Charge-transfer interactions between fullerenes and a mesoporous tetrathiafulvalene-based metal–organic framework

Manuel Souto, Joaquín Calbo, Samuel Mañas-Valero, Aron Walsh and Guillermo Mínguez Espallargas
Beilstein J. Nanotechnol. 2019, 10, 1883–1893. https://doi.org/10.3762/bjnano.10.183

Supporting Information

Supporting Information File 1: Additional figures and tables.
Format: PDF Size: 886.0 KB Download
Supporting Information File 2: CIF files of simulated structures of C60@MUV-2.
The ZIP archive contains CIF files of the simulated structures of C60@MUV-2 in conformation A and in conformation B.
Format: ZIP Size: 8.6 KB Download

Cite the Following Article

Charge-transfer interactions between fullerenes and a mesoporous tetrathiafulvalene-based metal–organic framework
Manuel Souto, Joaquín Calbo, Samuel Mañas-Valero, Aron Walsh and Guillermo Mínguez Espallargas
Beilstein J. Nanotechnol. 2019, 10, 1883–1893. https://doi.org/10.3762/bjnano.10.183

How to Cite

Souto, M.; Calbo, J.; Mañas-Valero, S.; Walsh, A.; Mínguez Espallargas, G. Beilstein J. Nanotechnol. 2019, 10, 1883–1893. doi:10.3762/bjnano.10.183

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Presentation Graphic

Picture with graphical abstract, title and authors for social media postings and presentations.
Format: PNG Size: 782.3 KB Download

