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Abstract
Wavelet transform analysis is applied to a thermally excited cantilever to get insights into fundamental thermodynamical properties

of its motion. The shortcomings of the widely used Fourier analysis are briefly discussed to put into perspective the wavelet trans-

form analysis, used to describe the temporal evolution of the spectral content of the thermal oscillations of a cantilever with an

interacting tip. This analysis allows to retrieve the force gradients, the forces and the Hamaker constant in a measurement time of

less than 40 ms.
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Introduction
The non-contact atomic force microscopy (NC-AFM) is a

powerful tool to study not only the surface topography, but also

the mechanical and chemical characteristics of the sample at the

nanoscale [1-3]. The tip of an excited cantilever is sensitive to

both forces and force gradients, when approaching the sample

surface. The response of the cantilever may show a modifica-

tion of the oscillation amplitude, frequency, phase or damping.

The measurement of these cantilever parameters allows to gain

information on the physical properties of the sample with

(sub-)molecular resolution [4,5]. The dynamic behavior of a

weakly interacting cantilever vibrating near a resonance can be

well approximated by a simple harmonic oscillator model,

described by three independent parameters, resonance frequen-

cy, ω0, amplitude at resonance, A0, and quality factor, Q. A shift

in ω0 is related primarily to the tip-surface force gradient, A0 to

the driving force, and Q to the energy dissipation [2,6].

The thermal motion (or Brownian motion) of the cantilever’s tip

is connected to the local mechanical compliance via the fluctua-

tion-dissipation theorem. The cantilever thermal fluctuations are

modified by the tip-surface interaction forces: monitoring these

modifications allows to reconstruct the interaction potential and
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Figure 1: Block diagram of the optical beam detection system. A typical power spectral density spectrum of the cantilever flexural modes (up to the
fifth) is shown.

obtain information on various kinds of surface forces [7-9]. The

influence of the local environment on the cantilever oscillations

around the equilibrium position, detected by a quadrant photo-

diode in the optical beam deflection method, is usually analyzed

by the Fourier transform, that represents the temporal fluctua-

tions of the cantilever in the frequency domain. By doing so, the

oscillation eigenmodes of the cantilever are displayed in the

spectrum as resonance peaks. However, Fourier transform (FT)

analysis is correctly interpreted (and useful) only in the case of

stationary systems, i.e., the frequency spectrum must be corre-

lated with a temporally invariant physical system. If the phys-

ical state of the system changes in time, the Fourier spectrum

only displays an average of spectra corresponding to different

states and so the physical information is no more correlated

with a single state of the system.

There exists a powerful and well developed mathematical tool

overcoming these limitations, not yet applied to analyze the

dynamic force spectroscopy (DFS) data, the wavelet analysis

[10,11]. In this work, we present wavelet theory as an advanced

tool for the analysis and characterization of temporal traces

obtained by DFS. A necessary mathematical background on

wavelet theory is briefly introduced in the following sections,

regarding specifically the decomposition of a one dimensional

signal into its frequency components by scaled wavelet func-

tions, known as continuous wavelet transform (CWT). Since

wavelet functions are scaled according to frequency and time,

such a decomposition results in the so-called time-frequency

localization. The wavelet transform approach gives a mean-

ingful and intuitive representation of the temporal evolution of

the spectral content of an oscillating cantilever. CWT converts a

one-dimensional time signal into a two dimensional time-fre-

quency representation, which displays the signal amplitude

localized in time and frequency on a time-frequency plane. This

is particularly useful to study transitory regimes, i.e., signal

with a frequency spectrum changing during the data collection.

This work will show that the tip-sample interaction forces can

be quantitatively measured using CWT with acquisition times

as short as few tens of milliseconds, as required for practical

DFS imaging.

Since wavelets are a mathematical tool, they have been used in

a number of application in different fields of science and tech-

nology to extract information from and/or denoise many

different kinds of data, including – but certainly not limited to –

audio signals, images, optical spectra, time series. Previously,

wavelet analysis has been used in atomic force spectroscopy

mainly to denoise or extract data from images [12,13], which is

by far the most important application of the wavelet transform.

