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Abstract
Background: The effect of electric current on the motion of atoms still poses many questions, and several mechanisms are at play.

Recently there has been focus on the importance of the current-induced nonconservative forces (NC) and Berry-phase derived

forces (BP) with respect to the stability of molecular-scale contacts. Systems based on molecules bridging electrically gated

graphene electrodes may offer an interesting test-bed for these effects.

Results: We employ a semi-classical Langevin approach in combination with DFT calculations to study the current-induced

vibrational dynamics of an atomic carbon chain connecting electrically gated graphene electrodes. This illustrates how the device

stability can be predicted solely from the modes obtained from the Langevin equation, including the current-induced forces. We

point out that the gate offers control of the current, independent of the bias voltage, which can be used to explore current-induced

vibrational instabilities due the NC/BP forces. Furthermore, using tight-binding and the Brenner potential we illustrate how

Langevin-type molecular-dynamics calculations including the Joule heating effect for the carbon-chain systems can be performed.

Molecular dynamics including current-induced forces enables an energy redistribution mechanism among the modes, mediated by

anharmonic interactions, which is found to be vital in the description of the electrical heating.

Conclusion: We have developed a semiclassical Langevin equation approach that can be used to explore current-induced dynamics

and instabilities. We find instabilities at experimentally relevant bias and gate voltages for the carbon-chain system.
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Introduction
The effects of electric current on the motion of atoms have

become particular important in the on-going quest for molecu-

lar-scale electronics [1-4]. Atomic motion due to electric current

is behind the long-term breakdown of interconnects leading to

failure in integrated circuits. This effect is of even greater

importance for systems where the bottle-neck for the current
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flow is a few chemical bonds. The inelastic scattering of elec-

trons by atomic vibrations leads to the well-known effect of

Joule heating, which can have an impact on the electrical

behavior and stability. However, recently it was pointed out

[5-8] that other current-induced forces can play a role. For

instance, in the case of molecular contacts with conductance on

the order of G0 = 2e2/h = 1/12.9 kΩ (e being the electron charge

and h Planck’s constant), and under “high” bias voltage (~1 V),

the current-induced forces that do not conserve the energy of

the atomic motion may lead to run-away behavior. However,

experiments in this regime are very challenging. For example,

for the typical experiments involving molecular-scale contacts

between bulk electrodes it is not possible to image the atomic

structure while the contacts are in place and current is flowing.

Furthermore, it is far from being trivial to add additional gate

potentials in order to modify the electronic structure and gain

independent control of the bias voltage and current [3,9].

On the theoretical side, it is desirable to develop computer

simulation techniques, such as molecular dynamics (MD),

preferably without adjustable parameters, to study in detail the

complex current-driven atomic processes. To this end, we

recently developed an approach based on the semiclassical

Langevin equation, which may form the basis of MD. In this

description the nonequilibrium electronic environment is

described as an effective “bath” influencing the atomic

dynamics. In particular, we identified the forces acting on the

atoms due to the electric current. These include “extra” fluctu-

ating forces yielding the Joule heating, a nonconservative “elec-

tron-wind” force (denoted NC), recently discussed by Todorov

and co-workers [5], and a Lorentz-like force originating from

the quantum-mechanical “Berry phase” of the electronic

subsystem [6] (denoted BP). The purpose of this article is two-

fold. We will illustrate this semiclassical Langevin approach

and show how the current-induced effects could be investigated

in molecular contacts connecting gated graphene or nanotube

electrodes.

Graphene is now being explored very extensively due to its

outstanding electrical and thermal transport properties [10-12].

Besides being highly important in their own right, carbon

nanotube- or graphene-based nanostructures may offer an

interesting test bed for studies of current-induced effects at the

atomic scale. For such systems, experiments with atomic

resolution, employing for instance state-of-the-art electron

microscopes, can be performed in the presence of current,

allowing the dynamics to be followed down to single adatoms

[13]. Electric current has been used to induce changes in

graphene-edges, which were monitored while a current was

simultaneously passed through the structure [14]. This was

explained as carbon edge-dimers desorbing due to Joule-heating

[15]. Taking this a step further, one can imagine that nanostruc-

tured nanotubes or graphene can be used as an electrode

interface to molecular devices based on organic chemistry [16].

