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Abstract

Atomic force microscopy (AFM) techniques have provided and continue to provide increasingly important insights into surface
morphology, mechanics, and other critical material characteristics at the nanoscale. One attractive implementation involves extract-
ing meaningful material properties, which demands physically accurate models specifically designed for AFM experimentation and
simulation. The AFM community has pursued the precise quantification and extraction of rate-dependent material properties, in
particular, for a significant period of time, attempting to describe the standard viscoelastic response of materials. AFM static force
spectroscopy (SES) is one approach commonly used in pursuit of this goal. It is capable of acquiring rich temporal insight into the
behavior of a sample. During AFM-SFS experiments the cantilever base approaches samples with a nearly constant velocity, which
is manipulated to investigate different timescales of the mechanical response. This manuscript seeks to build upon our previous
work and presents an approach to extracting useful linear viscoelastic information from AFM-SFS experiments. In addition, the
basis for selecting and restricting the model parameters for fitting is discussed from the perspective of applying this technique on a
practical level. This work begins with a guided discussion that develops a fit function from fundamental laws, continues with condi-
tioning a raw SFS experimental dataset, and concludes with the fit and prediction of viscoelastic response parameters such as
storage modulus, loss modulus, loss angle, and compliance. These steps constitute a complete guide to leveraging AFM-SFS data to

estimate key material parameters, with a series of detailed insights into both the methodology and supporting analytical choices.

Introduction

Modern AFM applications commonly involve testing samples er, performing such measurements using AFM has been diffi-
that are soft, biological, or polymeric in nature. Understanding  cult due to the complexity of material phenomena that govern
the dissipative nature of these materials at the nanoscale is espe- ~AFM observables. For example, the history- and rate-depen-

cially important to their use in many applications [1-6]. Howev-  dence of tip—sample interactions can produce large errors when
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estimating the surface stiffness, leading to poor and inconsis-
tent data quality. To avoid complex analytical derivations, it can
be convenient to ignore well-established viscoelastic models in
favor of elastic relationships. Unfortunately, these equations are
sometimes oversimplified to such an extent that they no longer
properly represent the behavior of real materials [7,8]. Such ap-
proaches critically lack the capability of reproducing the com-
plex temporal behavior of samples with one or more character-
istic times. It follows that more detailed viscoelastic models are
necessary to describe and predict AFM tip—sample behavior
accurately [9-12]. To this end, an appropriate viscoelastic model
must be chosen (or derived) and subsequently specified for a
geometry specific to AFM tip—sample interactions.

The process of developing and fitting a viscoelastic model
is somewhat organic. One approach is to use theoretical argu-
ments in conjunction with continuum mechanics funda-
mentals, but it is most common to design more intuitive
spring—dashpot linear viscoelastic mechanical models [13-15].
The spring—dashpot, or “mechanical equivalent” approach to
linear viscoelasticity involves connecting different combina-
tions of springs and dashpots in series and/or parallel to mimic
the action of a material. These physical systems are then de-
scribed algebraically, transformed into Laplace space, and rear-
ranged to create transfer functions that describe the material
response for a given stress or strain excitation. The mechanical-
equivalent approach is simple to explain, but can require more
assumptions and some additional knowledge of the Laplace
transform to derive analytical stress—strain relationships. Alter-
natively, continuum mechanics can be used to create more
general models to describe the material under study. The contin-
uum method involves the derivation and restriction of constitu-
tive relations that apply to practical problems in mechanics.
These relations are then subjected to balance laws in order to
develop a pipeline from problem statement to final configura-
tion [16]. The continuum approach is more general at the cost of
requiring significant expertise and complex explanations that
are more difficult to follow.

Either method is capable of generating a model that provides
significantly more insight into the material response than elastic
models, and the choice between approaches usually depends
upon the material and complexity of interactions being repre-
sented. In the case of AFM, many common problems involve
nanoscale viscoelastic systems exposed either to intermittent
probe contact (tapping mode) or a similar type of probe—sample
interaction where the indentations are usually small and fast. In
such cases mechanical-equivalent models usually suffice, and
the continuum approach is more complicated than necessary to
reproduce the material response. When the contact occurs for

longer periods, such as during contact-mode AFM or when
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tip—sample nonlinearities are clearly visible in the dataset, con-
tinuum models may be necessary to capture all of the deforma-
tion complexity. Using either technique, the goal remains to
create a physically accurate model of the sample, and use exper-
imental data to quantify meaningful material properties.

Lopez et al. [17] recently formulated a generalized solution to
the physical contact problem in AFM-SFS experiments, particu-
larly for cases where the sample is viscoelastic. The approach is
also capable of being adapted to any linear viscoelastic
stress—strain model. Their method utilized a theoretical basis for
viscoelastic indentation problems proposed by Lee and Radok
[18] in 1960. Lee and Radok presented a framework that used
Hertzian contact relationships and the “viscoelastic correspon-
dence principle”, in which elastic parameters are replaced by
their viscoelastic counterparts to account for differences in the
mechanical response of the material. Approaches utilizing
viscoelastic correspondence were then cited frequently in the
literature of that time [19-21].