In the following, first we briefly illustrate the Fourier approach

to analyze the time traces of the cantilever thermal oscillations

collected at different separations from the surface. Successively

the CWT and its use in DFS will be introduced.

Fourier analysis of the cantilever thermal fluc-
tuations
Fourier analysis can be used to process the temporal trace of the

cantilever thermal vibrations detected by a standard AFM

optical beam deflection system. The power spectral density

(PSD) of the time signal, extending over a temporal interval

sufficiently long to assure the needed spectral resolution,

reveals resonance peaks corresponding to the various oscilla-

tion eigenmodes of the cantilever beam (Figure 1). This analysis
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is repeated at various separations from the surface, up to the

jump-to-contact distance. The force gradient of the interaction

dFts/dz (where Fts is the tip-sample force and z the tip-sample

distance, positive along the surface normal direction) is directly

evaluated by the observed frequency shift of the PSD as a func-

tion of z. Considering each flexural mode equivalent to a mass-

spring system, the tip-sample interaction elastic constant kts =

−dFts/dz is expressed as a function of the resonant frequency as

, where  is the resonant fre-

quency of the free cantilever,  is the resonant frequency of

the cantilever interacting with the surface force gradients and k

is the equivalent elastic constant of the mode under considera-

tion. This relation holds if kts remains constant for the whole

range of the displacements from the equilibrium position

covered by the cantilever. This is usually true in the thermal

regime since we are dealing with small oscillations (less than

0.2 nm) [9]. If  the frequency shift  is

proportional to the interaction elastic constant 

[1].

From the same PSD, besides the force gradient, it is possible to

measure the quality factor Q of the mode, that is determined by

the relative width of the resonance peaks corresponding to the

oscillation eigenmodes of the cantilever (Q = Δω/ω0). Q is

usually dependent on the distance from the surface. Since the

quality factor Q is connected to dissipation, important informa-

tions on the tip-sample energy exchange can be retrieved.

With this techniques force gradients and quality factors on

graphite in air have been measured [9]. It was found that the

attractive force gradient data are well reproduced by a nonre-

tarded van der Waals function in the form HR/(3z3) (H is the

Hamaker constant and R the tip radius of curvature), up to the

jump-to-contact distance D which occurs at around 2 nm from

the surface (Figure 2). In this distance range, Q is almost

constant for the first and second flexural modes. This means

that the interaction is conservative at distances greater than D,

the first flexural mode showing an evident decrease of the Q

value just before the jumps-to-contact. The dissipation mecha-

nism related to this sharp transition is due to a local interaction

of the tip apex with the surface.

In these experiments, the acquisition and storage of the photo-

diode time signal requires tens of seconds at each tip-sample

separation. This implies that the measurements at a single

spatial location (one pixel of an image) may take minutes. The

long measurements duration, besides the control of thermal

drifts, is not practical for imaging pourposes.

In closing this section, it is interesting to note that near the

sample, the quality factor is lower than that of the free

Figure 2: Results from the Fourier transform method, adapted from
[9]. a) Power spectral density of the thermal fluctuations of the first
flexural mode of the cantilever acquired at different tip-sample separa-
tions. A negative frequency shift of the resonant frequency is observed
on approaching the graphite surface. The resonance peaks are fitted
with a Lorentzian. b) The black continuous line is a fit of the van der
Waals force gradient between a spherical tip and a flat surface (force
gradient = HR/3z3, z is the tip-sample distance) to the measured fre-
quency shift of the first flexural mode as a function of the tip-surface
separation (red circles). The dashed line is the interaction force
obtained by integration.

cantilever. The decrease is due to the interaction of the rectan-

gular beam with the sample surface. If the tip-sample sep-

aration is very small, the distance between the beam and the

surface is about the tip height (nominal value h = 20–25 μm).

When the cantilever oscillates in air or in a fluid close to a solid

surface, due to a confinement effect, an increased damping is

manifested as a decrease of the quality factor [14]. This effect is

relevant for piezotube movements on the μm scale but not on

the nm scale covered by the present measurements, where the

effect of the tip-sample interaction dominates.

