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Abstract
Atomic force microscopy (AFM) is highly regarded as a lens peering into the next discoveries of nanotechnology. Fundamental
research in atomic interactions, molecular reactions, and biological cell behaviour are key focal points, demanding a continuous
increase in resolution and sensitivity. While renowned fields such as optomechanics have marched towards outstanding signal-to-
noise ratios, these improvements have yet to find a practical way to AFM. As a solution, we investigate here a mechanism in which
individual mechanical eigenmodes of a microcantilever couple to one another, mimicking optomechanical techniques to reduce
thermal noise. We have a look at the most commonly used modes in AFM, starting with the first two flexural modes of cantilevers
and asses the impact of an amplified coupling between them. In the following, we expand our investigation to the sea of eigen-
modes available in the same structure and find a maximum coupling of 9.38 × 103 Hz/nm between two torsional modes. Through
such findings we aim to expand the field of multifrequency AFM with innumerable possibilities leading to improved signal-to-noise
ratios, all accessible with no additional hardware.
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Introduction
Atomic force microscopy has established itself as one of the
most powerful tools in nanotechnology. With meticulous setups
amassing techniques such as ultra high vacuum, cryogenic tem-
peratures, and CO-terminated tips, it is able to create a
wonderful vista of surfaces, not missing the atoms for the
topographical features [1-6]. There is, however, room for
improvement in cutting-edge AFM experiments, as the
standard quantum limit in sensitivity, represented by a

minimum between detection noise and backaction noise,
has not been reached [7,8]. Beyond this limit, techniques
exist that can even break this quantum barrier by redirecting
noise from one quadrature to another [9-11]. Yet, there is
even opportunity in revitalising the accessibility of stan-
dard AFM, as performing experiments at cryogenic tempera-
tures and under ultra-high vacuum [12,13] requires years of
expertise.
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For inspiration, we turn to quantum optomechanics and its sister
field of quantum electromechanics, as they both report out-
standing signal-to-noise ratios [14]. In the former, a reflective
mechanical resonator constitutes half of a Fabry–Pérot cavity,
converting photons to phonons and vice versa. Thus, the me-
chanical position can be read through the optical cavity. Upon
this basic interaction, many emerging kinds of behaviour were
found: sideband cooling down to quantum levels [15,16], para-
metric amplification [17] before signal detection, state
squeezing [18-20], and Bogoliubov modes [21,22] for drastical-
ly reducing noise and directional amplifiers [23,24]. The group
of proposed applications is even larger and hosts ideas such as
quantum circulators [23,24], Ising model simulators [25], and
improved gravity wave detection experiments [8]. All these
techniques can be migrated to AFM, with the main hurdle being
the integration of an optical Fabry–Pérot cavity with an elastic
microcantilever. We chose to use purely mechanical coupling,
an alternative mirroring our source of inspiration. It relies on
non-linear elastic coupling between different vibrational eigen-
modes of a mechanical resonator. As the stress field of one
mode stiffens the vibrational motion of another, an energy
exchange is established between them. This phenomenon is re-
ferred to as intermodal coupling [26]. It allows to replace the
optical cavity from optomechanics with a mechanical eigen-
mode.

So far, intermodal coupling was proven in doubly clamped
beams, square membranes and circular membranes [18,26-31].
For atomic force microscopy imaging, a slight angle between
the sensing mechanical resonator and the sample of interest is
required, ensuring that the only contact occurs between the sam-
ple surface and the tip of the mechanical resonator. This
promotes cantilevers as the chosen geometry for this task, as
building a clamped beam or a square membrane at the edge of a
chip is considerably more challenging. In the following, we will
explore intermodal coupling in a microcantilever as an opportu-
nity to bring intermodal coupling techniques, derived from
optomechanics, to AFM. It is easily accessible, with no hard-
ware modifications and only requiring multifrequency excita-
tion applied to the cantilever by either a piezoshaker or a modu-
lated laser, found in many AFM setups.