The aforementioned work of Lopez et al. focused upon materi-
als with an arbitrary number of retardation times and included
analytical descriptions both with and without the assumption of
a linear force-vs-time curve. This generalized approach neatly
ties together the theory of Lee and Radok with a modern under-
standing of linear viscoelastic mechanical-equivalent (i.e.,
spring—dashpot) models, and the present article seeks to provide
a more detailed discussion on practical applications of the meth-
odology of Lopez and co-workers. Topics discussed here
include the basis in theory, how to specify various material
models for fitting, how to calculate relevant viscoelastic quanti-
ties, and importantly a discussion of where the extracted param-
eters are valid. The extension of this methodology to nonlinear
viscoelastic materials is the subject of a future manuscript in de-
velopment. In order to begin extracting viscoelastic parameters,
the solution outlined by Lee and Radok [18] must be revisited
and subsequently specified for an AFM-SFS experiment as de-
scribed by Lopez and co-workers [17]. Afterwards, the relation-
ships are generalized for an arbitrary load history and assump-
tions are made about the fundamental characteristics of the ma-
terial being studied. The “Theoretical Background” section
focuses on the analytical approach, with the detailed data
handling outlined in the section immediately afterward. For
clarity, a specific example is then provided in the “Results and
Discussion” section, showing how to extract viscoelastic param-
eters using AFM-SFS data collected from hollow nylon 6,6
tubing.

Theoretical Background
To understand the analytical choices available for viscoelastic

models in AFM indentation problems, it is helpful to begin with
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the viscoelastic correspondence principle framework mentioned
above. An AFM tip—sample interaction involves measuring
force and deformation, which can then be compared to the solu-
tion of a contact problem where a spherical probe tip indents a
flat viscoelastic surface. Depending upon the material being
tested, different models can be inserted into the resulting
force—indentation relationship and then compared to AFM-SFS
data. The parameter values within the model are modified until
a close approximation is made between the experimental force
and indentation datasets, resulting in a set of “best-fit” visco-
elastic parameters for the model. The following sections explain
this workflow in a similar manner: First, the framework is de-
scribed briefly, then the force—indentation relationship is modi-
fied to be more easily compared with AFM data, and last, the
features of several viscoelastic models are discussed. For a
detailed derivation of the Lee and Radok framework, and a
review of the extension to arbitrary load history (previously
presented by Lopez et al. [17]), the reader is directed to Sup-
porting Information File 3 included with this manuscript.

Spherical indentation of a viscoelastic

half-space

In an ideal case, the exact tip geometry is known a priori. In lieu
of such information, it is expedient to make simplifying
assumptions about the tip shape at the point of contact. One
common assumption is that the local surface deformations are
small, such that the tip has a roughly spherical contact geome-
try during indentation. This assumption is best made for larger-
diameter tips or specialized colloidal probes, although it can be
argued that smaller tips can still be approximated provided the
indentation depth is small. As mentioned above, Lee and Radok
[18] proposed a solution to the rigid spherical contact of a
viscoelastic half-space nearly sixty years ago. The indentation
configuration is visualized in Figure 1, which is based upon
Figure 1 in their original manuscript.

Here, the deepest indentation occurs at the center of the sphere
(r =0) and is labeled A(f). The indenter has a radius of curva-
ture R, and the distance from the center axis to the edge of con-

tact, known as the contact radius, is labeled /().

Using the geometry presented in Figure 1, a series of algebraic
manipulations, Laplace transformations, and viscoelastic-equiv-
alence arguments, Lee and Radok presented the following
relationship between applied load and spherical indentation
depth for a viscoelastic material having characteristic operators
u and ¢

o[F(0)]=Sga 1) Jror 0
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Figure 1: The quasi-static spherical indentation configuration as
outlined by Lee and Radok in [18].
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Equation 2 is the relationship upon which Lopez et al. build a
solution for the AFM experiment. It is originally presented as
Equation 3 in their paper [17].

Extending the solution to an arbitrary
load history

Traditionally, when using creep-recovery experiments to para-
meterize the viscoelastic models under study, a constant stress
is first applied to a sample and then subsequently removed. For
example, one method involves hanging weights from a material
for some time, then removing the weights and allowing the ma-
terial to recover. A strain gage or displacement sensor captures
the deformation occurring during both phases, and the data is
used for fitting. The boundary conditions for such an approach
dictate a step function in stress, and that one end of the sample
is fixed. In that case, the constant load history would suggest
using the “creep compliance” J(f), an engineering quantity that
represents the change in strain as a function of the time for a
medium exposed to an instantaneous constant stress [17,18].
While applicable for this type of study, the tip—sample interac-
tion during AFM experiments does not apply a constant force
(i.e., stress) as a function of the time. The load history is more
reminiscent of a discrete impulse function in which the contact
time is short. Therefore, while the solution form could use the
creep compliance for fitting, it is more direct to use the material
retardance. The creep compliance can be defined in terms of the
applied stress o(z), the strain €(z), and the material retardance
Ul(s) as:
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for cs(t) =0y, 3)

T(s)=—-L. 4)

By taking the Laplace transform of Equation 2, rearranging,
substituting the creep compliance relationship above, and taking
the inverse Laplace transform, one arrives at the following
result:

T =2 fue-gr@e o

Equation 5 allows for the straightforward definition of the retar-
dance U(t) according to an appropriate material model. The
convolution integral replaces the multiplication of U(s) and
.f(s) in the Laplace domain during translation back to the time
domain. As mentioned previously, the approach outlined here is
preferred for AFM as it both removes the requirement of a step
function in stress and of a measurement of the force application
rate. Since an AFM-SFS experiment provides force and inden-

tation (deformation), the data streams can be utilized directly
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without requiring a discrete derivative of force in time. Taking a
discrete derivative can introduce undesirable oscillatory errors
into the resulting dataset, and thus obscure some of the informa-
tion contained within. Equation 5 represents the strain (or defor-
mation) response of a material to the unit stress impulse.