Continuous wavelet transform and time-fre-
quency resolution
The FT analysis provides a frequency representation of a signal

with perfect spectral resolution but without the possibility to

correlate the frequency spectrum with the signal evolution in

time. Instead, a time-frequency representation shows the signal

evolution over both time and frequency. CWT is a refined alter-

native to the classical windowed Fourier analysis, providing not

only the representation of the spectral energy content of the
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Figure 3: Comparison between the Fourier transform and the wavelet transform analysis. a) The time signal, a cosine function for negative times and
a cosine with quadratic chirp for positive times. Two daughter wavelet functions with different dilations and delays are superposed to the signal to
show the local resemblance between signal and wavelet. b) Wavelet transform of the temporal trace represented in a) showing the evolution of the
signal frequency. The black line is the calculated instantaneous frequency. c) Fourier transform (power spectral density) of the signal represented in
a). Only an average of the signal frequencies is observed.

signal at a certain time, but also the ability to adapt the resolu-

tion to the signal frequency.

A wavelet is a smooth function Ψ(t) with a compact support (or

a rapid decay at infinity, contrary to the Fourier basis), and zero

average,

which is translated in time by d and dilated by a positive scale

parameter s,

The zero average condition imply that Ψ(t) is an oscillating

function. The function Ψ(t) is called a mother wavelet, the

translated and dilated replicas Ψs,d(t) are called daughter

wavelets. The wavelet transform of a function of time t, f(t), at

the scale s and delay d is computed by correlating f(t) with the

daughter wavelet at the corresponding scale and delay,

The wavelet transform coefficients Wf(s,d) are “resemblance”

coefficients, that measure the similitude between the signal and

the wavelet atoms at various scales and delays (Figure 3a).

The square modulus of the wavelet coefficients |Wf(s,d)|2 is

proportional to the local energy density of the signal at the

given delay and scale, called the scalogram of the signal. As

explained in detail below, the delay-scale representation in

which wavelets are defined can be mapped into the more phys-

ical time-frequency representation to describe the signal energy

localization in frequency and time. It is useful to point out that

the instantaneous frequency of the signal can be traced by the so

called wavelet ridges analysis of the spectrogram in the time-

frequency plane. The wavelet ridges are the maxima points of

the normalized scalogram [11], showing the instantaneous

frequencies within the limits of the transform’s resolution (the

ridge analysis will be useful to represent the experimental data).

When the signal contains several spectral lines whose frequen-

cies are sufficiently apart, the wavelet ridges (i.e., the local

maxima) separates each of these components during their

temporal evolution, a task that cannot be performed using

Fourier analysis.

To visualize the differences between the FT and CWT consider

a signal f(t) = acosφ(t) with time varying phase φ(t), where φ(t)

= ω0t at negative times and φ(t) = ω0t +αt3 at positive times

(Figure 3a). The instantaneous pulsation is the derivative of the
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phase ω(t) = φ'(t) (the black line in Figure 3b). Since FT is a

time invariant operator, only an average of the time dependent

spectrum is observed (Figure 3c). On the other hand, CWT ap-

proach combines the time domain and frequency domain

analysis so that the evolution of each spectral component is

determined. The wavelet analysis allows to extract accurately

the instantaneous frequency information even for rapidly

varying time series (Figure 3b).

In the remainder of this section, we highligth the main features

of CWT analysis that are important when applied to the time

evolution of the cantilever oscillations. Unlike FT, the basis of

CWT is not unique, so it is important the choice of the wavelet

basis. In this work, we use a complex mother wavelet (also

called the Gabor wavelet or the Gaussian wavelet) represented

as

where σ controls the amplitude of the Gaussian envelope, and

thus its time/frequency resolution, η the carrier frequency. Since

the intrinsic time-frequency resolution in CWT is set by the

atoms over which the signal is expanded, we chose this wavelet

because it is particularly adapted to follow signals in time,

having the least spread in both frequency and time domain and

thus the best time frequency resolution.

The CWT is defined in terms of delays and scales and,

as anticipated, the representation can be mapped to time and

frequency. While it is immediate the connection of delay

to time, some comments are useful to connect scale to frequen-

cy.