Especially promising aspects include the inherent 2-D geo-

metry of graphene, which enables both straightforward elec-

trical gating, and atomic-scale imaging in the presence of

current. There have been a number of microscopy studies of

single-atom carbon chains bridging graphene [13,17] or

nanotubes [18]. On the theoretical side, various aspects of these

systems have been studied, such as the formation of chains

[19,20], their stability [21], and electron-transport properties

[22-24]. Here we explore the current-induced forces and

nanoscale Joule heating of the carbon chain system between

electrically gated graphene electrodes.

The paper is organized as follows. After a brief outline of the

semiclassical Langevin method, we will use it to study the

dynamics of the carbon chain as a function of bias and gate

voltages. We point out that the gate, which offers independent

control of bias voltage and current in the system, can be used to

explore current-induced vibrational instabilities in the current-

carrying chain. Finally, we illustrate how the Langevin molecu-

lar dynamics can be performed for a carbon-chain system with

the Joule heating effect included, by using tight-binding and the

Brenner potential.

Results and Discussion
Semiclassical Langevin dynamics
We outline the Langevin approach here. For a classical oscil-

lator system (mass-scaled coordinate x) in a general nonlinear

force-field, F, coupled linearly to a bath of harmonic oscillators,

it is possible to eliminate the bath variables and describe the

system using the generalized Langevin equation, [25-27],

(1)

Here the bath influences the motion through two distinct force

contributions, (i) a retarded time-kernel, Πr, describing the

back-action at time t after propagation in the bath due to the

motion of x at an earlier time, and (ii) a force ξ of statistical

nature originating from the thermal fluctuations of the bath. In

the case of thermodynamic equilibrium, ξ is characterized by a

temperature and is related to Πr by the fluctuation-dissipation

theorem. Note that in general x, F, and ξ are vectors and Πr is a

matrix. This method was used by Wang and co-workers [28,29]

to describe thermal transport in the quantum limit, with phonons

in the two connecting reservoirs with different temperature

acting as baths and with their quantum fluctuations included in

ξ. This reproduced the Landauer result of thermal transport in

the harmonic case [28].
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It is possible to reach a semiclassical Langevin equation

description of the motion of the ions coupled to the electron gas

if we assume a linear coupling to the electronic environment:

Either in the displacement from an equilibrium or in the

velocity (adiabatic expansion) of the ions. This Langevin/

Brownian motion approach to atomic scattering at metal

surfaces has a rather long history in the case of metal electrons

in thermal equilibrium [30,31].

We have extended this to describe the dynamics of the ions in a

nanoconductor between metal electrodes in the nonequilibrium

case, where an electric current is present [6,32]. In order to

sketch the derivation, we consider a displacement-dependent

tight-binding model with electron states in the scattering region

of interest k,l, and with Hel being the static electronic Hamil-

tonian (scattering region and its coupling to the left and right

electrodes [33]),

(2)

Here x is a column vector comprising the mass-normalized

displacement operators for each degree of freedom, e.g.,

, un and mn being the displacement operator and

mass, and Hph = 1/2 T  + 1/2xTKx corresponds to a set of

harmonic oscillators that couple with the electrons, K being the

dynamical matrix. We construct a localized basis-set describing

the electrons in the scattering region, where  is the

electron creation (annihilation) operator at site k in this region

[34]. Here we only consider the coupling to the electron bath,

but the linear coupling to an external phonon bath can be taken

into account along the same lines and adds a contribution to Πr.

The derivation and result for a linearly coupled harmonic

phonon bath is similar, and was given in [28]. Alternatively, the

dynamics of some external phonons, not coupling to the

electrons directly, may be treated explicitly in actual MD calcu-

lations, as we illustrate below (regions DL, DR in Figure 6a).

The electron–phonon coupling corresponds to matrix elements

of the force operator Mn,kl = . We assumed that

M is small by keeping only the term that is linear in x.

We may obtain an equation of motion for x using Heisenberg’s

equation of motion, , based on atomic units (  = 1)

and implicit mode index (n),

(3)

The term  describes the “forces” due to the interaction with

the electron gas. Importantly, these forces are random in nature

[35]. We can calculate the mean value of  by averaging it

over the nonequilibrium electronic state,

(4)

Here we introduce the electrical lesser-Green’s function,

, which is equivalent to the density

matrix, ρ (multiplied by −i), and depends on x(t), since the elec-

trons are coupled to x in the Hamiltonian. This is similar to the

expression for the average force in Ehrenfest dynamics [5].

