sn 1 85.8 3610 2181 

 

 v 
Sp 0 86.1 100278 16220 

0.934 

  
Sn 1 86.2 1173 7329 

 

 DLN 7:7-10-10-1:1 

  
BP100,CG20b 

  

t 
Sp 0 85.8 299942 49634 

0.945 

   
Sn 1 85.8 3621 21803 

  

 v 
Sp 0 85.9 100103 16395 

0.933 

   
Sn 1 86.3 1168 7334 

  

 
LNN 7:7-1:1 

 
PI 

t 
Sp 0 

65.0 
227184 122392 

0.744 

  
Sn 1 64.7 8971 16453 

 

 
 
v 

Sp 0 65.1 75788 40710 
 

  
Sn 1 64.1 3055 5447 0.733 
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Analogous to the IFPTML-LDA model, the values of statistical parameter (Sp and Sn) 

are considerably balanced and stay steady comparing training vs. validation series. On 

the other hand, we obtained two types of the non-linear models, the Multi-Layer 

Perceptron (MLP) and the Depth Learning Network (DLN). The MLP is made up by 

seven PTOs as input layer, a hidden layer with eleven neurons and an output layer. 

The most notably different is that the DLN involves two hidden layers and each one 

with ten neurons. Both MLP and DLN showed high Sp and Sn ≈ 85 – 86% values in 

training and validation series. If we compare the IFPTML-ANN linear with non-linear 

models basing on the results of statistical parameters, we can confirm that N2D3S is 

a non-linear system. Another result obtained  in the development of ANN is the Area 

Under Receiver Operating Characteristic (AUROC), see Figure 2.[68] The AUROC 

curve values are 0.93-0.94 for both MLP and DLN models in training and validation 

series. Precisely, AUROC values of non-linear models are remarkably deflected from 

random (RND)curve with AUROC = 0.5.[68] 

 
Figure 2: AUROC exploration of IFPTML-MLP and IFPTML-LNN models 

 

IFPTML models robustness analysis.  

The design of the N2D3S involve the combination of a large number of data, both 

NDDS and NP preclinical assays. Due to the nature of this big data system, we divided 

ROC Curve, f(vijd,vijnp)obs (1-5 )
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the information fusion dataset onto 3 samples. In the previous section, we discussed 

the best model obtained for IFPTML-LDA, IFPTML-LDA with cross and IFPTML-ANN. 

Therefore, in this part for the 3 samples the robustness analysis is mentioned, see 

Table 3. In general sense, the number of cases (n)used in training and validation series 

for all models presented the lowest Standard DeViations (SDV), which indicated that 

most of the data in a sample tend to be clustered near its mean.[81] On the other hand, 

the high value of SDV such as DLN model specified that the data was distributed over 

a wide range of values. In addition, all models presented similar SDV values in the 

same training and validation series. Interestingly, the LDA model showed significantly 

lower value of SDV for (>1) Sp if we compare with (>4) Sn in training/validation series. 

However, the SDV values for LDA Cross model were contrary to LDA, with inferior 

SDV values for Sn and higher for Sp. It is worth mentioning that both MLP 1 and LNN 

models obtained statistical parameters close to its mean, in other words these models 

are robust. Furthermore, In IFPTML-ANN technique we obtained as results the 

AUROC values, after doing the robustness analysis we could confirmed that each ANN 

model the AUROC values are robust. In addition, the AUROC graphic (Figure 2) might 

be used to prove this evidence, due to the similarity between the curves shape. 

Table 3: Result summary of N2D3S alongside average of 3 samples and standard 

deviation. 

