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Abstract
Methods for imaging of nanocomposites based on X-ray, electron, tunneling or force microscopy provide information about the

shapes of nanoparticles; however, all of these methods fail on chemical recognition. Neither do they allow local identification of

mineral type. We demonstrate that infrared near-field microscopy solves these requirements at 20 nm spatial resolution, high-

lighting, in its first application to natural nanostructures, the mineral particles in shell and bone. "Nano-FTIR" spectral images result

from Fourier-transform infrared (FTIR) spectroscopy combined with scattering scanning near-field optical microscopy (s-SNOM).

On polished sections of Mytilus edulis shells we observe a reproducible vibrational (phonon) resonance within all biocalcite micro-

crystals, and distinctly different spectra on bioaragonite. Surprisingly, we discover sparse, previously unknown, 20 nm thin

nanoparticles with distinctly different spectra that are characteristic of crystalline phosphate. Multicomponent phosphate bands are

observed on human tooth sections. These spectra vary characteristically near tubuli in dentin, proving a chemical or structural varia-

tion of the apatite nanocrystals. The infrared band strength correlates with the mineral density determined by electron microscopy.

Since nano-FTIR sensitively responds to structural disorder it is well suited for the study of biomineral formation and aging.

Generally, nano-FTIR is suitable for the analysis and identification of composite materials in any discipline, from testing during

nanofabrication to even the clinical investigation of osteopathies.

312

http://www.beilstein-journals.org/bjnano/about/openAccess.htm
mailto:fritz.keilmann@mpq.mpg.de
http://dx.doi.org/10.3762%2Fbjnano.3.35


Beilstein J. Nanotechnol. 2012, 3, 312–323.

313

Introduction
Fourier-transform infrared spectroscopy (FTIR) [1] is a stan-

dard tool in chemical analysis. It can identify virtually any

substance through the "fingerprint" of the molecular vibrational

absorption spectrum in the 3–30 µm wavelength region. Nano-

FTIR spectroscopic near-field microscopy is a fascinating

recent advance [2-4]. It enables scattering near-field optical

microscopes (s-SNOM) [5,6] to operate at ultrahigh spatial

resolution over a broad mid-infrared spectrum emitted from

either a coherent supercontinuum source [2,3] or an incoherent

thermal source [4]. The s-SNOM uses a metalized AFM tip as a

light-concentrating antenna such that the sample is probed with

a nanofocused light field (Figure 1). The nanofocus is a light

spot of the same size as the tip radius, which thus defines both

the optical and the topographic resolutions of s-SNOM. Detec-

tion of the backscattered light reveals local optical information.

The probed volume extends typically 20 nm laterally, as well as

into the sample (sometimes even less than 10 nm) [7]. The high

resolution is independent of the wavelength. This enables the

utilization of long wavelengths corresponding to the infrared

fingerprint vibrations. s-SNOM has been successfully operated

with visible, infrared and terahertz illumination, and has been

applied to organic [8,9] and inorganic [10] materials, in such

diverse fields as nanoelectronics [11], the physics of phase tran-

sitions [12], or material identification [13]. The underlying

near-field interaction has been theoretically modeled and exper-

imentally verified. The observable contrasts and spectra can be

derived from the complex dielectric function of the sample ma-

terial [6,14], and include both the absolute efficiency and the

phase of the scattering [3]. Nano-FTIR has, up to now, been

demonstrated with flat test samples only, consisting of metals,

semiconductors and polar crystals [3,4].

Hard biological tissues are highly textured composites of

submicrometric inorganic particles embedded in organic

matrices [15-17]. Major tissues of interest include the phos-

phatic (bone) family of materials, and the carbonatic family as

found, e.g., in mollusc shells. Within the phylum Brachiopoda,

both strategies of hybrid shell architecture have evolved:

Calcium carbonate crystals in an organic matrix [18-20], and

laminates of calcium phosphate nanoparticle reinforced chitin

fibers [21,22]. FTIR spectroscopic microscopy is a well-estab-

lished method and has been extensively used to study bone

biominerals at several micrometers spatial resolution [23-30].