Specifying a viscoelastic material model
for fitting

Selecting an appropriate material model is often an iterative
process, unless one can leverage available datasets or a priori
knowledge about the nature of a given sample. There is a broad
array of literature that covers spring—dashpot models and visco-
elastic rheology, many of which provide helpful visualizations
of the predicted material response [14,15,22]. Provided a rela-
tionship between model parameters and the material retardance
can be derived, one can replace U(r — () in the above equations
to make an implicit assumption of how the material reacts to
applied stress. Acquiring these relationships is generally done
by taking the derivative of the creep compliance J(¢) of the
model, as the two quantities are related in Laplace space by
Equation 4. Table 1 summarizes several commonly used visco-

elastic models and their reported applicability.

Often these linear spring—dashpot descriptions utilize an
expanded series of compliances and characteristic time con-
stants, which introduces a common source of error during anal-

ysis of the viscoelastic data. Each term in the series is intended

Table 1: Summary of viscoelastic models and the corresponding applications [14,15,22].

type name shape
E
Kelvin-Voigt?
El
standard linear solid (Voigt form)P v\/EW .
linear generalized Kelvin-Voigt®

Maxwelld

Wiechert®

stress—strain equation

£(t) = %0{1 - exp[—t%ﬂ 2

parameters
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Table 1: Summary of viscoelastic models and the corresponding applications [14,15,22]. (continued)

nonlinear Schapery' —

£(t) =9geJeo(t)

d[gzc(t)]

dr

t
+g1jAJ(¢— ¥) dr

2 g 7+
J;—ao [o(t’)] a; >0
:
|
0

aModel includes exponential (and reversible) strain creep under stress, but no stress relaxation with constant strain. The response will decay to zero

residual stress provided sufficient time.

PModel includes both creep and relaxation phenomena, but is not accurate when literally compared to common material responses.
Clf including the fluidity term, an additional dashpot is added in series with the mechanical model. This model accounts for creep strain occurring at

multiple retardation times.

dModel includes exponential (and reversible) stress relaxation under constant strain, but linear (non-reversible) strain creep under constant stress.
®Most easily applied to relaxation experiments (constant strain). This model accounts for relaxation occuring at multiple time scales.
fBy including additional terms in ¢ and ¢', more environmental effects can be accounted for and the number of parameters increases.

to represent the reaction of the material to applied stress on a
particular time scale, represented by T in the governing equa-
tions shown in Table 1. As stated previously, provided the
model has a derived retardance, it can be inserted into
Equation 5 directly without an inherent restriction on the num-
ber of characteristic terms included in the series. Often addition-
al terms are inserted with the intent of more accurately fitting
the dataset in question. However, if the data does not include
information at those timescales, whether due to a lack of resolu-
tion (for small time scales) or limitations on the experiment
length (long time scales) these additional terms will introduce
significant error in the parameters extracted. Furthermore if the
parameter set obtained is extrapolated for new loading condi-
tions, it will incorrectly predict the material response as a result
of an incorrect number of terms (i.e., branches in the general-

ized mechanical-equivalent model).

It is critical to evaluate the timescales contained within a dataset
before performing a parameter extraction, especially, before
predicting new material responses. For example, since modern
AFM instruments are capable of acquiring data on the scale of
2 kHz for quasi-static characterization, the smallest character-
istic timescales that can be resolved are of the order of 107# s. If
parameters are fit to a dataset of the order of 107 to 10% s (e.g.,
data collected at 2 kHz for a total experiment length of 1-3 s), it
is improper to utilize that parameter set to mimic the action of a
material for an experiment lasting more than 10 s. Issues of this
kind can lead to significant problems with the performance of a
parameterized model. As technology continues to advance and
AFM setups can sustain faster data acquisition speeds, the re-
sulting datasets will continue to become richer in time-depend-
ent material information and provide a more complete under-

standing of how the sample material responds to stress.

To maintain consistency between the approach outlined here
and that of Lopez et al., the generalized Kelvin—Voigt model
has been selected for analysis. The retardance is usually found

by taking the derivative of the compliance of a model [17]:

7(s) = In (91
U(s)—Jg+§l+TnS+ | or (6)
J, t
U(t):JgS(t)+z—exp -— |+0,. 7
n T” Tn

Several new parameters have been introduced. The first is the
“glassy compliance” (J,), representing the elastic response of
the material at short timescales; the second is the characteristic
time (t,,), which scales the third parameter, the characteristic
compliance (J,,), such that it contracts on a specific timescale
corresponding to the n-th branch of the generalized Voigt

model. By inserting Equation 7 into Equation 5, we obtain:

0

t t
+ ZJ—”exp —U;—@ F(G)|de+[[¢

0

n 'n n
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Note that the final term containing the steady-state flow ¢y has
been removed as a higher-order effect with relatively small
magnitude for mostly solid viscoelastic materials. Materials that
exhibit steady-state flow under stress, such as plastic or glass at
high temperatures, are thus excluded from the analysis shown
here. If this term was included under special circumstances, the
set of fit parameters would increase by a number determined by
the steady-state flow model utilized for ¢y and an additional nu-

merical convolution would become necessary.