AVG 

Model 

t v  

Sp Sn n Sp Sn n 
AUROC 

(t/v) 

LDA 71.2 65.1 375000 71.3 65.4 125000 - 

LDA Cross 77.1 71.5 375000 77.2 71.7 125000 - 

MPL 1 85.1 85.0 375000 85.1 85.1 125000 0.937/0.925 

DNL 79.2 79.0 375000 79.2 79.3 125000 0.893/0.879 

LNN 65.0 64.9 375000 65.1 64.9 125000 0.748/0.737 

SDV 
Model 

t v AUROC 

(t/v) Sp Sn n Sp Sn n 

LDA 1.587 5.082 0 1.739 4.277 0 - 
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LDA Cross 4.244 2.483 0 4.244 1.940 0 - 

MLP 1 1.266 1.217 0 1.940 1.102 0 0.010/0.010 

DLN 8.489 8.568 0 8.584 8.727 0 0.069/0.071 

LNN 
0.100 0.153 0 0.153 0 0 0.005/0.003 

 
 

The results reveal the strength of the linear hypothesis, nevertheless, the statistical 

parameters of this linear model obtained are not satisfactorily at all. As a result, in the 

IFPTML-LDA cross we enlarged the number of input variables from seven to nine. In 

this analysis, we did not obtain substantial change. Therefore, we tested more complex 

methods specifically, non-linear models so as to improve the Sp and Sn values. The 

IFPTML-MLP 7:7-11-1:1 model contains seven input variables in the input layer and 

eleven neurons in the hidden layer obtained the best statistical parameters of Sn and 

Sp values. Please, seethe results of Sn and Sp values in Table 3. For more details, 

see results for every case in Supporting Information file SI00.xlsx. The IFPTML-DLN 

model which involves two hidden layers illustrate similar result as IFPTML-MLP 7:7-

11-1:1.  

 

Taking into account all the aforementioned results, we can consider both IFPTML-MLP 

and IFPTML-DLN as the best models with remarkably higher values of Sp and Sn ≈ 

85 – 86% and the AUROC values of 0.93-0.94. However, the more complex nature of 

DLN model and the non-significant improvement of statistical parameters in 

comparison with the MLP model, therefore we can confirm that the N2D3S requires 

the MLP model. In addition, this selection is reinforced by the principle of parsimony, 

prioritizing the simplest explanations among all the possible ones.[82] In Table 4, 

IFPTML-ANN model input variable sensitivity analysis for NDDS&NP, NDDS and NP 

subsystems were showed. The IFPMTL-LNN models involve almost all the significant 

parameters according to the EGS criteria. The majority of parameters provide a 

substantial influence on the Sensitivity ≥ 1.[68] In many cases, the value of sensitivity 

analysis is slightly higher with a Sensitivity approximately 1.00 – 1.08.Nevertheless, 

the EGS perspective fails in the selection of ΔDPSA(cI) and ΔDt(cIII) variables. In this 

sense, the IFPTML-ANN model suggests that those variables do not affect in any 

model. On the other hand, the IFPTML-LNN obtains the lowest value of sensitivity 
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≈1.00-1.13 which would strengthen the need of a complex model in N2D3S.The DLN 

model involves the essential variables in accordance with the EGS proposal, however, 

they have remarkably higher sensitivity values with approx. 0.96 – 2.03. The MLP 

obtains the highest values of Sensitivity, between 1.13 and 2.57. 

Table 4: IFPTML-ANN model input variable sensitivity analysis for different 

subsystems with their corresponding variables.  

Sub-

systems 
Variables 

LNN MLP DLN 

t v t v t v t v t v 

NDDS&NP f(cd0,cn0)ref 1.02 1.02 1.32 1.33 1.46 1.45 1.25 1.24 1.38 1.40 

NDDs ΔDPSA(cI) 0 0 0 0 0 0 0 0 0 0 

NP 

ΔDt(cIII) 0 0 0 0 0 0 0 0 0 0 

ΔDLnp(cIII) 1.00 1.00 1.14 1.13 1.08 1.08 1.08 1.08 1.60 1.59 

ΔDVnpu(cIII) 1.00 1.00 2.22 2.22 0.92 0.92 1.06 1.05 1.24 1.25 

ΔDVxcoat(cIII) 1.00 1.00 1.96 1.98 1.45 1.47 1.45 1.48 1.99 2.03 

ΔDVvdwMGcoat(cIII) 1.13 1.13 2.57 2.54 1.44 1.43 1.24 1.24 1.91 1.90 

 

IFPTML-LDA for N2D3S simulation experiment.  