We can evaluate this perturbatively by using the unperturbed-

electron lesser Green’s function, , corresponding to the case

of steady-state electron transport without electron–phonon inter-

action [33],

(5)

where AL/R are the density of state matrices for electronic states

originating in the left/right electrodes, each with chemical

potential μL/R [33], which differ for finite bias voltage, V,

as μL − μR = eV, and nF(ω) = 1/(eω/k
B

T + 1) is the Fermi-Dirac

distribution function. We thus treat the nonequilibrium electron

system as a reservoir unperturbed by the phonons. Using the

nonequilibrium Greens function (NEGF) technique [36], we

may write the 2nd lowest orders in M of  as,

(6)

The first term yields a constant force due to the change in elec-

tron bonding with bias and a “direct force” due to interaction of

charges with the field [37]. Here ρ0 = ρeq + δρ is the nonequilib-

rium electron-density matrix without electron–phonon inter-

action. We split it into an equilibrium contribution ρeq and a

nonequilibrium correction δρ. In linear response, we obtain a

term  · x from the field in Hel,  being the external field,

which yields a “direct” force involving the equilibrium ρeq. We

also obtain a term involving Hel(  = 0), together with the

change in density to first order in the field , in the first

term of Equation 6, resulting from the change of density in the

chemical bonds due to the current [38,39].

The second contribution is the retarded back-action of the elec-

tron gas due to the motion and is equivalent to the retarded

phonon self-energy. In the steady state, Πr only depends on the

time difference, and it is convenient to work in the frequency

(energy) domain. This can be expressed by using the coupling-

weighted electron–hole-pair density of states, Λαβ, inside or

between electrodes α,β  L,R,
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(7)

(8)

where Λ can be expressed in terms of the electrode DOS,

(9)

(10)

We have included a factor of 2 from the spin degeneracy and

have explicitly included the mode index, m,n on the coupling

matrices, M, and on Λ in Equation 10.

The forces described by  in Equation 6 contain a

number of interesting current-induced effects. It is instructive to

split the kernel into parts,

(11)

where

is the Hilbert transform. The Λ matrix has the following

symmetry properties when exchanging modes(n ↔ m) and

electrodes(α ↔ β),

(12)

and

(13)

which are helpful when examining the terms in Equation 11,

which are summarized in the following:

• Friction – The first term in Equation 11 is imaginary and

symmetric in mode index m,n. It describes the friction

force due to the generation of electron–hole pairs in the

electronic environment by the ionic motion. This process

exists even in equilibrium [31]. For slowly varying AL/R

with energy as compared to the vibrational energies

(wide-band limit) we obtain the simple time-local

electron friction force, , with

(14)

• NC (wind) force – The second term in Equation 11 is

real and antisymmetric, which means that the general

curl of this force is not zero. It describes the NC force,

discussed very recently by Dundas and co-workers [5].

This force is finite, even in the limit of zero frequency,

where the friction and Joule heating effect is not impor-

tant anymore.

• Renormalization – The third term is real and symmetric

and can be interpreted as a renormalization of the

dynamical matrix. It contains an equilibrium part and a

nonequilibrium correction. The equilibrium part is

already included in the dynamical matrix when we calcu-

late it within the Born–Oppenheimer approximation. The

nonequilibrium part gives a bias-induced modification of

the harmonic potential.

• BP force – Finally, the last term is imaginary, antisym-

metric, and proportional to ω for small frequencies. It

can be identified as the “Berry phase” (BP) force in [6].

Since the direction of this force is always normal to the

velocity in the abstract phase space, it does no work,

resembling a Lorentz force with effective magnetic field

(15)

• Random forces – The randomness of the force 

is characterized by its correlation function in the

frequency domain, which can again be calculated

with NEGF. However, we note that since  is a

quantum operator,  does not result in a real

number. Instead we use the symmetrized and real

. This expression equals

the semiclassical result obtained from the path-integral

derivation of the Langevin equation [6,35] and reads, in

Fourier space,

(16)
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• This spectral power density can be used to generate an

instance of the Gaussian random noise as a function of

time that is needed in MD simulations. Most importantly

this random force contains not only the thermal excita-

tions but also the excess excitations leading to Joule

heating [32], through the dependence of the chemical

potentials μL − μR = eV. Thus with this formalism it is

possible to disentangle the various contributions to the

forces, being either deterministic or random in nature.

