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Abstract 

Norcorrole is a stable 16π antiaromatic porphyrinoid that exhibits characteristic 

reactivities and physical properties. Here, we disclose the reaction of Ni(II) norcorroles 

with alkyl radicals derived from azo radical initiators. The radical selectively attacked 

the distal α-position to the meso position to construct a non-aromatic bowl-shaped 

structure. The photophysical and electrochemical properties of the obtained radical 

adducts were compared with those of the parent Ni(II) norcorrole. The radical reactivity 

of Ni(II) norcorroles was investigated by density functional theory (DFT) calculations.  
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Introduction 

Considerable attention has been directed toward antiaromatic norcorroles[1–3] due to 

fascinating physical properties such as reversible redox properties[4,5] and stacked-

ring aromaticity[6–10]. While Ni(II) norcorroles are stable under ambient conditions 

despite their distinct 16π antiaromaticity, they show unique reactivities to various 

reagents due to their high-lying HOMO and low-lying LUMO (Figure 1)[11]. The 

reactions with nucleophiles (Nu) proceed with perfect regioselectivity at the distal β-

position to the meso positions[12–15]. On the other hand, the reactions with 

electrophiles (El) also undergo preferentially at the β-positions, but the 

regioselectivities depend on electrophiles[16–18]. In addition, C–C double bonds of the 

norcorrole skeleton on the outside of the π-delocalization pathway exhibit a similar 

reactivity to an alkene to afford hydrogenated norcorroles by hydrogenation[19] or 

reduction with hydrazine[20] and [3+2] cycloadducts with 1,3-dipoles[21]. Moreover, 

the ring-expansion or ring-opening reactions of Ni(II) norcorroles are induced by an 

activated zwitterionic intermediate[22], oxidants[23,24], and carbenes[25,26]. 

During the last decade, the various reactivities of Ni(II) norcorroles have been 

elucidated. However, the reaction with radical species has remained unexplored. Here, 

we disclose the radical functionalization of Ni(II) norcorroles with simple and frequently 

used azo radical initiators to furnish non-conjugated macrocycles with bowl-shaped 

structures[27]. The photophysical and electronic properties of obtained products are 

also presented. We also discuss the reaction selectivity of the radical addition to Ni(II) 

norcorroles using DFT calculations.  
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Figure 1: The reactivities of norcorroles with various reagents. 

Results and Discussion 

Reactivity with azo radical initiators 

We selected 2,2'-azobis(isobutyronitrile) (AIBN) as a radical source. Ni(II) 

dimesitylnorcorrole 1 was treated with AIBN in toluene at 130 °C (Scheme 1). The 

reaction smoothly proceeded to afford dialkylated macrocycle 2a in 92% yield. In 

addition to 2a, monoalkylated product 3a and dipyrrin dimer 4a were obtained as minor 

products in 4% and 3% yields, respectively. 

 

Scheme 1: Reaction of norcorrole 1 with AIBN.  
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molecule (Figure 2a). Compared with the planar structure of 1 (Figure 2b)[2], 2a 

displays a non-planar structure due to sp3 carbon atoms adjacent to nitrogen atoms. 

The 1H NMR spectrum of 2a suggests that the radical addition reaction modified the 

antiaromatic norcorrole to the non-aromatic macrocycle (see Supporting Information).  

 

Figure 2: X-ray structures of 2a and 1[2]. Mesityl groups and hydrogen atoms were 

omitted for clarity. Thermal ellipsoids are drawn at 50% probability. 

 

1,1'-Azobis(cyclohexane-1-carbonitrile) (V-40) was also examined as a radical source. 

The reaction afforded 2b in 87% yield (Scheme 2). Unfortunately, other radical sources 

such as benzoyl peroxide, TEMPO, and the combination of alkyl halides with BEt3 were 

not applicable to this reaction. 

   

Scheme 2: Reaction of norcorrole 1 with V-40. 