The field of multifrequency AFM has improved both imaging
contrast and the amount of extracted information from AFM ex-
periments by exploiting the nonlinearity of the tip–surface inter-
action [32-36]. The methods applied excel in both their
creativity and engineering prowess. A first example is on-reso-
nance excitation of the first mode of a cantilever with measure-
ments being performed at its harmonics [37]. Another method
involved clever designs such as T-shaped cantilevers [38] and
inner-paddled cantilevers [39] aiming at reducing the noise

impact on force reconstruction. Bimodal AFM is another
addition to the field, where two eigenmodes are excited and
read simultaneously [40]. Last, intermodulation products,
created by two signals close to the fundamental cantilever
mode, form a sea of evenly spaced tones to be measured
[35,41,42]. All of these rely on the nonlinear tip–surface force
to create these multitonal responses, from which the force is
reconstructed.

In this paper, we are building towards a hybrid multifrequency
approach different from the ones described above. The on-reso-
nance measurement would follow frequency-modulated AFM
or bimodal AFM while being assisted by a new off-resonance
excitation, which would activate intermodal coupling between
two or more eigenmodes. With this geometric nonlinearity, we
can circumvent the use of tip–sample forces and apply tech-
niques from optomechanics. Sideband cooling will reduce ther-
mal noise of the fundamental mode. Parametric amplification
relies on coherent bimodal drive to amplify the signal of the
fundamental mode. Both increase the signal-to-noise ratio of the
measurement, creating opportunity for either improved sensi-
tivity or increased speed. Furthermore, sideband cooling has a
secondary use in ultrahigh-vacuum AFM as a tool for control-
ling the Q-factor of the fundamental mode.

Intermodal coupling requires a strong drive tone, referred to as
a pump, at either the frequency difference between or the sum
of two cantilever eigenmodes of interest. Using the difference,
also known as a red sideband or anti-Stokes pump, leads to
sideband cooling and mode splitting. Applying the sum, re-
ferred to as blue sideband pump, will cause either mode
squeezing or parametric amplification [22], provided that the
amplitude is optimally chosen. We will focus on the red side-
band, as sideband cooling is useful for reducing thermal noise
in standard AFM and mode splitting is a good way to measure
the coupling rates. Here, the phonons from the first mode will
have their frequency upconverted to the same as the second
mode’s phonons, thus allowing them to interact. This pump
effectively amplifies the single phonon–phonon coupling rate of
the mode combination and linearly increases the overall cou-
pling strength , where Xpump is the pump ampli-
tude, thus giving us the following Hamiltonian for one eigen-
mode i coupled to another eigenmode j

(1)
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where ωi and ωj are the frequencies of the i-th mode, hence-
forth known as the sense mode, and j-th mode, taking the role
of the cavity mode in cavity optomechanics, respectively.
Xi and Xj are their respective amplitudes,  is the ampli-
tude of the pump in meters,  is the directional single
phonon–phonon parametric coupling rate in Hz/meters. The last
term describes a small signal Vsense, proportional to the voltage
applied to the piezoshaker, with the frequency swept close to ωi,
used to amplify the spectral response of the sense mode above
the thermal excitation level.

The above Hamiltonian is a modified version of the one used in
[27]. In contrast to this previous work, we do not exclude the
possibility of asymmetrical coupling. This refers to an energy
transfer either easier or harder from the first mode to the second
compared to a transfer from second to first. Two directional
coupling terms were introduced to account for this possibility,
later to be investigated in detail. Equation 1 only shows the
energy of two modes and their interaction, amplified by the red
sideband pump, which is set at the frequency difference of the
two modes in question. A main advantage of working with con-
tinuous mechanical systems, such as microcantilevers, is the
plethora of eigenmodes available [43]. For every combination
of two eigenmodes, a pump frequency can be applied to acti-
vate that intermodal coupling. Thus, the Hamiltonian can be
expanded to include more eigenmode combinations including
their individual energies as well as the interaction terms (the
latter is only relevant if a pump is applied). We will focus only
on a finite number of eigenmodes due to our equipment limita-
tions. The full Hamiltonian is given by

(2)

If this coupling is a direct analogue to optomechanics, the cou-
pling matrix should be symmetric, that is, . Expanding
the experiment to multiple eigenmodes will elucidate if this
symmetry is respected or not in these purely mechanical inter-
actions and provide a spectroscopy map of intermodal coupling.