Equation 9 allows for extracting parameters for n characteristic
terms without any assumptions about the load history, provided
the penetration grows monotonically, the indentation is not
“sufficiently large”, and the correspondence principle applies. It
represents the objective fit function described by Lopez et al.
[17] and requires a numerical convolution of U(¢) and F(¢) in
terms of the material parameter set {Jg, Jy, T, }.

Useful viscoelastic quantities

When characterizing the response of viscoelastic materials to
external stress, especially during cyclic loading (such as with
dynamic mechanical analysis (DMA) machines), it is common
to calculate harmonic quantities such as the storage modulus E’,
loss modulus E", and loss angle d [23-25]. Each has a physical
interpretation, representing the elastic and viscous motion of the
material and their magnitudes relative to one another. For exam-
ple, a material that is very stiff will have a high storage modulus
and a low loss modulus. Such a sample will tend to store a
majority of the applied load within its molecular structure and
elastically return most or all of that energy when unloaded.
Alternately, a medium that is susceptible to large shear forces
(such as fluids) will have a low storage modulus and high loss
modulus. In this case, most of that input energy will be lost to
friction and heat, and therefore the material will return far less
energy than the stiff elastic material when unloaded. To acquire
storage and loss modulus as functions of the frequency, a
Fourier transform of the compliance equation is applied to a
particular model. Once translated into the frequency domain,
the real portion of the expression corresponds to the storage
modulus, and the imaginary portion to the loss modulus. In the
case of a generalized-Voigt material, a definition in terms of
modulus is analytically inconvenient. The model is most clearly
written using material compliances (J,), and as such the storage
compliance and the loss compliance (J' and J”, respectively) are

used. The corresponding moduli can be written as [26]:
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=J'(w)=J, + — |5 10

E'(o) (0)= e T+ e’ (1o
1 J,T,0

—J” )= n-n , 11

E”((D) ( ) P 1+ Timz ( )

8:tan_l(%j = tan~! (J—j (12)

For ideally elastic behavior, the storage modulus or compliance
dominates and the loss angle tends towards zero. In contrast,
when the dissipative capacity of the material dominates, the
sample action is more fluid-like and the loss angle increases.
Understanding these viscoelastic quantities in the context of
material characterization can be helpful when describing the
relationship between external loads and the viscoelastic
response, especially when the excitations are periodic. Within
the context of AFM, both the storage modulus and the loss
modulus are critical to evaluating the dissipated energy during
tapping-mode analysis [24]. The key equations required for

viscoelastic parameter inversion are as follows:
Equation 2, general Lee and Radok solution for spherical inden-

tation [18]:

3

Mq{[h(t)f/z} ~u[F(1)],

Equation 5, integral form of Lee and Radok spherical indenta-
tion solution [17]:

[h(0)] =ﬁjU(t—c)F(c)dc,

Equation 9, Lopez solution for spherical indentation of general-
ized-Voigt materials with multiple retardation times [17]:

@[h(t)]” I F(t)+..

t
ZjF(g)J—"exp(—@jdg,

n 0 T

Equation 10, storage compliance for generalized-Voigt visco-

elastic materials [26]:
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Equation 11, loss compliance for generalized-Voigt visco-
elastic materials [26]:

20 J T,
J!/ ®)= n-n
(@) E 1+rﬁm2

Equation 12, loss angle for generalized-Voigt viscoelastic mate-

rials [26]:
& =tan! [J—j
J!

Results and Discussion

Extracting viscoelastic parameters

The following sections discuss how to leverage AFM-SFS data
for viscoelastic model parameterization, including how to
condition raw datasets for fitting, extract material model param-
eters, and calculate the viscoelastic quantities mentioned above.
While the current approach is primarily geared towards
MATLAB implementation, the original process was outlined by
Lopez et al. [17] in Python, and is available in a public Github

repository.

Conditioning raw static force spectroscopy datasets
Traditionally, AFM-SFS experiments generate a variety of data
streams for post-processing, including Z-Raw (expected Z-posi-

Deflection ¢
VN 2
t—t,
t —
4 t
3
) Z-Sensor
v

(a)
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tion based on the voltage applied to the Z-piezo), Z-Sensor
(measured Z-position), deflection, amplitude, and phase. The
Z-Sensor measurement corresponds to the position of the piezo
that controls the position of the base of the cantilever, and the
time-derivative of the Z-Sensor data should be equal to the ex-
perimental approach velocity. To perform the fit procedure,
only the deflection and Z-Sensor datasets are necessary.
Figure 2a illustrates the shape of a common result as read from

a force—distance curve output file.

Because the Lee and Radok derivation used previously is
restricted to a monotonically increasing surface area, the ap-
proach portion of the dataset must be isolated for analysis. The
maximum Z-Sensor point marks the beginning of retraction, and
therefore all points occurring after the time where that reading
oceurs (fmax(z), marked as 7 in Figure 2a) are removed from the
dataset. The resulting curve is illustrated in Figure 2b.

Due to a number of possible factors, e.g., calibration and noise,
the deflection in the region #( to #; can be non-zero despite the
probe not being in contact with the surface. To correct for this
error, one needs to first locate the minimum deflection point.
From there, the user needs to determine a sufficient step back-
wards in time such that the probe has yet to experience both
long-range attractive forces and “snap-in”. The resulting time is
marked as 71, and the average deflection offset is calculated
using the deflection data from ¢ to ¢ (recall that the deflection
should be set to zero at tg). The offset is then subtracted to
produce the corrected deflection (d.). The dataset should now
show the deflection as roughly zero for the period before snap-
in, as seen in Figure 3a.