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Shahmirzaee, M.; Nagai, A. An Appraisal for Providing Charge Transfer (CT) Through Synthetic Porous Frameworks for their Semiconductor Applications. Small (Weinheim an der Bergstrasse, Germany) 2024, e2307828. doi:10.1002/smll.202307828
  • Bao, W.; Yu, J.; Chen, F.; Du, H.; Zhang, W.; Yan, S.; Lin, T.; Li, J.; Zhao, X.; Zhu, B. Controllability construction and structural regulation of metal-organic frameworks for hydrogen storage at ambient condition: A review. International Journal of Hydrogen Energy 2023, 48, 36010–36034. doi:10.1016/j.ijhydene.2023.06.006
  • Lerma-Berlanga, B.; Ganivet, C. R.; Almora-Barrios, N.; Vismara, R.; Navarro, J. A. R.; Tatay, S.; Padial, N. M.; Martí-Gastaldo, C. Tetrazine Linkers as Plug-and-Play Tags for General Metal-Organic Framework Functionalization and C60 Conjugation. Angewandte Chemie (International ed. in English) 2022, 61, e202208139. doi:10.1002/anie.202208139
  • Lerma‐Berlanga, B.; Ganivet, C. R.; Almora‐Barrios, N.; Vismara, R.; Navarro, J. A. R.; Tatay, S.; Padial, N. M.; Martí‐Gastaldo, C. Tetrazine Linkers as Plug‐and‐Play Tags for General Metal‐Organic Framework Functionalization and C60 Conjugation. Angewandte Chemie 2022, 134. doi:10.1002/ange.202208139
  • Zhang, B.; Qian, B.-B.; Li, C.-T.; Li, X.-W.; Nie, H.-X.; Yu, M.-H.; Chang, Z. Donor–acceptor systems in metal–organic frameworks: design, construction, and properties. CrystEngComm 2022, 24, 5538–5551. doi:10.1039/d2ce00588c
  • Vicent-Morales, M.; Esteve-Rochina, M.; Calbo, J.; Ortí, E.; Vitórica-Yrezábal, I. J.; Mínguez Espallargas, G. Semiconductor Porous Hydrogen-Bonded Organic Frameworks Based on Tetrathiafulvalene Derivatives. Journal of the American Chemical Society 2022, 144, 9074–9082. doi:10.1021/jacs.2c01957
  • Zhang, H.-W.; Li, H.-K.; Han, Z.-Y.; Yuan, R.; He, H. Incorporating Fullerenes in Nanoscale Metal-Organic Matrixes: An Ultrasensitive Platform for Impedimetric Aptasensing of Tobramycin. ACS applied materials & interfaces 2022, 14, 7350–7357. doi:10.1021/acsami.1c23320
  • Somsri, S.; Kuwamura, N.; Kojima, T.; Yoshinari, N.; Rujiwatra, A.; Konno, T. Inclusion of cyclodextrins in a metallosupramolecular framework via structural transformations. CrystEngComm 2021, 24, 33–37. doi:10.1039/d1ce01416a
  • Leith, G. A.; Shustova, N. B. Graphitic supramolecular architectures based on corannulene, fullerene, and beyond. Chemical communications (Cambridge, England) 2021, 57, 10125–10138. doi:10.1039/d1cc02896k
  • Thanasekaran, P.; Su, C.-H.; Liu, Y.-H.; Lu, K.-L. Weak interactions in conducting metal–organic frameworks. Coordination Chemistry Reviews 2021, 442, 213987. doi:10.1016/j.ccr.2021.213987
  • Thanasekaran, P.; Su, C.-H.; Liu, Y.-H.; Lu, K.-L. Hydrophobic Metal-Organic Frameworks and Derived Composites for Microelectronics Applications. Chemistry (Weinheim an der Bergstrasse, Germany) 2021, 27, 16543–16563. doi:10.1002/chem.202100241
  • Nath, A.; Asha, K. S.; Mandal, S. Conductive Metal-Organic Frameworks: Electronic Structure and Electrochemical Applications. Chemistry (Weinheim an der Bergstrasse, Germany) 2021, 27, 11482–11538. doi:10.1002/chem.202100610
  • Ding, B.; Solomon, M. B.; Leong, C. F.; D'Alessandro, D. M. Redox-active ligands: Recent advances towards their incorporation into coordination polymers and metal-organic frameworks. Coordination Chemistry Reviews 2021, 439, 213891. doi:10.1016/j.ccr.2021.213891
  • Sreekanth, T. V. M.; Dillip, G. R.; Nagajyothi, P.; Yoo, K.; Kim, J. Integration of Marigold 3D flower-like Ni-MOF self-assembled on MWCNTs via microwave irradiation for high-performance electrocatalytic alcohol oxidation and oxygen evolution reactions. Applied Catalysis B: Environmental 2021, 285, 119793. doi:10.1016/j.apcatb.2020.119793
  • Sarkar, R.; Kar, M.; Habib; Zhou, G.; Frauenheim, T.; Sarkar, P.; Pal, S.; Prezhdo, O. V. Common Defects Accelerate Charge Separation and Reduce Recombination in CNT/Molecule Composites: Atomistic Quantum Dynamics. Journal of the American Chemical Society 2021, 143, 6649–6656. doi:10.1021/jacs.1c02325
  • Saura-Sanmartin, A.; Martinez-Cuezva, A.; Marin-Luna, M.; Bautista, D.; Berna, J. Effective Encapsulation of C60 by Metal–Organic Frameworks with Polyamide Macrocyclic Linkers. Angewandte Chemie (International ed. in English) 2021, 60, 10814–10819. doi:10.1002/anie.202100996
  • Saura‐Sanmartin, A.; Martinez‐Cuezva, A.; Marin‐Luna, M.; Bautista, D.; Berna, J. Effective Encapsulation of C60 by Metal–Organic Frameworks with Polyamide Macrocyclic Linkers. Angewandte Chemie 2021, 133, 10909–10914. doi:10.1002/ange.202100996
  • Ejsmont, A.; Andreo, J.; Lanza, A.; Galarda, A.; Macreadie, L. K.; Wuttke, S.; Canossa, S.; Ploetz, E.; Goscianska, J. Applications of reticular diversity in metal–organic frameworks: An ever-evolving state of the art. Coordination Chemistry Reviews 2021, 430, 213655. doi:10.1016/j.ccr.2020.213655
  • Ray, D.; Goswami, S.; Duan, J.; Hupp, J. T.; Cramer, C. J.; Gagliardi, L. Tuning the Conductivity of Hexa-Zirconium(IV) Metal-Organic Frameworks by Encapsulating Heterofullerenes. Chemistry of Materials 2021, 33, 1182–1189. doi:10.1021/acs.chemmater.0c03855
  • Shao, B.; Chen, H.; Cui, C.; Li, J.; Gonge, R. Research Progress on Improvement of Conductivity of MOFs and Their Application in Bionsensors: A Review. Chemistry Letters 2021, 50, 714–723. doi:10.1246/cl.200808
Other Beilstein-Institut Open Science Activities