The signal relative to the vertical cantilever displacement,

recorded with a digitizing oscilloscope from the optical beam

deflection system photodiode, can be thought as a one dimen-

sional string of sampling units. Each sampling unit is the value

of the signal at a specific sampling time and together constitute

the discretized sampled signal. A sampling unit is temporally

connected to the next by a (usually) fixed sampling interval T.

In this framework, the temporal parameter t in the expression of

the Gabor wavelet can be regarded as a (adimensional) discrete

index and likewise σ and η are adimensional wavelet parame-

ters defining the wavelet shape over the discrete sampling

string. The Gabor wavelet (adimensional) center frequency at

scale s is given by f = η/(2πs). It is possible to associate a

pseudo frequency F (in Hz) at a scale s by considering that f is

sampled with a time interval T, so that F = f/T. Therefore, the

wavelet dilations set by the scale parameter s are inversely

proportional to the frequency F.

Strictly connected to the relation between scale and frequency is

the wavelet time-frequency resolution. The joint time and fre-

quency limitations set to the analysis of the energy content of

the signal leads naturally to the introduction of the Heisenberg

box, associated to each analyzing wavelet. The Heisenberg box

delimits an area in the time-frequency plane over which

different CWT coefficients cannot be separated, providing a

geometrical representation of the Heisenberg uncertainty prin-

ciple (Figure 4). We adopt the commonly used definition of the

measure of the uncertainty window Δ as the root-mean-square

extension of the wavelet in the corresponding time or frequen-

cy space,

where ξ0 is a translation parameter and Ψ(ξ) represents the

Gabor mother wavelet, expressed either in time, ξ = t, or

circular frequency, ξ = ω = 2πF, Ψ(ω) = FT(Ψ(t)).

The time-frequency resolution of the analyzing Gabor mother

wavelet, used in this work, is determined by the σ parameter.

The Heisenberg box associated to the mother Gabor wavelet is

given by a time resolution  and a frequency (or

pulsation) resolution . When the wavelet is

subject to a scale dilatation s, the corresponding resolution has

size Δs,t = sΔt along time and Δs,ω = Δω/s along frequency

(Figure 4). The Heisenberg box centered at time t and frequen-

cy ω = 2πF is thus defined as

As expected from the uncertainty principle, Δs,tΔs,ω = 1/2.

It is useful to define the dimensionless parameter known as the

Gabor shaping factor GS = ση [16], which takes in to account

the envelope width (temporal resolution) and the number of

oscillations within the envelope width (frequency resolution).

The shaping factor controls the time frequency resolution via

the dimensions of the Heisenberg box (Figure 4). In fact, as it is

easily seen,  while , so that the choice of

the single parameter GS determines the shape of the Heisenberg

box. An increase of GS means more oscillations under the

wavelet envelope and a larger time spread, the frequency reso-

lution being improved and the time resolution degraded. In

Figure 5 are shown the CWT of delta-like signals in time and

frequency, whose time-frequency resolution is due only to the

wavelet analyzing characteristics. As discussed above, it is
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Figure 4: a) Complex Gabor wavelet with different shaping factors. An increase of GS corresponds to more oscillations under the envelope. The
"Heisenberg box" shows the relationship between the time and frequency resolution, like the uncertainty principle in quantum mechanics (adapted
from [15]). b) A graphical representation of the delay and dilation transformations used in the continuous wavelet transform (adapted from [16]).

Figure 5: Continuous wavelet transform of a delta-like signal in time and a delta-like signal in frequency, analyzed with wavelets of different shaping
factor, a-c) GS = 12, b-d) GS = 35. a-b) CWT of a delta-like function in time. The dependence of resolution on scale (frequency) is clearly shown. c-d)
CWT of a delta-like function in frequency. The frequency resolution increases with the shaping factor. The degradation of the CWT resolution near the
edges of the window transform is visible (edge effect).
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Figure 6: a) Power spectral density of the Brownian motion of the first flexural mode of the same temporal trace used for the wavelet transform on the
right. b) Wavelet transform of the Brownian motion of the cantilever first flexural resonance, around its instantaneous equilibrium position, as the tip
approaches the surface at constant velocity (9 nm / 40 ms = 225 nm/s). The wavelet coefficients |Wf(f,t)| are coded in colorscale. The origin of the
time axis corresponds to the instant when the jump-to-contact occurs. The white box at the left side represents the Heisenberg box, the open box
delimited by black lines represents the damped oscillator in response to an impulsive thermal excitation.

possible to see that the frequency resolution due to the mother

wavelet choice increases with GS while the temporal resolution

is degraded. The delta-like signals in time show clearly that the

time resolution depends on the scale (frequency) parameter,

increasing at lower scale (higher frequency). The delta-like

signals in frequency also show the edge effect, a degradation of

the wavelet resolution near the edges of the CWT time window

due to the spectral broadening produced by the signal trunca-

tion.