Deflection

N

Non-Contact
Approach Region

A

Z-Sensor

(b)

Figure 2: (a) A raw AFM-SFS dataset; (b) approach portion from the raw curve.
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Figure 3: (a) AFM-SFS data corrected for an initial deflection offset; (b) Correction of the Z-Sensor dataset such that the minimum cantilever position

occurs at the origin.

It remains to adjust the dataset such that the point of minimum
deflection during snap-in coincides with the origin of the
deflection-vs-Z-Sensor curve. This step simplifies calculating
the slope of the curve where the force is increasing as a func-
tion of the time. While not explicitly necessary, smoothing the
deflection data with a simple first-order Butterworth filter can
remove some of the measurement noise and make finding the
deflection minimum easier. While searching for the smallest
value without filtering, noise can cause neighboring points to
appear lower than the actual minimum and introduce error. It is
convenient at this stage to store both the Z-Sensor and the
deflection values at the time of minimum deflection as zg and
dp. The corrected Z-Sensor values (z.) are then calculated ac-
cording to:

z. (1) =z, (t)— 2o +dy. (13)

The applied tip force (F(¢)) and indentation depth (h(r)) vectors
can then be calculated using the cantilever stiffness (k.), the
minimum deflection offsets (zg, dp), the deflection (d(#)), and

the following relations:

F(1)=d, (1) xke, (14)

h(t)=[z,(t)=20 |-[d ()~ dy |-

15)

where k. in Equation 14 is the AFM cantilever stiffness. This
data is not used directly in the fit, but can be useful for showing
the indentation and force during the approach of the tip into the
sample. The final conditioning step requires extracting the

repulsive portion from both of the corrected datasets (z.(¢) and

d.(t)). While there are a variety of methods for identifying
where the repulsive data starts, an easily implemented method
involves creating a linear approximation of the repulsive
Z-Sensor data z;ep,. The slope Z is taken from the corrected
Z-Sensor data within the region noted in Figure 3b, which
begins at the time where the deflection minimum occurs
(fmin(g))> and the number of points 7, in that region is counted.
Generating the zyp vector is then performed by creating an
array from O to n, in steps of 1 and multiplying by z.
Subtracting the repulsive potion of the deflection (dyep) from
Zrep Provides the tip position relative to its neutral point:

drep (t)zdc <t>tmin(d))_dc (tmin(d))ﬂ (16)

Ztip (t):Zrep (t)_drep (t) (17

The data utilized for fitting is the region where zy;, is greater
than zero, indicating the tip has begun penetrating the surface
and coinciding with the start of force application on the sample.
Trimming data before this point provides the final form of the
time array ¢, the repulsive deflection dyep, and the repulsive
Z-Sensor values zy¢,, utilized in the following sections. In the
following, the subscript “rep” will refer to these final forms
where the force application has begun. To conclude the data
conditioning, Equation 14 and Equation 15 are used again to
calculate the experimental force F and the indentation depth &
with repulsive data. At this point it is recommended to save
re-sampled, log-scale versions of both F and & for use during
the fit process. Because Equation 9 will be parameterized using
a nonlinear least-squares approach, the number of data points
per decade will drive the fit quality on that timescale. Ensuring

that there are an equal number of data points in each log order
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will lead to consistent weighting across the entire experimental

time scale [17].

The conditioning thus far has focused on preparing a single
AFM-SFES dataset. However, most experiments involve multiple
runs at a single site, which is then repeated at multiple loca-
tions on the sample to acquire a broader description of the sur-
face properties. The mechanical responses can be averaged to
both reduce computational overhead during fitting and give a
prediction that is less sensitive to inhomogeneities. However,
care must be taken to avoid issues that can arise when each
dataset is taken at slightly different times, for varying overall
lengths of time, and especially for different sampling rates. To
create a valid “averaged” estimate from a large number of
datasets, each curve must be used independently to predict the
response for a consistent set of input conditions. Implementing
this approach first requires the user to find the range of
“common” Z-Sensor values that all of the datasets contain, and
generate a list of numbers between those values. This array will
act as the “average Z-Sensor” in the following. Next, the
Z-Sensor and the deflection vectors from each dataset are provi-
ded to a 1D interpolation function (such as “interp1()” in
MATLAB), which accepts a sample set of x-values (the
Z-Sensor dataset), a sample set of y-values (the deflection
dataset), and a set of “query points” to evaluate the interpola-
tion with. The average Z-Sensor array created previously will
act as the “input” (i.e., query points) to interp1(), and the output
will be the interpolated deflection values as predicted by a given
dataset. This process continues for every AFM-SFS file used in
the average, with each supplying a new set of x-values, a new
set of y-values, and each being evaluated with the same input
Z-Sensor array. A time array is then generated for each run by
using the sampling frequency and number of points in that
dataset as an estimate. Then, a spline is performed to re-sample
the estimated time array such that it contains the exact same
number of points as contained in the average Z-Sensor array. At
the end of this step, the user can directly average the predicted
deflection and time arrays from all datasets to obtain the “aver-

age deflection” and “average time”.