The coupling presented so far, using a red sideband signal, has
two ways for manifesting itself, namely sideband cooling,
where the mode of interest has its quality factor reduced along-
side its effective temperature, and mode splitting, where two
hybridized eigenmodes replace the original. The latter is useful
in estimating the coupling strength, but the former is more
applicable to AFM. It can not only control the quality factor of
cantilevers, but it can also reduce the thermal noise of the mea-

surement. These two kinds of behaviour have a regime associat-
ed to each, both directly related to the overall coupling strength

. The i-th mode, as the sense mode, is in the
weak regime if  is smaller than Γj/2, the linewidth of the
cavity mode. In this case its susceptibility (spectral response)
can be written as

(3)

where δ is the frequency offset from the eigenfrequency ω1, and
Γ1 and Γ2 are the linewidths of the modes. The equation can be
further simplified to a Lorentzian with an increasing effective
linewidth as per equation , enabling
us to extract the coupling strength. If Gij > Γj/2, the sense mode
is in the strong regime. Here the susceptibility equation is

(4)

In this case, the distance between peaks can be approximated as
.

The effective temperature of the mode is calculated by normal-
izing the integral of the measured amplitude squared to the case
when the pump is off when the system is at room temperature as
follows:

(5)

where X is the spectral response amplitude with respect to the
frequency offset from eigenfrequency δ and pump amplitude
Vpump, Tambient is the temperature of the room where the experi-
ment was performed, and δstart and δend are the start and end
frequencies, respectively, of the lock-in measurement.

An AFM microcantilever (Bruker RFESP-75) is glued to a
piezoshaker and placed in a vacuum chamber (between
1.2 × 10−6 and 5 × 10−7 mbar) under a laser Doppler vibrom-
eter (LDV) (Polytech MSA 500) to measure the cantilever’s
resonance frequencies and mode shapes (Figure 1). A lock-in
amplifier (Intermodulation Products MLA-3 [36]) is used to
control the piezoshaker and measure multiple frequencies from
the vibrometer. For each possible mode combination, we acti-
vated the anti-Stokes pump and used a smaller sweeping signal
to amplify the sense mode.
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Table 1: Table showing the eigenmodes and their frequencies accompanied by the Q factors of the modes used in the study. The cantilever investi-
gated is a Bruker AFM RFESP-75. Measurements were performed at pressures between 1.2 × 10−6 and 5 × 10−7 mbar, a range where both frequen-
cies and quality factors were stable.

Eigenmode Frequency (kHz) Q factor FEM frequency estimation (kHz)

first flexural (F1) 62.026 106149 62.176
second flexural (F2) 390.320 57227 388.35
first torsional (T1) 701.158 113437 704.17
anomalous third torsional (T3’) 905.237 3324 –
third flexural (F3) 1096.585 3974 1085.5
second torsional (T2) 2146.963 32469 2150.2
fourth flexural (F4) 2154.353 6259 2122.9
fifth flexural (F5) 3567.223 3842 3497.8
third torsional (T3) 3710.387 46290 3703.6

Figure 1: (a) Schematic drawing of the experimental setup. The canti-
lever is glued to the macrosized piezo driver. The LDV can either send
data to the MSA to determine the eigenmode shapes or to the lock-in
amplifier for higher bandwidth measurements. The latter also synthe-
sizes the signal applied to the piezo driver. (b) Schematic of the signals
used. Three signals are in effect at all times: the red sideband pump
ωp, an off-set red sideband pump ωh ensuring even heating across the
sample and a small one, compared to the previous, sweeping over the
sense mode. (c) Comparison between a two-signal measurement (left)
and a three-signal measurement (right) ensuring thermal stabilisation.
The second flexural mode is coupled with the fifth flexural mode. The
sum of heating signal and pump is constant. The stabilisation signal
was 3 kHz higher than the red sideband pump, which was set at
3176.9 kHz. Due to their large frequency distance from the observed
mode compared to its linewidth, ωp and ωh were not included in the
graph.

Results and Discussion
Compared to a plain microcantilever, one with an AFM tip has
certain peculiarities to it. Table 1 shows the eigenmodes and
their frequencies of the modes of interest in the cantilever used,
measured using a LDV. Alongside it, in the last column, we
provide FEM simulation estimations for the frequencies. The
appearance of multiple torsional modes of the same order was
observed experimentally on multiple cantilevers, but could not
be replicated with a simple FEM model. Figure 2 shows a com-
parison between the two third-order torsional modes present in
the cantilever (T3 and T3’). The anomalous one, T3’, unseen in
the FEM simulations, has the nodal lines much closer to the
added mass. The other orders were observed below the frequen-
cy of T3’, but they were much harder to excite with the
piezoshaker used for the experiment and, therefore, excluded
from the analysis. The existence of these modes can be ex-
plained through a combination of the extra mass of the AFM tip
on the cantilever and material differences in the silicon caused
by fabrication processes.