Results and Discussion
Wavelet analysis of the cantilever thermal
fluctuations
The wavelet analysis is applied to the force–distance curves

taken with the cantilever subject to thermal fluctuations while

approaching the surface. Figure 6 shows the scalogram of a 40

ms sampling of the cantilever Brownian motion around its

instantaneous equilibrium position while the piezo scanner is

displaced at constant velocity to move the tip towards the

surface, until it jumps to contact.

The discontinuous appearance of the signal in the time-frequen-

cy representation is due to the statistical nature of the cantilever

excitation. The thermal contact of the cantilever with a reser-

voir at temperature T implies that its mean potential energy

 (where Arms is the root mean square cantilever dis-

placement due to thermal motion) is equal to 1/2kBT by the

equipartition theorem, where kB is the Boltzmann constant and

T is the temperature. Microscopically this can be regarded as

the action of random thermal kicks (i.e. uncorrelated impulsive

forces), a driving force with white frequency spectrum. This

thermal force induces cantilever displacements from the equi-

librium position, that show a marked amplitude enhancement in

correspondence of the flexural eigenfrequencies. Since the

cantilever is subjected also to dissipative friction forces, the

amplitude response of the cantilever around a flexural resonant

frequency is not delta-like, but has a finite linewidth. The PSD

of the same temporal trace used for the CWT, reported in

Figure 6a, shows a linewidth comparable to the frequency inde-

termination of the Heisenberg box of the CWT and a structure

at low frequency that is reminescent of the interaction with the

surface, when for a short time the cantilever frequency is

lowered.

It is interesting to clarify the origin of the “bumps” observed in

the time-frequency representation. When the cantilever has a

thermally activated fluctuation, each flexural mode responds as

a damped harmonic oscillator whose equation of motion is

 where x is the oscillation amplitude, Q

the quality factor and ω0 the resonance frequency [17,18].

Considering for simplicity the initial conditions x(0) = x0,

 and assuming Q  1, the solution is an exponentially

decaying amplitude oscillating at the resonance frequency:

.

The energy associated to the oscillator E(t) is proportional to 

and from the above relations we see that the associated expo-

nential energy decay time is τ = Q/ω0. The spectral energy

density of the damped oscillator (L(ω)) is proportional to the

square modulus of the Fourier transform of x(t), L(ω) =

|FT(x(t))|2. Under the assumption Q  1, L(ω) is well approxi-

mated by a Lorentzian with a full width at half maximum of Δω

= 2πΔf = 1/τ.

Since the cantilever is first thermally excited and then damped

to steady state by random forces that act on a much smaller time

scale than its oscillation period, the characteristic response time

for an isolated excitation/decay event cannot be smaller than 2τ,

with an associated Lorentzian full width at half maximum of

Δω.
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From the above reasoning, it is natural to introduce the damped

oscillator box, a geometrical representation of the extension in

the time-frequency plane of the wavelet coefficients associated

to a single excitation/decay event, centered at time t and fre-

quency ω, defined as

The damped oscillator box, contrary to the Heisenberg box,

does not represent a limitation in resolution due to the wavelet

choice, but a physical representation of the damped oscillator

time frequency characteristics. It is important to note that the

ultimate resolution limitations imposed by the Heisenberg box

associated with the analyzing wavelet could prevent the

observation of the true dimensions of the damped oscillator box.