Clearly, when creating a list of numbers for the average
Z-Sensor array at the beginning, it is critical to use an appro-
priate number of steps. Depending upon the number of points
used, it is possible to artificially change the sampling rate to
appear faster or slower, thus erroneously changing the temporal
data contained within the averaged result. For example, if all of
the individual experimental datasets contain roughly 1000 data
points in the range of valid Z-Sensor values, and the average
Z-Sensor array is made using an arbitrary 10,000 points, the av-
erage time vector will appear to have a timestep that is ten times

faster than expected. This simple mistake can lead to the aver-
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aged dataset containing information that is not actually present
in the force—distance files being processed. The number of
points used to generate the average Z-Sensor array should be
calibrated to match the number of points expected for a dataset
of that length in the given experiment, such that the effective
sampling frequency does not appear to change drastically. The
most convenient means of verifying that the averaged dataset is
valid involves looking at the average time array generated from
the spline process, and ensuring that its timestep is close to the
timestep of the individual data files. For example, if using a
sampling frequency of 2 kHz for the AFM-SFS experiments,
the average time array should appear to have a timestep of
roughly 5 x 107 s.

Estimating material model parameters using a
nonlinear least-squares approach

Modeling the force—indentation relationship with Equation 9
can be performed using a variety of techniques. In their paper,
Lopez et al. utilize the cost-function minimization approach.
The method involves comparing the left-hand side of
Equation 9 to the predicted right-hand integral, which is calcu-
lated using a specific set of model parameters (Jg, T, J;,). These
parameters are then varied by the built-in algorithm (specifi-
cally Levenberg—Marquardt in the case of Python’s minimize()
function) to solve the nonlinear least-squares minimization
problem. The function searches for the “optimal” parameter set
that minimizes the relative error between the dataset and inte-

gral prediction.

Due to differences in the fit functions available, it is inconve-
nient to implement the Levenberg—Marquardt algorithm in
MATLAB with the necessary upper and lower bounds on the
model parameters. Instead, several nested “anonymous” func-
tions (i.e., functions defined on a single line instead of in a
separate file) are used to simulate a single experimental dataset.
The top-level function is passed to Isqcurvefit(), which will call
all of the sub-functions while fitting the parameters. The
MATLAB function Isqcurvefit() is also capable of taking an
input matrix as opposed to simply an array of data, meaning it
could fit multiple datasets simultaneously if properly imple-
mented. While this capability is not explored here, the ability to
fit multiple averaged data sets from different experiments could
prove useful in the future.

The series of nested anonymous functions are configured ac-

cording to the following workflow:

1. Fcony: Performs the convolution of U(¢) * F'(¢) using the
“full” setting, resulting in an array thatis N + M — 1 in
length, where N is the number of points in U(t), and M is

the number of points in F(z);
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2. subref: Accepts the convolved result of F o,y and trims
all data but a subset equal to the size of fyep;

3. Fecony,wrap: Scales the output of subref by the time step
dt, adds the glassy compliance term, and re-samples the
result to logarithmic scaling. This is the function provi-
ded to Isqcurvefit().

Because Isqcurvefit() calculates the cost internally, it is not
necessary to define a function for this purpose. However, other
approaches may require an additional “comparison” function.
The default algorithm used by Isqcurvefit() is “trust-region-
reflective”, which is a nonlinear least-squares method, similar to
Levenberg—Marquardt. A comparison of each approach and
their efficacy is beyond the scope of this manuscript, but the
reader is directed to the literature for explanations of both algo-
rithms [27,28]. It is important to note that the parameter set ob-
tained from these algorithms is not necessarily unique, and
repeatedly performing the fit for a statistically significant num-
ber of times is recommended before evaluating its performance.
Furthermore, the solutions are sensitive to the initial guess and
parameter bounds. To counteract these effects the starting point
for each parameter can be generated randomly within the upper
and lower bounds for a fitting run, which is in turn performed
many times to develop an understanding of the parameter space.

Beyond the function definitions and solver algorithms, it
remains to appropriately determine and enforce the upper and
lower bounds for each parameter, and also to choose starting
“guesses” for each least-squares run. According to the specifi-
cation of Lopez et al. [17], each successive term in the general-
ized-Voigt compliance function is intended to represent the ma-
terial response during one order of magnitude in time. The time
constants (t,,) are thus limited to a factor of ten lower and
higher, with each additional term accounting for the next largest
scale in the series. For example, a “one-term” series would
contain the glassy compliance term and the compliance of a
single Voigt element with a characteristic time centered of the
order of the data acquisition frequency. Such a series would
allow the characteristic time (1) to vary from 107 to 1073 in
the case of sampling at 10 kHz, and the compliance (/) to be
restricted to all reasonable values in the range (0,1). These
terms should theoretically account for experiments with a
maximum effective time of 0.01 to 1 ms, but for cases where
the contact duration reaches 1 s or more this term alone would
be insufficient to reproduce the material response. To
adequately model these datasets, five or more terms would be
necessary reaching characteristic times centered on 109 or
greater.

As mentioned previously, selecting an appropriate range of

characteristic times is a critical step in extracting the most
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applicable parameter set. Without including a sufficient num-
ber of terms, the material response at large scales would domi-
nate the lower orders, thus forcing each characteristic time pa-
rameter to tend toward their respective upper bounds. If such
action is observed during the fit process, it is recommended to
include an additional term and repeat the process until at most
one order larger than the experiment length has been added, or
the parameters are no longer converging on their upper or lower

bounds.

It is evident from Equations 10—12 that each parameter set will
also generate unique harmonic quantities. By examining the
loss angle (8(w)), parameter groups could be evaluated and
eliminated based upon their feasibility. In the case where a
well-studied material is being investigated, this task can be rela-
tively straightforward. However, for new materials without sig-
nificant background literature it remains difficult to discard pa-
rameter sets based upon their harmonic quantities. The
following section examines the fit procedure applied to nylon,
and the effects of experimental settings on the quality of fit pro-

vided by the presented methodology.