Current-induced vibrational instability
We now turn to illustrations of the use of the semiclassical

Langevin equation to describe current-induced effects. In this

section we employ it to study the effect of the current-induced

forces and Joule heating on the stability of the system, within

the harmonic approximation. We will here ignore the coupling

to electrode phonons. This makes an eigen-mode analysis

possible, which eases the interpretation of the results. The

model system we use is shown in Figure 1, in which a four-

atom carbon chain is bridged between two graphene electrodes

(L and R). We assume a field effect transistor setup, in which a

gate potential, Vg, is applied to the system in addition to the bias

applied between the two electrodes, Vb. We will show that this

offers a convenient way to explore current-induced vibrational

instabilities. We can already see the effect of the gate potential

in the current–voltage (I − Vb) characteristics shown in

Figure 2.

Figure 1: The system considered in the present study is a four-atom
carbon chain bridging two graphene electrodes. The dangling bonds
are passivated by hydrogen atoms. In addition to the bias applied
between the left (L) and right (R) electrodes (Vb), a gate potential (Vg)
can also be applied perpendicular to the graphene surface. The center
panel shows the calculated contour plot of the electrostatic-potential
drop across the junction at Vg = 0 V, and Vb = 1 V. The equal drop at
the left and right electrodes reflects the electron–hole symmetry for
Vg = 0 V [40].

Figure 2: Current–Voltage (I−Vb) curves at different Vg.

The effect of the NC and BP forces is to couple different

phonon modes with nearly similar frequencies. From now on,

we will focus on the two phonon modes around 200 meV,

shown in Figure 3, since the alternating-bond-length-type

modes (200 meV) couple most strongly with the electric

current. This type of mode also gives rise to the most intensive

Raman signals in unpassivated chains between graphene-like

pieces [41].

Figure 3: (a) Motion of the two phonon modes around 200 meV. (b)
Motion of the runaway mode at Vg = 0.6 V, and Vb = 1 V. We depict
the motion using a number of discrete time steps roughly corres-
ponding to a full period. The position of each atom is depicted as a
circle for a sequence of time steps indicated by an increasing radius
with time. The motion is a phase-shifted linear combination of the two
modes in (a). We can see the elliptical motion of the carbon atoms
from the plot. The enclosed area indicates that work can be done by
the current-induced NC force.

The calculation was performed by using the SIESTA density-

functional theory (DFT) method [42], which has been extended

to study elastic [33] and inelastic [34] transport in molecular
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Figure 4: (a) Inverse Q-factor (1/Q) as a function of gate voltage, Vg,
at Vb = 1 V for the two modes around 200 meV. (b) 1/Q as a function
of bias voltage, Vb, at fixed gate voltage Vg = 0.6 V, for the same pair
of phonon modes.

conductors. We used similar parameters as detailed in [34], and

in order to keep the calculation simple and tractable, we

modeled the electrodes by simply employing the Γ k-point in

the transverse electrode direction. The electron–phonon

coupling matrix (M) was calculated at zero bias, whereas we

calculated the electronic structure at finite bias. We note that the

voltage dependence of the coupling matrix could play a role,

but this is beyond the scope of the present more illustrative

purpose [43]. Based on these approximations, we can calculate

the full ω-dependent Λ function, and the self-energies, Πr. To

perform the eigen-mode analysis, we further assumed linear

ω-dependent friction, Berry force (BP), constant nonconserva-

tive force (NC), and ignore the renormalization of the dynam-

ical matrix.

We model the effect of Vb as a shift of the equilibrium chem-

ical potential, EF. In this way we can tune the electronic struc-

ture within the bias window by changing the gate potential. In

the following, we look at the bias and gate dependence of the

inverse Q-factor (1/Q) and effective phonon number N. The

inverse Q-factor for mode i (note we use index i for full modes

including the current-induced forces) is defined as

Figure 5: (a) Effective phonon number (N) for the two phonon modes
around 200 meV as a function of gate voltage, Vg, at fixed bias
voltage, Vb = 1 V. (b) N as a function of bias voltage, Vb, at fixed gate
voltage Vg = 0.6 V. Note that it diverges at the critical point when the
damping (1/Q) in Figure 4 goes to zero.