After determining the modes available for measurement in the
cantilever, we can focus on interaction between any two modes.
Once a combination of modes is chosen, we focus on each
mode separately as the sense mode. We measure the resonance
frequencies just before performing the experiment, thus
excluding shifts caused by vacuum changes or temperatures
fluctuations. Such a technique can be performed using a phase-
lock loop when employed in AFM sensing, where tip–surface
forces would cause frequency shifts. We stabilise for any
heating effect caused by the high-voltage pump applied to the
piezoshaker by adding a temperature stabilisation tone with an
offset of around 3 kHz, or more if the linewidth of the sense
mode becomes comparable. This second pump is set up such
that it does not amplify the intermodal coupling, as the chosen
offset is larger than all linewidths observed during the investi-
gation. Thus, any products of the pump and another eigenfre-
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Figure 2: MSA measurements showing the difference in modeshapes between the third order torsional modes investigated in the main text. (a) is T3’
with a node much closer to the added mass of the tip. (b) is T3, with nodes closer to their expected positions. Inset: FEM simulation of T3 eigenmode.

quency would not coincide with another eigenmode. This tem-
perature stabilisation tone does have a very similar heating
effect as the red sideband pump. Keeping the sum of the volt-
ages applied to the piezoshaker constant, will ensure that the
heating power introduced in the system does not change when
increasing the pump amplitude. Note that the amount of heating
depends on both the piezoshaker used and the frequency of the
signal applied. Figure 1c shows an example on the effects of
such a stabilisation approach, where the eigenfrequency does
not shift to lower values due to thermal length extension of the
cantilever. Next, we send a small frequency sweeping signal to
measure the susceptibility of the sense mode.

First, we investigate the first possible mode combination on our
cantilever, that is, the first and second flexural modes. In
Figure 3a, we sweep a small signal across the first mode. Each
line was measured for a single value of the pump amplitude. As
the amplitude of the pump increases, the linewidth does as well
while the amplitude decreases as per Equation 3. We calculate
the effective temperature using Equation 5 and we achieve a
reduction down to just below 100 K. The results of this evalua-
tion are seen in the inset of Figure 3a. This data set also exhib-
its a significant frequency shift, as it was measured without the
thermal stabilisation technique described above.

Keeping the pump constant while sweeping the signal tone over
the second mode, we have an example of the strong coupling

regime, seen in Figure 3b. As soon as the pump is turned on,
there are two distinguishable hybridized eigenmodes in lieu of
the original. Increasing it further ensures that the two peaks are
resolved, as the local minimum in the middle decreases and the
two maxima drift further apart. The coupling strength is esti-
mated using the frequency difference between the two peaks, as
in the approximation in Equation 4, and presented in Figure 3c.
With the current setup we achieved a coupling rate of 37.1 Hz.
Deviations from the linear fit line starting from the origin are a
direct consequence of the approximation. It forgoes the interfer-
ence between the hybridized modes around the original eigen-
frequency, which pushes their peaks further apart the closer
they are. Therefore, coupling values at lower pump amplitudes
are overestimated. Figure 3d shows an amplitude colormap of
the same mode for different frequency detunings of the anti-
Stokes pump. The higher the detuning, the greater the differ-
ence in amplitude between the two peaks. As expected from an
avoided mode crossing, the distance between the two
hybridized eigenmodes is minimal when the pump frequency
equals the frequency difference between the resonance frequen-
cies of the modes. For the rest of the data we readjusted this fre-
quency by repeating lock-in measurements of the eigenmodes
whenever necessary to avoid any issues caused by daily ther-
mal drift.