Extracting viscoelastic parameters from

experimental data for nylon

A hollow nylon tube (source: McMaster-Carr, P/N 8628K48,
Grade 6/6) was cut, ground smooth with a hand-held rotary tool,
and cleaned in isopropyl alcohol (IPA) followed by a bath in
deionized (DI) water. The sample was then allowed to dry suffi-
ciently and mounted on an AFM metal specimen disk using
double-sided carbon tape. The force mapping (six scan lines, six
points per scan line) technique was implemented using an
Asylum MFP-3D AFM to accommodate a variety of sample
configurations, which yielded 36 indentation datasets at 36 dif-
ferent locations. Furthermore three approach velocities were
selected in a logarithmic distribution: 10, 100, and 1000 nm/s.
The probe utilized was an OLYMPUS AC 240TS-R3, featuring
a tip radius of roughly 10 nm. Before measurement, the tip was
calibrated using the thermal noise method [29] in which a hard
silicon sample was used after sonicating using Mucasol, fol-
lowed by IPA, and then DI water for a duration of 10 min per
step. The resonant frequency and spring constant were found to
be 68.953 kHz and 1.70 nN/nm, respectively.

The curves are aligned as a result of the previously described
conditioning steps for each velocity, and are visualized in
Figure 4 and Figure 5. For clarity, the repulsive portions of each
curve have also been isolated to show the exact data utilized for
fitting Equation 9.

As expected, the fit qualities vary based upon the approach

speed and number of fit terms used. This is due to varying
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Figure 4: Conditioned AFM-SFS Data for different approach velocities. Corrected nylon data for (a) 10 nm/s, (b) 100 nm/s, and (c) 1000 nm/s.
Colored lines represent the various datasets utilized for averaging, and the solid black lines plotted on top show the averaged result.
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Figure 5: Repulsive (i.e., force application) portion of the curves in Figure 4 extracted for fitting. Corrected nylon data for (a) 10 nm/s, (b) 100 nm/s,
and (c) 1000 nm/s. The colored lines represent various datasets included during the averaging process, and the dashed black lines show the aver-
aged repulsive result. As the approach velocity decreases, the slope of each averaged dataset will also tend to decrease, meaning that less deflec-
tion occurs for a given Z-sensor reading. This is intuitive, as the material is given additional time to yield for slower approach velocities, thus appearing

softer.

amounts of long-timescale characteristics being present. For
shorter experiments, using fewer terms resulted in a closer
approximation while keeping characteristic time parameters
away from their upper and lower bounds. The compliances
generated in those cases are more reasonable, indicated by
viscoelastic moduli of the order of several gigapascals, which
agree with stiffnesses reported in the literature [30]. The param-
eter sets that were rated optimal for each approach velocity are

given in Table 2.

After evaluating the fit quality for each velocity, it was deter-
mined that four terms provided the best data approximation for
the 10 nm/s dataset, while three terms were sufficient for 100
and 1000 nm/s. Figure 6 shows the fitted viscoelastic model

against each corresponding dataset. Note that the parameteriza-
tion was unsuccessful for the 5-Voigt series fit on the
1000 nm/s averaged data because the conditioned repulsive
dataset contained less than eleven data points. This is signifi-
cant because Isqcurvefit() will not operate on models where the
number of parameters within (eleven terms for the 5-Voigt
series) is greater than the number of data points used for com-

parison.

Harmonic quantities have also been calculated using the fit pa-
rameters from Figure 6, providing the predicted relationship be-
tween the elastic and viscous material response. The results are
provided in Figure 7. It is critical to reiterate that each set of op-

timization parameters is not unique. There is a theoretically
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Table 2: Generalized Kelvin-Voigt viscoelastic model parameter sets resulting from nonlinear least-squares fits of AFM-SFS force—indentation data.
Characteristic times are given in units of [s], and compliances are provided in units of [Pa~1]. Note that the parameter sets utilized for generating the
final fit are marked with an asterisk ().