Due to their different definitions, a comment on the sizes of the

Heisenberg box and the damped oscillator box is useful. The

Heisenberg box dimensions are the root-mean-square exten-

sions of the Gabor wavelet envelope (i.e., its modulus) in time

and frequency. Since the Gabor wavelet evelope is a gaussian in

time and frequency, its root-mean-square extension is by defini-

tion the gaussian standard deviation, i.e. the half width at

 of the maximum. The damped oscillator box

dimension in frequency is the full width at half maximum of

L(ω). In terms of the wavelet envelope (proportional to ),

it is the full width at  of the maximum. The

damped oscillator box dimension in time is 2τ, where τ is the

full width at  of the maximum of the exponen-

tially decaying oscillator amplitude.

We did not attempt to correct the sizes of the boxes using a

single common definition because the comparisons with the

experimental data in the present work are mainly qualitative. In

our case Q = 43 and f0 = 10.9 kHz for the first flexural mode,

implying τ = 1.25 ms and Δω = 250 Hz. It is important to note

that the temporal and frequency width of many discrete time

frequency small structures seen in the CWT of the cantilever

thermal signal in Figure 7c are of the same dimensions of the

damped oscillator box 2τ × Δω. This observation is possible

because the first flexural mode is represented with a Gabor

wavelet with a shaping factor GS = 53 around the resonant fre-

quency, the Heisenberg box (1.1 ms × 290 Hz) is similar to the

damped oscillator box (1.25 ms × 250 Hz). In the representa-

tion of Figure 7a and Figure 7b, the CWT has different shaping

factors and thus different dimensions of the Heisenberg box

(0.71 ms × 450 Hz for GS = 35, Figure 7b, 0.25 ms × 1300 Hz

for GS = 12, Figure 7a), that allows to measure the time width

of the damped oscillator structures, but not its frequency width

due to limited frequency resolution. It is important to note that

the temporal width of the structures is independent on the time

resolution of the wavelet, indicating that we are observing a real

physical feature, that is not related to the choice of the wavelet

representation. As a rule of thumb, CWT should allow to follow

more easily the single-thermal-excitation-event time decay in

high-Q environments and measure its frequency linewidth in

low-Q environments.

Figure 7: Wavelet transform of the cantilever thermal fluctuations
around its instantaneous equilibrium position, using three mother
wavelet with different shaping factor, a) GS=12, b) GS=35, c) GS=53.
Increasing the shaping factor improves the frequency resolution but
lowers the time resolution. The tip is moved toward the surface at a
velocity of ≈225 nm/s until it jumps to contact (corresponding to the
origin of the time axis). The wavelet coefficients |Wf(f,t)| are coded in
colorscale. The white boxes at the left sides are the Heisenberg boxes.
The open boxes delimited by black lines represent the damped oscil-
lator boxes.

The first flexural mode frequency shift near the surface

(Figure 7b) provides a complete force distance curve. The

instantaneous frequency is evaluated by the wavelet ridges, the

local maxima points of the normalized scalogram. In order to

reduce noise effects, only maxima above a threshold are

considered (see the schematic representation in the inset of

Figure 8).

From the instantaneous frequency shift the gradient of the tip-

sample interaction forces (dFts/dz) is retrieved, using the rela-

tions previously reported, and the time scale is converted into
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Figure 8: Force gradient versus tip-sample distance for the first flexural mode near the jump-to-contact. The wavelet ridges provide the instanta-
neous frequencies within the limits of the scalogram resolution. The wavelet ridges are the local maxima of the normalized scalogram above a speci-
fied threshold, as schematically shown in the inset. The threshold is represented by a horizontal line and the maximum point is indicated by an arrow
for a vertical cut of the data at constant tip-sample distance. The CWT of Figure 7b is represented in gray scale on the background together with its
ridges (black points). The continuous black line is an Hamaker-like force gradient function fitted to the wavelet ridges, the dashed line the force calcu-
lated by integration.

the tip-sample separation by taking into account either the

piezoscanner velocity and the cantilever static deflection, to

obtain a complete force gradient versus distance curve

(Figure 8). The gradient data from CWT ridges are well fitted

by a nonretarded van der Waals function in the form HR/3z−3,

with HR = 1.2 × 10−27 Jm. Using the typical values of H in

graphite (H = 0.1 aJ), the tip radius is evaluated as R = 12 nm,

in good agreement with the nominal radius of curvature given

by the manufacturer (R = 10 nm). To promote this technique

from proof of principle to a measurement of the Hamaker

constant with a good lateral resolution, a thorough characteriza-

tion of the tip radius of curvature is needed.