In this section, we employed the IFPTML-LDA technique in order to calculate the 

probability values for some selected cases of N2D3S system. The linear model was 

chosen for its simplicity and the slight improvement of the non-linear model. The value 

of probability p(N2D3Sin)cdj.cnj was obtained with N2D3S system created by the 

combination of ith ADi and the nth NPn which is highly likely to have  a desired level of 

biological activity under both assay conditions cdj and cnj. This simulation experiment 

involved in total NN2D3S = 88 systems-cell line vs. a total of NNDDs = 123drugs. Many of 

these drugs are NDDs with some known anti-neurodegenerative activity, generally for 

Alzheimer and Parkinson diseases. Some of these NDDs are approved by the FDA 

(Food and Drug Administration) agency while other have been showed to be active in 

several assays. In addition, it also contained cytotoxicity assays against multiple cell 

lines, the type of NP, its coat and the time of each assay. In this context, we performed 

a total Ntot = NNDDs·NNP = 22·218 = 4796 values of probability which were be able to 

predict successfully the putative N2D3S.  
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Figure 3 depicts the results in a 3-colour scale according to the value of probability: 

the green section indicates high probability (0.61-0.98), yellow low to middle probability 

(0.17-0.60) and red very low predicted probability (< 0.17). Those assays never 

reported before or very low represented in the original dataset or the combination 

between NDDS and NP are meaningless were illustrated in white color to avoid 

overestimation of results. The result of IFPTML-LDA model pointed out some ofN2D3S 

systems as a promising combination for future additional assays. The resulting N2D3S 

systems shown in Figure 3 involve twenty different NDDs. The first ten is 1= Clozapine, 

2= Galantamine, 3 =Levodopa, 4=Apomorphine, 5=Fiduxosin, 6=Beagacestat, 

7=Memoquin, 8=Mesodihydroguairetic Acid, 9 = Tarenflubil and 10 = Huperzine A. The 

other 10 NDDs are 11 = Guanidinonaltrindole, 12 = Semagacestat, 13 = Huprine X, 

14= Carproctamide, 15= Tacrine, 16 = Tramiprosate, 17 = Preladenant, 18 = Piracetam, 

19 = Istradefylline and 20 = Rivastigmine. These systems have the following coating 

agents: PEG = Polyethylene glycol, PVP = Polyvinylpyrrolidone, PPF = 

Propylamonium fragment,and UAF =Undecylazide fragment. The symbol UC = 

Uncoated represent non-coated N2D3S system. For more details, please see on 

Supporting Information file S001.xls. Interestingly, the high value of prediction involves 

PEG-Si(OMe)3 as NP coat with the p(N2D3Sin)cdj.cnj= 0.80-0.99 for the majority of NDDs. 

Another important factor is the type of NP that may affect the value of probability. It 

appears that metal oxide compounds such as SiO2 and TiO2along with PEG-

Si(OMe)3NP coated for almost all NDDs are likely to be promising for further assays. 

Nevertheless, double metal oxide compounds such as CoFe2O4 and ZnFe2O4 obtained 

an intermediate probability value p(N2D3Sin)cdj.cnj= 0.17-0.70 against TK6 (H) and 

WISH (H), respectively. In the general sense, the least propitious combination is the 

metal NP with all NDDs which gives low value of probability (p=0.02-0.35). It is worth 

mentioning that all predictions carried out by this method should be used with caution 

and required experimental corroboration. The potential utility of the IFPTML method is 

to speed up the experimental study and provides inexpensive preliminary results for a 

large database of N2D3S systems. This approach offers an efficient and powerful tool 

to direct the experimental research as an alternative of tedious trial and error tests. 
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Figure 3: IFPTML-LDA N2D3S systems experiment simulation. 