(17)

where ωi are the eigenvalues of the full dynamical matrix,

including the current-induced forces. These modes thus consist

of linear combinations of the “unperturbed” normal modes

of the system, n,m, as calculated by using the standard

Born–Oppenheimer approximation. The phonon number can be

calculated from the displacement correlation function,

(18)

We show the bias and gate potential dependence of the inverse

Q-factor and phonon number in Figure 4 and Figure 5. The

coupling of these two modes due to the bias (gate) dependent

NC and BP force changes their lifetime. The two modes always

have opposite dependence. The vibrational instability occurs at

the critical point where 1/Q = 0 around Vg = ±0.4 V. This corre-

sponds to an infinite phonon number in Figure 5, and we there-
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fore call it a “runaway” mode. The motion of this mode at

Vb = 1 V, Vg = 0.6 V is plotted in Figure 3b. We can observe the

elliptical motion of several atoms in real-space. This is critical

because in order for the nonconservative force to do work on

the atoms their motion has to enclose a finite area, either in real

or in abstract phase space.

Finally, we should mention that when the current hits the insta-

bility threshold it will drive the system into a highly anhar-

monic regime, where the preceding eigenanalysis breaks down.

One scenario is that the motion of the system will reach a limit-

cycle determined by the detailed anharmonic potential and the

interaction with the current [7]. In this regime the details of the

damping due to the coupling with phonons in the electrodes

could be important, and the electron–phonon coupling could

also change from the value given around the harmonic equilib-

rium position. In order to address this regime we can perform

molecular-dynamics simulations, taking into account both the

coupling between different modes and their coupling with the

electrode phonons, in order to study how the system actually

reacts due to the instability.

Molecular dynamics with Joule heating
Next we illustrate the use of the Langevin equation to perform

molecular-dynamics simulations of a carbon-chain system, in

the presence of current flow, in the simplest possible setting, but

now including coupling to the electrode phonons. Therefore we

abandon the DFT approach, and instead employ the widely used

π-tight-binding model with hopping parameter β = 2.7 eV, and

the Brenner potential for calculations of the interatomic forces

[44]. We consider the unpassivated structure in Figure 6. The

electron–phonon coupling is modeled by the Harrison scaling

law [45], β = 2.7eV (a0/d)2, determining how β is modified

when the nearest neighbor distance, d, is changed from the equi-

librium value, a0 = 1.4 Å. The same model has recently been

applied in the study of the effect of strain on the electronic

structure of graphene [46]. In the simulation we model the

coupling to the electrode phonons by a friction parameter,

ηph, and a corresponding white equilibrium phonon noise

 = 2ηphkBT on the L,R-electrode regions. This is

similar to the stochastic boundary conditions [27] in which L,R-

atoms act as a boundary. The setup for the MD is shown in

(Figure 6a). We include electrode regions that have no inter-

action with the current (DL,DR), and a device region (D) where

the current density is highest and where the nonconservative

forces and Joule heating are included.

Furthermore, instead of using the full nonlocal time-kernel for

the electrons in Equation 14, we use the wide-band approxima-

tion, and neglect the off-diagonal elements of the electron-noise

spectral power density, (ω). The diagonal of the electron

spectral power can be approximated by white noise in the high-

bias and wide-band limits, where variations in the electronic

DOS are neglected [47]. The assumption of a white-noise spec-

trum implies neglect of the equilibrium zero-point motion of the

atoms, but most importantly here, it includes the Joule heating

effects,

(19)

A factor of 2 should be included in the case of spin degeneracy.

Based on the velocity Verlet algorithm [48] we carried out MD

simulations at a varying bias voltage for zero gate bias

(Vg = 0 V), and phonon friction, ηph. The MD results are

summarized in Figure 6b–f. We note that for the present system

setup the nonconservative force is found not to play a dominant

role compared to the effect of Joule heating. The main insight

we gain from the MD example here is that the anharmonic

couplings are important and effective in redistributing the

energy supplied by the nonequilibrium electrons.

The approximate local phonon friction, ηph, can in general be

expressed from the slope of the corresponding phonon self-

energy at zero frequency, as for electrons, see Equation 14.

However, here we simply varied its value around this in order to

quantify the dependence of the local electrical heating in the

device region on this parameter (Figure 6b). The electrical

heating of the chain was found not to depend much on the

phonon friction when this was chosen to be sufficiently high.