velocity [nm/s] parameter number of elements
1 2 3 4~ 5
Jg 3.76e-11 3.87e-12 3.79e-11 1.51e-11 2.65e-14
J1 3.4e-09 2.22e-14 7.39%e-11 3.5e-12 4.98e-12
T4 9.56e-04 2.22e-05 2.98e-04 5.1e-05 1.1e-04
Jo 3.94e-09 2.75e-10 1.09e-09 4.62e-10
To 9.99e-03 1.01e-03 8.89e-03 4.53e-03
10 J 5.46-09 2.116-09 1.98¢-09
T3 9.94e-02 7.55e-02 3.45e-02
Jy 8.24e-09 7.51e-09
T4 7.52e-01 5.01e-01
Js 2.49e-09
Ts5 8.05
1 2 3 4 5
Jg 4.86e-14 2.88e-13 2.15e-11 6.14e-11 1.87e-10
J1 2.8e-09 2.22e-14 1.06e-10 3.2e-14 3.16e-10
Ty 9.71e-04 2.32e-04 7.58e-04 5.15e-04 9.89e-04
Jo 4.63e-09 3.27e-10 5.1e-10 7.05e-11
To 9.99e-03 6.33e-04 1.06e-03 8.13e-03
100
Js3 4.94e-09 4.61e-09 4.68e-09
T3 1.72e-02 1.7e-02 1.66e-02
Jy 4.66e-09 2.23e-09
T4 7.45e-01 9.02e-01
Js 3.02e-09
T5 3.76
1 2 3* 4
Jg 5.1e-14 3.73e-14 3.65e-11 2.48e-14
J1 3.18e-09 1.24e-09 1.64e-09 6.92e-10
T4 9.96e-04 5.82e-04 7.35e-04 9.7e-04
Jo 7.64e-09 2.22e-14 9.77e-10
1000 To 9.46e-03 6.26e-03 6.11e-04
Js3 3.51e-08 1.71e-08
T3 6.08e-02 3.85e-02
Ja 1.25¢-07
T4 9.3e-01
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Figure 6: AFM-SFS data and parameterized generalized-Voigt mechanical model. Data and nonlinear least-squares fit for (a) 10 nm/s, (b) 100 nm/s,
and (c) 1000 nm/s. The parameters utilized in each case have been marked in Table 2 with an asterisk (*). The results are comparable to those noted
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unlimited number of distinct parameter groupings that could
recreate the material response for a given experiment. With
each parameter set, the calculation of Equations 10-12 will in-
dicate different distributions for the observed harmonic quanti-
ties. To illustrate the possible variations, Figure 8 visualizes the
predictions generated by the top-ten ranked parameter sets and
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their apparent fit to the averaged 10 nm/s approach velocity

dataset.

Clearly, estimating the harmonic properties of a material sam-
ple can be difficult using a single AFM-SES experiment. As the
number of test sites on the sample surface increases, the larger

(b)

1078

107

10710F

10-13

Figure 8: (a) Data fit, (b) storage compliance, (c) loss compliance, and (d) loss angle, calculated for the optimized material models parameter sets
ranked 1-10 based upon normalized residual; 10 nm/s approach velocity. Note that the highest ranked fit is given by a dashed black line and the
colored lines represent the ranks 2—10. Clearly there can be significant differences in the predicted harmonic quantities while providing a close
approximation of the experimental data in panel (a). The loss angle variances shown in panel (d) are driven by significant changes in the storage

compliance, shown in panel (b).
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data population should theoretically limit the number of suit-
able parameter sets that recreate all of the material responses.
Similarly, it could also be worthwhile to attempt to fit an
even larger number of datasets using a variety of approach
velocities simultaneously. Considering multiple approach veloc-
ities would reduce the parameter space, eliminate the need for a
comparison of the results between approach velocities, and
could provide a more generally applicable set of parameters
after one script iteration. The implementation of a multiple-
velocity fit process would be significantly more complex, and
would require dynamically eliminating model terms for differ-
ent velocities, such that each dataset would be compared
to a corresponding model with an appropriate number of char-
acteristic times. To avoid adding this additional degree of free-
dom to the problem, it would be necessary to have a priori
knowledge of the optimal number of terms to use for each
velocity. This would remove the need to vary the number of
terms dynamically and drastically reduce the associated
computational overhead. Regardless of the approach, deter-
mining an effective method for extracting the most broadly
applicable parameters, and by extension their corresponding
harmonic quantities, remains an attractive subject for further

research.

Conclusion

A methodology for extracting viscoelastic parameters from a
sample material response in AFM-SFS experiments has been
discussed and applied to the specific case of nylon 6,6 using
multiple approach velocities. Beginning with the correspon-
dence principle for the spherical indentation of a viscoelastic
half-space, the presented inversion approach has been shown to
provide mechanical and temporal insight into the viscoelastic
response of nanoscale surfaces. As stated previously, the
assumptions utilized during the objective function derivation
places inherent limits on the appropriate experimental settings.
Most critically, the indentation strain measures must remain
small to prevent violation of the underlying theory. Common
pitfalls and limitations have been discussed, with particular
emphasis on both data conditioning and mechanical-equivalent
model design. One important issue discussed was that the num-
ber of characteristic terms included in compliance series models
must be intentionally prescribed based upon the length and data
acquisition rate of a given experiment. If the effects of experi-
ment length and the desired application time range are not
considered, an otherwise appropriate model could be incor-
rectly parameterized and perform poorly, or be applied outside
its valid temporal range. There remain many attractive ques-
tions worthy of investigation, including further restriction of the
best-fit parameters using their implied harmonic quantities,
extending the theoretical implementation to include multi-axial

datasets, and the application of this inversion approach to non-

Beilstein J. Nanotechnol. 2020, 11, 922-937.

linear compliance models — the last of which is the subject of a
future paper by the authors.

Supporting Information

The Supporting Information includes a directory containing
all necessary MATLAB scripts used for AFM-SFS file
inversion, and an instructional document to explain the
operation and settings available in the script. Additionally,
the full derivations mentioned in section “Theoretical
Background” are included in Supporting Information

File 3.

Supporting Information File 1

Readme file for MATLAB script operation.
[https://www.beilstein-journals.org/bjnano/content/
supplementary/2190-4286-11-77-S1.pdf]

Supporting Information File 2

Compressed directory containing the MATLAB script and
supporting functions.

[https://www .beilstein-journals.org/bjnano/content/
supplementary/2190-4286-11-77-S2.zip]

Supporting Information File 3

More detailed derivations of the relationships presented in
section ‘‘Theoretical Background’’.

[https://www .beilstein-journals.org/bjnano/content/
supplementary/2190-4286-11-77-S3.pdf]
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