The applications we envision for AFM benefit from stronger
coupling rates. Therefore, we extend these measurements to the
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Figure 3: (a) Measurements of the first mode coupled with the second. Increasing the pump amplitude presents both a shift in the frequency and a
reduction in effective temperature. Inset: Effective temperature and Q factor as functions of the pump amplitude. (b) Data of the second mode under
different pump settings. Mode shapes under increasing amplitude of the pump. (c) Estimation of the coupling strength from data in (b). Slight devia-
tions from the linear fit are caused by the approximation used. (d) Colormap of second mode for different frequency offsets of the pump at fixed ampli-
tude. fAS refers to the anti-Stokes pump frequency.

first nine modes of the cantilever under test. Figure 4 shows
both the lower and the higher frequency mode response of each
possible combination. Coupling rates are calculated from the
distance between the two hybridized modes, the increasing
linewidth, or both if a regime change from weak to strong can
be seen, which is the case for F2–T3 (i.e., sense mode F2 with
cavity mode T3). This specific case is explored further in
Figure 5a with an inset detailing the coupling rate values taken
from the two regimes. The split measurements are overvalued
due to the approximation as described previously. The inset has
a horizontal line at half the linewidth of the cavity mode. The
regime changes at this point as detailed before. Figure 5b
presents the coupling matrix and a colormap containing the
directional coupling strength between two modes normalised to
pump amplitude in nanometers. The highest measured coupling
rate between flexural modes is 5.15 × 102 Hz/nm. Overall, T3
and T3’ showed an even higher G0 at 9.38 × 103 Hz/nm. For
comparison with literature values, we need to see the depen-
dence of the coupling strength on the pump voltage used. For
the same mode combination presented above, the coupling
strength achieved is 5.49 × 102 Hz/V, greater by a factor of 3.4
compared to other findings [28]. Exploring the coupling map

further, one can observe that, for flexural modes, the higher the
order, the higher the coupling strength per nanometer of pump
amplitude. Mode combinations that include torsional modes
also exhibit the same effect.

The map is mostly filled, although there are several exceptions
with no indication of coupling. There are multiple explanations
for the empty spaces, and all can have an impact on the lack of
coupling. First, a piezoelectric actuator can have a minimum in
its response function at the pump frequency. Second, the inter-
modal coupling effect can be at a minimum in these combina-
tions. Last, any visible effect might be obscured by daily ther-
mal fluctuations and the finite time for measurements that they
impose.

Coming back to the question of coupling symmetry between
two modes, Figure 5c shows the same data as Figure 5b but in a
folded perspective. Blue points represent data from lower-fre-
quency sense modes in the combination, while red points show
the opposite. Out of 30 combinations exhibiting intermodal cou-
pling, 19 show symmetry. Furthermore, amongst the eleven that
do not present symmetric results, nine have a higher value for
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Figure 4: Map of the observed modes under anti-Stokes pumps. On the columns we have the sense mode, while the rows designate the mode it is
coupled to, from bottom left. The greyed out graphs are setups where no discernible coupling is present. The red ones follow the expectation of the
optomechanical Hamiltonian. The yellow ones exhibit nonlinear behaviour not described by the aforementioned Hamiltonian. Blue have a significant
frequency shift, on the same order of magnitude as the linewidth of the sense mode, unexplained by cantilever expanding under heating.

the coupling rate extracted from splitting data. Eight of them are
far away from the approximation of two separated Lorentzians
for the peaks. Improvements can be made by fitting Equation 4,
which lowers the estimated values for Gij. This requires better
temperature control to ensure that no shifts occur during the
pump application and the aforementioned equation applies.
The piezoshaker has a different heating response with respect to
the signal frequency. Equation 4 requires an anti-Stokes
pump with a perfectly tuned frequency. Bringing everything
in frame, there are more points that have symmetry than not.

This does not exclude the possibility that some mode combina-
tions do exhibit asymmetric coupling mechanisms. Beyond the
assumed interaction Hamiltonian, terms of different orders
might apply.