Syst. NP Coat Cell line (Org.) Time (h) Avg

1 Ag PVP HaCaT (H) 168 0.10

2 Ag PVP HaCaT (H) 72 0.08

3 Ag PVP HaCaT (H) 48 0.07

4 Ag CIT RBE4 (R) 24 0.26

5 Ag UC NR8383 (R) 24 0.12

6 Al UC BRL 3A (R) 24 0.11

7 Al2O3 UC BJ (H) 24 0.40

8 Al2O3 UC L929 (M) 24 0.39

9 Au 11-MCUA HepG2 (H) 48 0.72

10 Au 11-MCUA HepG2 (H) 72 0.71

11 Au 11-MCUA HepG2 (H) 24 0.70

12 Au CTAB MDCK II (D) 24 0.87

13 Au CTAB MDCK II (D) 48 0.87

14 Au CIT HepG2 (H) 72 0.58

15 Au CIT HepG2 (H) 48 0.54

16 Au CIT HepG2 (H) 24 0.54

17 Au CIT 3T3 (M) 72 0.51

18 Au CIT 3T3 (M) 24 0.49

19 Au UC PK-15 (P) 72 0.33

20 Au UC 3T3 (M) 72 0.33

21 Au UC Vero (Mon) 72 0.30

22 Co UC 3T3 (M) 72 0.12

23 Co UC 3T3 (M) 24 0.11

24 Co UC 3T3 (M) 4 0.10

25 CoFe2O4 PVA L929 (M) 48 0.50

26 CoFe2O4 UC MDCK (H) 72 0.43

27 CoFe2O4 UC A549 (H) 72 0.42

28 CoFe2O4 UC HepG2 (H) 72 0.42

29 CoFe2O4 UC NCIH441 (H) 72 0.42

30 CoFe2O4 UC CaCo-2 (H) 24 0.41

31 CoFe2O4 UC TK6 (H) 72 0.41

32 CoFe2O4 UC CaCo-2 (H) 72 0.40

33 CoFe2O4 UC A549 (H) 24 0.40

34 CoFe2O4 UC L929 (M) 48 0.39

35 CoFe2O4 UC MDCK (H) 24 0.39

36 CoFe2O4 UC TK6 (H) 24 0.37

37 CoFe2O4 UC NCIH441 (H) 24 0.37

38 Cr2O3 UC A549 (H) 24 0.50

39 Cu UC H4IIE (R) 24 0.12

40 Cu UC HepG2 (H) 24 0.12

41 CuO UC A549 (H) 24 0.42

42 Fe2O3 UC HepG2 (H) 24 0.55

43 Fe2O3 UC A549 (H) 24 0.51

44 Fe3O4 UC BRL 3A (R) 24 0.34

45 Mn2O3 UC A549 (H) 24 0.52

46 MoO3 UC BRL 3A (R) 24 0.54

47 Ni UC A549 (H) 48 0.11

48 Ni UC A549 (H) 24 0.10

49 NiO UC HepG2 (H) 24 0.42

50 NiO UC A549 (H) 24 0.32

51 Si PAF NR8383 (R) 24 0.14

52 Si PAF CaCo-2 (H) 24 0.13

53 Si UDAF CaCo-2 (H) 24 0.07

54 Si UDAF NR8383 (R) 24 0.07

55 SiO2 PEG-Si(OMe)3 HUVECs 72 0.96

56 SiO2 PEG-Si(OMe)3 NCIH441 (H) 72 0.95

57 SiO2 PEG-Si(OMe)3 BMSC (M) 72 0.95

58 SiO2 PEG-Si(OMe)3 HEK293 (H) 72 0.95

59 SiO2 PEG-Si(OMe)3 RAW 264.7 (M) 72 0.95

60 SiO2 PEG-Si(OMe)3 BMSC (H) 72 0.95

61 SiO2 PEG-Si(OMe)3 HepG2 (H) 72 0.92

62 SiO2 PEG-Si(OMe)3 A549 (H) 72 0.90

63 SiO2 UC HEK293 (H) 72 0.78

64 SiO2 UC HUVECs 72 0.78

65 SiO2 UC BMSC (M) 72 0.77

66 SiO2 UC RAW 264.7 (M) 72 0.76

67 SiO2 UC HaCaT (H) 4 0.75

68 SiO2 UC BMSC (H) 72 0.75

69 SiO2 UC NCIH441 (H) 72 0.74

70 SiO2 UC HepG2 (H) 72 0.68

71 SiO2 UC A549 (H) 72 0.54

72 SiO2 UC A549 (H) 72 0.54

73 SiO2 UC A549 (H) 48 0.50

74 SiO2 UC HaCaT (H) 24 0.49

75 SiO2 UC 3T3 (M) 72 0.49

76 SiO2 UC A549 (H) 24 0.47

77 TiO2 UC Neuro-2A (M) 48 0.44

78 TiO2 UC A549 (H) 24 0.43

79 Y2O3 UC HEK293 (H) 24 0.31

80 ZnFe2O4 UC WISH (H) 72 0.44

81 ZnFe2O4 UC WISH (H) 48 0.40

82 ZnFe2O4 UC WISH (H) 24 0.38

83 ZnO UC A549 (H) 24 0.31

84 ZnO UC HeLa (H) 24 0.31

85 ZnO UC HepG2 (H) 24 0.30

86 ZnO UC HUVECs 24 0.30

Drugs
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In addition, the determination of the probability value distribution in a generic sense for 

the unique pairs of NP cytotoxicity assays and NDDs were carried out. For this, we 