 

Physical properties  

The electronic absorption spectra of norcorrole 1 and adduct 2a are shown in Figure 

3. While norcorrole 1 exhibited a weak absorption band from 600 nm to a NIR region, 
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which was derived from the characteristic forbidden HOMO–LUMO transition of an 

antiaromatic compound, non-conjugated macrocycle 2a did not have such absorption 

bands, indicating the loss of antiaromaticity in 2a. Macrocycle 2a possessed new 

absorption bands from 600 nm to 800 nm. The simulated absorption spectrum of 2a 

by the TD-DFT calculation at the M06/6-31G(d)+SDD//B3LYP-D3/6-31G(d)+SDD level 

of theory was consistent with an experimental result, of which the longest absorption 

band was attributed to the transition from HOMO to LUMO+1 (670 nm, f = 0.0026). 

 

Figure 3: UV/vis/NIR absorption spectra of 1 and 2a in CH2Cl2. 

Next, the electrochemical property of 2a in CH2Cl2 was examined using cyclic 

voltammetry (Figure 4). Macrocycle 2a exhibited one reversible oxidation wave at 0.44 

V and two reversible reduction waves at –0.85 V and –1.14 V. The electrochemical 

HOMO–LUMO gap of 2a is 1.29 V, which is larger than that of 1a (1.08 V)[2]. 

 

Figure 4: Cyclic voltammogram of 2a in CH2Cl2. Supporting electrolyte: 0.1 M 
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Bu4NPF6; working electrode: glassy carbon; counter electrode: Pt; reference electrode: 

Ag/AgNO3; scan rate: 50 mV s–1. 

DFT calculations 

We next conducted DFT calculations using Gaussian 16[28] to elucidate the reactivity 

of Ni(II) norcorroles to radical species (Scheme 3). All calculations for the ground state 

were performed at the (U)B3LYP-D3/6-31G(d)+SDD level of theory. The SOMO of an 

isobutyronitrile radical (–5.98 eV), which was generated through denitrogenation of 

AIBN, is closer to the HOMO level of Ni(II) norcorrole 1 (–4.68 eV) rather than its LUMO 

(–3.16 eV). This result explains the selective addition of the electrophilic isobutyronitrile 

radical to the distal α-position of the pyrrole unit. The calculated MO coefficient of the 

HOMO indicates that two α-carbons of the pyrrole subunits are the most reactive 

positions for electrophilic species. In addition, the distal α-carbon to the meso position 

could be more reactive than the proximal α-carbon due to the steric hindrance of bulky 

mesityl groups. Consequently, the isobutyronitrile radical predominantly attacks the 

distal α-carbon to the meso position to afford corresponding radical intermediate I. The 

calculated spin density of radical I revealed that I-major is a reactive resonance 

structure without steric effect from meso-substituents. Finally, another isobutyronitrile 

radical reacts with I-major from its convex face to form major product 2a with two alkyl 

substituents on the same side of the molecule. For the byproducts, 3a would be 

generated through the quenching of radical I with a hydrogen atom source. Bisdipyrrin 

4a could be formed through the ring opening reaction of I by the homolytic cleavage of 

the C(sp2)–C(sp2) bond to radical II, the addition of the isobutyronitrile radical, and 

subsequent demetallation. 
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Scheme 3: Plausible reaction mechanism. 
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Conclusion 

In conclusion, we have investigated the addition reaction of electrophilic alkyl radicals 

derived from azo radical initiators to antiaromatic Ni(II) norcorroles. The reaction 

smoothly proceeded to afford bowl-shaped non-conjugated macrocycles 2a in 

excellent yields, which exhibited markedly different photophysical and electrochemical 

properties with norcorrole 1. The intrinsic reactivities of Ni(II) norcorroles with neutral 

radical species were revealed by DFT calculations, where populations of the HOMO of 

the norcorrole unit and the spin density of the radical intermediate governed the 

regioselectivity.  

Supporting Information  

Supporting Information File 1: Experimental procedures, compound data with NMR 

and MS spectra, and the details of crystal data and DFT calculations. 

File Name: Text 

File Format: PDF 
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