During our investigation, nonlinear interactions were observed
and presented in Figure 5 as the yellow or and blue graphs.
Peculiar deviations from the strong regime theory can be seen in
the combinations T3’–F1, T3’–T1, F3–F1, F5–F1, and, to a
lesser extend, in F4–F1. The effect becomes more pronounced
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Figure 5: (a) Graph for mode combination F2–T3, which has a regime transition. Inset: Coupling rates determined from linewidth changes or eigen-
mode separation against half the linewidth of cavity mode T3. (b) Matrix showing the coupling rates of all mode combinations. Contoured squares
represent combinations between flexural modes only. (c) Same data as in (b) presented in a one-dimensional perspective. Blue points are calculated
from data sets with the sense mode lower in frequency than the cavity mode, while red are the opposite. Greyed out points have no discernible cou-
pling.

at higher pump amplitudes, where new peaks begin to appear in
the vicinity of the local minimum. This might be caused by an
excitation of the cavity mode either due to proximity to the
pump signal or electrical sideband of the sense and the pump
signals. Another possibility is an eigenmode not within the
combination being excited by the red sideband pump, leading to
a pump amplitude comparable to the sensing amplitude, or to
one harmonic of a different eigenmode being excited. This
might be the case for F3–T1 with the pump close to F2 (1.013)
or for F5–F1, where the pump is close to the fifth harmonic
(4.9992) of T3’. The other combinations exhibiting this behav-
iour did not have the pump aligned with any known mode or
harmonic. Both lead to an unstable regime for the amplitude of
the cavity mode. Having another eigenmode as the pump was
slightly explored before [18], yet its linewidth was not taken
into consideration.

Another nonlinear effect can be observed in T3–F1. Here, the
local minimum decreases with the pump as expected, yet the
two hybridized peaks are asymmetric in their lineshape. The
one on the left exhibits a shear drop in amplitude towards the
dip, while the right one misses such feature.

Last, T1–F4 has a frequency shift. This is not uncommon in the
measured data as F1–T3, F1–F3, and F3–F4 show it as well.
Heating effects would cause a quadratic shift with respect to the
pump voltage, dominated by the thermal length extension of the
cantilever, either up or down due to the extra signal used for
compensation. In contrast, the frequency shift of T1–F4 is
linear. A cause of this can be a different coupling term of higher
order involving the mode energies directly. The same effect
might be found in F2–F3 alongside a significant quadratic
heating effect, causing a maximum in the frequency shift.
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Throughout these measurements, the sensing voltage was care-
fully tuned as to not bring any of the modes in the Duffing
regime. As the amplitude of the mode is increased, Duffing
nonlinearity is recognized by an asymmetric modeshape and a
frequency shift, followed by an eventual bistable oscillation.
This is characterized by a nonlinear term in the oscillator equa-
tion proportional to the cube amplitude.

Conclusion
We investigated the purely mechanical coupling capabilities of
a typical AFM cantilever. For this purpose, we used a pump set
at the frequency difference between two mechanical modes of
interest. Repeating the procedure for all possible combinations
of the observable eigenmodes creates a modal coupling map of
the microresonator. Each combination is calibrated to its ampli-
tudes in nanometers to reveal preferable combinations as well
as incompatible ones. Such a data set alongside knowledge of
the eigenmodes themselves can help us reveal the nature of
intermodal coupling. Most of the intermodal coupling data
points support a symmetric coupling Hamiltonian similar to the
one used in optomechanical systems. This will inevitable lead to
engineered microresonators taking full advantage of this phe-
nomenon.

Mapping these couplings allows one to activate multiple
couplings at the same time. Innumerable applications include
those studied in optomechanics and electromechanics, as well
as theoretical implementations yet to be seen in practice,
all powered by phonon–phonon interactions. Not only
bringing improvements to common AFM tools, but providing
opportunities for higher sensitivities in cutting-edge AFM as
well.

One important aspect of the presented work is the quantitative
coupling spectroscopy and the amount of strong evidence
towards symmetry in coupling between cantilever modes,
further enforcing the link between this intermodal coupling and
its inspiration, optomechanical coupling. Such insight contours
a vital step for the development of novel multifrequency
methods by allowing one to distinguish coupling effects that are
mediated by nonlinear elasticity or tip–surface interactions.
Inclusion of intermodal coupling would pave the way for a new
era of multifrequency AFM methods designed for controlling
the sense mode to reach their ultimate goal of greater signal-to-
noise ratios.

These possibilities only multiply if the mechanical–mechanical
interactions were only one aspect of a device. In a MEMS or
NEMS device, such interactions would be useful to bridge elec-
trical modes together, opening up the possibility of creating
transducers mediated by a moving capacitor. Such thoughts

open the doors to sensors with qualities overshadowing their
predecessors.
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