depict the surface scatterplot of probability values against Histograms of NP length 

along with NDDs Hydrophobicity (see Figure 4). Generally, a third part of probability 

values remain in the dark green zone, which represents the promising N2D3S system 

for further assay. It is worth mentioning that most of the cases (white dots) are 

hydrophobic drugs (on the left of the graph).This feature is one of the most important 

physicochemical property for drug in order to cross the BBB.[83] High lipophilicity can 

contribute to excessive volumes of distribution, increased metabolic liability, and lower 

unbound drug concentration in the plasma and/or brain and may negatively affect 

pharmaceutics properties, particularly solubility.[84] In this sense, most NDDs of this 

database are in the PSAdi range between 60-120 Å2. The previous research work, 

Stephen et al. suggested that Central Neural System (CNS) drug should have a PSA 

value < 90Å2 for a decent BBB permeability among other physicochemical 

characteristics such as number of hydrogen bond donors, molecular size and shape 

with lesser contributions from hydrogen bond acceptors.[83] Although this type of 

graphic is clearly a simplification of the whole database, it offers beneficial simple 

guidelines for the researcher concerned with designing NDDs compounds or libraries 

with improved probability of CNS penetration. On the other hand, the size of the vast 

majority of NPs for NDDs delivery in this database is in the range between 70-115 nm. 

Recently, Chithrani et al.[85] have demonstrated that the size, coating and surface 

charge of nanoparticles have a crucial impact on the intracellular uptake process. 

Similarly, Shilo et al. have investigated the influence of NP size on the chance to cross 

the BBB by using the endothelial brain cell method. Results indicated that intracellular 

uptake of NPs is strongly dependent on NP size. This feature affects directly the 

biomedical application. When NPs act as drug delivery carriers by drug encapsulation 

into the NPs, the highest NP size is required (70 nm). Nevertheless, when NPs act as 

drug delivery carriers by binding the drug molecules to NPs surface, the highest free 

surface area is required, therefore the appropriate size would be 20 nm.[86] This 

principle suggests that a high number of the NP of our database are proper drug 

delivery carriers by drug encapsulation.   
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Figure 4: Probability surface scatter plot. 

The design of the new N2D3S system containing multiple preclinical assay of 

cytotoxicity NP and NDDs has been carried out successfully. This database involves a 

high structural and biological diversity, which may support this additive approaching 

scheme to distinguish the active form from the non-active N2D3S system. 