This is an appealing result, since it indicates that the electrical

heating does not depend critically on the measurement setup,

but mainly on the nature of the actual constriction. This seems

to be true as long as the heat flow away from the contacts is

sufficient to maintain the temperature of the heat baths, and the

chain acts as a bottleneck for the heat conduction. However, we

note that for heat conduction in the quantum limit it is impor-

tant to go beyond the white band approximation and include

realistic self-energies for the L,R-electrode phonons [49]. This

will be explored in future work.

Inspired by the equipartition theorem, we define a local

temperature variable for the atoms (indexed by a) with

mass, ma,

(20)

A comparison of the obtained temperature distributions with

(Figure 6c, Figure 6d) and without (Figure 6e, Figure 6f) the

anharmonic interactions shows that anharmonic couplings
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Figure 6: (a) Definition of the system regions with different types of noise contributions. Leads (L,R) have a well-defined temperature determined by
the phonon noise, the device (D) temperature is defined from the electrical heating, and the intermediate regions (DL,DR) are free and are heated by
propagation noise. In the MD setup no atoms are held fixed, but periodic boundary conditions are applied. The figure describes the setup in which the
local temperatures plotted in (c) and (e) should be understood. (b) Temperature of the regions as a function of phonon friction. (c, d) Obtained
temperatures at different atoms within the harmonic approximation. (c) The simulations were run at T = 300 K and at eVb = 1 eV, and (d) varying bias
voltages. (e, f) Corresponding atomistic temperature distributions including the anharmonic interactions. The lead temperature can exceed the equilib-
rium bath temperature due to propagation noise. In particular, the anharmonic interactions redistribute part of the energy from the modes in the chain
to the bulk modes in the lead.

between the vibrational modes have a significant influence on

the heat-transport properties and local Joule heating of the

system. The heating is less localized in the chain due to anhar-

monicity. This originates from the coupling between different

modes and an increased coupling to the surroundings for

configurations in which the atoms are displaced from their equi-

librium positions. Modes localized in the chain can be heated up

to very high temperatures in the harmonic approximation. When

anharmonic interactions are included the energy is redistributed

and the modes are collectively heated up.

The electron–phonon interaction is typically included through

a Taylor expansion of the electronic Hamiltonian around the

equilibrium positions (Equation 2). Within the time-local

white-noise approximation it is possible to address the

effect of changes of electronic Hamiltonian and, especially,

electron-phonon coupling on the motion, which was both

included in the nonequilibrium force calculations here. This

amounts to updating the nonconservative force, friction and

noise on the fly along the path. This is possible for the simple

parametrization used here. Our preliminary results based on this

approximation show that the extra noise contribution from the

higher-order couplings may significantly influence the results

and increase the electronic heating compared to the static elec-

tronic structure approximation. A method which goes beyond

white noise and includes the change in electron–phonon

coupling when the system is far from the equilibrium positions,

e.g., close to bond breaking, remains a challenge for the future.



Beilstein J. Nanotechnol. 2011, 2, 814–823.

822

Conclusion
We have developed a semiclassical Langevin equation

approach, which can be used to explore current-induced atomic

dynamics and instabilities in molecular conductors. The

Langevin approach can be solved in the harmonic approxima-

tion to obtain eigenmodes and their excitation in the presence of

current, as well as used for molecular-dynamics simulations

based on the full anharmonic potential. Our simple, approxi-

mate MD simulation indicates that anharmonic couplings play

an important role for the energy redistribution and effective heat

dissipation to the electrode reservoirs. However, the MD is

computationally very demanding beyond simplified model elec-

tronic structures and interatomic potentials, and further develop-

ments are necessary. We have used carbon-chain systems both

to illustrate the Langevin approach, and in order to highlight

how graphene might offer a unique test bed for research into

current-induced dynamic effects. Especially, it is straightfor-

ward to employ a gate potential to the gate electrode, and

thereby obtain independent control of current and bias voltage

in the system. Furthermore, atomic-scale resolution can be

obtained in electron microscopes in the presence of current, and

Raman spectroscopy can give insights into the excitation and

effective temperature originating from the electric current [50-

52]. Our results for the simplified carbon-chain systems indi-

cate that it may be possible to tune the current-induced instabili-

ties in the atomic dynamics with gate and bias voltages in the

experimentally relevant range.
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