Finally, we note that the whole force curve is acquired in less

than 40 ms, a time significantly less than that usually needed for

force versus distance measurements. With an optimization of

the electronics and reduction of dead times in the acquisition

process, it would be possible to acquire images in which a

complete information on force gradients and topography is

compatible with 1–30 ms/pixel data acquisition times required

for practical DFS imaging.

Conclusion
The interaction of an AFM cantilever tip with a graphite sample

is measured by applying the wavelet transform analysis to its

Brownian motion near the surface. The wavelet transform

analysis is a mathematical tool able to analyze the instanta-

neous spectral content of rapidly varying signals. Using the

wavelet transforms to analyze the temporal traces of the thermal

motion superposed on a force-distance curve, the tip-sample

interaction is measured in tens of ms, a time compatible with

imaging acquisition rates. The wavelet transform technique is

very promising since the analysis could be applied simultane-

ously to the higher flexural eigenmodes. Moreover the measure-

ment could be carried out across the jump-to-contact transition

without interruption, providing information on the elastic

response of the surface.

Experimental
The experiments are carried out with an AFM [19] mounted on

a massive platform suspended by springs to provide isolation

from external mechanical noise. The AFM with its isolation

platform are closed inside an acoustic isolation chamber. The

cantilever deflection is monitored by an optical beam deflec-

tion system based on a 600 nm laser diode coupled to a

monomode fiber (with a mode field diameter of 4 μm), which

acts as a mode filter, giving a TEM00 beam output after recolli-

mation. The collimated fiber output is focalized with an aspher-

ical lens to a 10 μm spot on the cantilever end. A digitizing

oscilloscope collects the differential outputs (left-right and top-

bottom) of the four quadrant silicon diode. The overall band-

width of the beam deflection system exceeds 1 MHz. The digi-

tizing oscilloscope has a 8 bit vertical resolution, 250 MHz

analog bandwidth, 1 Gsample/s maximum sampling rate, and a

buffer memory of 128 Msample.

The silicon cantilevers average dimensions are 40 × 460 × 2 μm

with a typical tip radius R = 10 nm. The resonance frequency of

the first flexural mode of the cantilever used in the experiments

is f0 = (10.908 ± 0.002) kHz, its elastic constant is k = 0.13 N/m

[20]. For each cantilever the elastic constant is evaluated both

by the Sader method [20] and the thermal noise method applied

to the first flexural mode [21,22]. Both methods agree within

5%.
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The piezoscanning system is based on a single scanner tube

with a maximum vertical extension of 2 μm. The experiments

consisted in acquiring the temporal evolution of the thermal

noise as a function of the tip-sample distance. The thermal noise

signal measured by the beam deflection system is sampled with

the digitizing oscilloscope while the tip moves toward the

surface. The piezoscanner is displaced at constant velocity of

approximately 225 nm/s. The sampling time is 240 ns so that

the signal string is composed by 4166 sampling points every ms

of acquisition time. The CWT analysis is performed off-line.

The sample consisted of a freshly cleaved highly oriented

pyrolitic graphite (HOPG) surface. All the experiments have

been conducted in air, with a relative humidity of less than

50%. Figure 1 schematically shows the experimental apparatus:

the electronic noise level is small enought to detect up to five

flexural eigenmodes. The optical lever sensitivity is calibrated

by taking the force spectroscopy curves on the hard HOPG

surface, assuming a negligible indentation and thus equal

distances spanned by the cantilever tip and the piezotube. The

obtained sensitivity is in the range of 50–200 nm/V, depending

on the cantilever type, beam position, and laser light power

level. The cantilever has a 15° tilt with respect to the horizontal

plane (that coincides with the sample surface), which is

considered for sensitivity correction [23]. Since the laser beam

position influences the effective length of the cantilever and the

sensitivity, the stability of the laser alignment is carefully

controlled during the measurements. From the approach force

curves after the jump to contact, the tip-sample contact point is

determined as the distance at which no force acts on the

cantilever that is when the cantilever is not deflected.
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