Experimentally, the IFPTML-LDA method predicted with high probability 

p(N2D3Sin)cdj.cnj > 0.81 all the examples reported in Table 5. The result obtained 

supports our initial premise that the IFPTML additive approach is able to carry out an 

appropriate recognition of N2D3S system involving additive and synergic cases. 

Table 5: IFPTML analysis of experimentally tested N2D3S compounds. 

Druga NP cd0 = Activity ΔDPSA(cI) Obs.b Pred.c p d L(nm) e 

Metal / N/A 

2234684 Ag Time(h) 0.57 1 1 0.88 12.50 

2376472 Ag Time(h) 4.30 1 1 0.88 12.50 

2234683 Ag Time(h) 0.57 1 1 0.88 12.50 
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Metal oxide / n/a 

3769671 TiO2 Cp(nm) 0 1 1 0.94 56 

Levodopa TiO2 Time(h) -3.5 1 1 0.93 56 

Sch-58261 TiO2 Time(h) -1 1 1 0.93 56 

2180030 TiO2 EC20(nm) 0 1 1 0.93 56 

Levodopa TiO2 Time(h) -3.5 1 1 0.93 56 

Sch-58261 TiO2 Time(h) -1 1 1 0.93 56 

2234689 TiO2 Time(h) 0.3 1 1 0.93 56 

Morin TiO2 Time(h) 0 1 1 0.93 56 

Metal/ elliptical 

Datiscetin Ag Time(h) 0.3 1 1 0.81 36.8 

2234993 Ag Time(h) 0.4 1 1 0.81 36.8 

1240582 Ag Time(h) -1.7 1 1 0.81 36.8 

1241456 Ag Time(h) -2.1 1 1 0.81 36.8 

Metal oxide/elliptical 

2180030 Yb2O3 EC20(nm) 0 1 1 0.90 62.1 

Levodopa Yb2O3 Time(h) -3.5 1 1 0.90 62.1 

3769671 CeO2 Cp(nm) 0 1 1 0.90 44.8 

Metal oxide/needle 

3747225 La2O3 Time(h) 2.8 1 1 0.89 65.8 

3769671 La2O3 Cp(nm) 0 1 1 0.88 65.8 

Meta/rod 

3218426 Au Activity(%) -2.0 1 1 0.93 37.8 

Congo red Au Inhibition(%) 3.6 1 1 0.93 37.8 

3218189 Au Activity(%) -2.0 1 1 0.93 37.8 

3580774 Au Activity(nm) 0 1 1 0.93 37.8 

Metal oxide/pyramidal 

PGA TiO2 Time(h) -18 1 1 0.91 6.5 

Apomorphine TiO2 Time(h) -17 1 1 0.91 50 

1801682 TiO2 Time(h) -20 1 1 0.91 50 

Metal oxide/irregular 

3350757 TiO2 Time(h) -5.3 1 1 0.93 21 

3747225 TiO2 Time(h) 2.8 1 1 0.93 21 
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1243007 TiO2 Time(h) -0.7 1 1 0.92 21 

3769671 TiO2 Cp(nm) 0 1 1 0.92 21 

Levodopa TiO2 Time(h) -3.5 1 1 0.92 21 

Metal Oxide/Pseudo-spherical 

2376474 CeO2 Time(h) 3.9 1 1 0.89 8 

3747225 CeO2 Time(h) 2.8 1 1 0.89 8 

3769671 CeO2 Cp(nm) 0 1 1 0.89 8 

Levodopa CeO2 Time(h) -3.5 1 1 0.89 8 

Sch-58261 CeO2 Time(h) -1.0 1 1 0.89 8 

Metal/spherical 

2151181 Au ED50(mg/kg) -0.4 1 1 0.94 42.9 

1222303 Au ED50(mg/kg) -0.4 1 1 0.94 42.9 

2181911 Au Activity(%) 1.6 1 1 0.90 42.9 

3397881 Au Inhibition(%) -1.1 1 1 0.90 42.9 

3785241 Au Inhibition(%) -1.5 1 1 0.90 42.9 

3947919 Au Activity(%) 1.0 1 1 0.90 42.9 

3817925 Au Inhibition(%) -0.7 1 1 0.90 42.9 

3612821 Au Inhibition(%) 0.3 1 1 0.90 42.9 

2159510 Au Activity(%) -0.8 1 1 0.90 42.9 

2415095 Au Inhibition(%) 0.5 1 1 0.90 42.9 

436483 Au Inhibition(%) 1.5 1 1 0.90 42.9 

2159511 Au Activity(%) -1.2 1 1 0.90 42.9 

2349470 Au Activity(%) -1.8 1 1 0.90 42.9 

3127906 Au Activity(%) 0.6 1 1 0.90 42.9 

Propidium Au Inhibition(%) 0.4 1 1 0.90 42.9 

Metal oxide/spherical 

3218188 SiO2 Activity(%) 91 1 1 0.97 12.5 

3087679 SiO2 Inhibition(%) 69 1 1 0.97 60 

3233831 SiO2 Inhibition(%) 58 1 1 0.97 44 

510384 SiO2 Ki(nm) -30 1 1 0.97 47.5 

81999 SiO2 Ki(nm) -40 1 1 0.97 36.8 

3218425 SiO2 Activity(%) 91 1 1 0.97 70 

55401 SiO2 Ki(nm) -31 1 1 0.97 37 

3233829 SiO2 Inhibition(%) 58 1 1 0.97 36.8 
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3087678 SiO2 Inhibition(%) 69 1 1 0.97 3.4 

3769671 SiO2 Cp(nm) 0 1 1 0.99 5.5 

2234689 SiO2 Time(h) 37 1 1 0.99 36.8 

2234690 SiO2 Time(h) 37 1 1 0.99 16.4 

aChEMBL ID or Drug Name, the name of the drug is depicted if it is available, otherwise 

the ChEMLID code of the drug is indicated, which can be easily consulted by accessing 

the CheMBL website. bClass. Obs: f(vij.vnj)robs.
cClass. Pred: f(vij.vnj)pred.

dp: probability 

calculated as the following: p(N2D3Sin/cdj.cnj)pred = 1/(1+Exp(-f(vij).vnj))calc).eL(nm):NP 

length.; PGA:Phloroglucin aldehyde 

CONCLUSION 

The N2D3S system presents a promising and plausible alternative for aiding 

conventional NDDS in crossing the BBB in the current situation. AI/ML algorithms can 

be instrumental in expediting this process. However, scientific literature lacks a 

sufficient number of real N2D3S experimental cases that characterize complex 

applications. In this context, the IFPTML model, encompassing both NDDS and NP 

models, could offer a practical solution. This approach has successfully addressed the 

challenges posed by the vast number of combinations of NP and NDDS compounds 

and the wide range of conditions to be tested in N2D3S discovery. The results of the 

IFPTML-LDA and IFPTML-ANN techniques showed satisfactory performance, 

achieving approximately 73-86.1% and Sn ≈ 70-86.2% in the training and validation 

series, respectively, comprising 375K and 125K cases. Moreover, both models are 

easily accessible and provide logical solutions for predicting putative N2D3S. The most 

successful outcome was observed in the non-linear model, specifically, the IFPTML-

MLP, which displayed Sn and Sp values around 85.8-86.2% and an AUROC of 0.94 

in the training and validation series. Furthermore, the analysis of three N2D3S system 

samples yielded low SDV values, confirming the robustness of both IFPTML-LDA and 

IFPTML-ANN. In summary, the IFPTML models offer an initial solution in a rapid and 

less arduous manner for pre-screening putative N2D3S. This approach is widely 

utilized to minimize resource costs and optimize experimental time that would 

otherwise be spent on testing all possible combinations. 
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