Its strength in the study of bone biopsies, mineralized tendons,

dentin or ivory is mainly due to a broad absorption band

between 950 and 1150 cm−1 assigned to the ν3 vibration of the

PO4
3− ion of apatite. It is thus possible to acquire maps of

mineral concentration, and to relate mineral to protein

(collagen) or carbonate distributions, usually revealing consid-

erable spatial variation. Moreover, the apatite band exhibits a

Figure 1: Nano-FTIR basic interaction. Focused infrared light incident
from the upper left excites a nanofocus at the metal tip, symbolized as
a star, which interacts with the scanning sample. The backscattered
infrared light carries local information. Here, the infrared response
(color code as in Figure 2b) is overlaid on a pseudo-3D rendering of
the topography, which is simultaneously recorded, of a 1.4 × 1.6 µm2

zoom area designated in Figure 2b by the dashed box on the left.
Topographic height differences ca. 50 nm.

weak spectral substructure, evident from Fourier self-deconvo-

lution [1]. It reveals relative weights of apatite species that are

assigned, with the help of chemical and X-ray analyses, to

Mg2+, F− or CO3
2− substitution, or differing particle size, or

crystal imperfections [24,31,32]. In this study we demonstrate

the power of nano-FTIR to map naturally formed mineralized

nanostructures. We show that we obtain fingerprint information

on two example systems of biominerals. Experimental compari-

son is made with electron microscopy (SEM) to verify that

nano-FTIR perfectly matches what is already known about the

structures, and that the method indeed provides rich chemical

and structural contrasts at the 20 nm scale.

Results
Marine shell as an example of a carbonate-
forming organism
We demonstrate nano-FTIR near-field microscopy on a Mytilus

edulis (M. edulis) shell specimen, which exhibits easily resolv-

able fibrous biocalcite microcrystals and tablet-shaped bioarag-

onite nanocrystals. On a polished section, the expected charac-

teristic interface [33] between an outer calcite layer and an inner

aragonite layer is readily located with the help of an overview

microscope (0.7 µm resolution) built into the commercial

s-SNOM used (neaspec.com). On the inner side there is an

interlayer, ca. 2 µm wide, with modified bioaragonite crystals

[34]. Three adjoining s-SNOM images of 10 × 10 µm2 area

each were consecutively acquired and stitched together. The

topography (Figure 2a) exhibits the arrangement of (i) fiber-
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Figure 2: Polished section of Mytilus edulis viewed in monochromatic s-SNOM (980 cm−1). (a) Topography of the interface between two calcium
carbonate polymorphs, biocalcite crystals (left) and bioaragonite crystals (right); (b) the backscattered infrared amplitude (n = 3) contrasts the organic
matrix at a relatively low level; a few, unexpected particles highlighted by their enhanced amplitude are chemically different; we refer to them as
"phosphate" crystals because their spectra (Figure 3 and Figure 4) are characteristic of phosphate.

shaped biocalcite crystals with slightly oblique, flat surfaces at a

few distinctly different heights, (ii) deep depressions mainly in

the interlayer, and (iii) bioaragonite crystals with flat surfaces at

equal height, some (in the interlayer) as narrow as 100 nm.

For chemical mapping we collected 300 nano-FTIR spectra

along a 2.5 µm line marked in Figure 3a, across the interface

region designated by a full white rectangle in Figure 2b

(Figure 3, additional scans are shown in Figure 5). The spectra

in Figure 3b and Figure 3c (and also the extracted averaged

spectral profiles in Figure 4) are dominated by a single, sharp

resonance, which differs in frequency position for orthorhombic

aragonite (855 cm−1) and trigonal calcite (873 cm−1), and thus

both calcium carbonate polymorphs can be readily distin-

guished. The biocalcite spectra show no spectral shift within a

given crystal, either upon comparison of neighboring crystals of

the same type, or with changes in topographic height as seen

with the three leftmost (biocalcite) crystals in Figure 3. Intrigu-

ingly, we notice on close inspection of all biocarbonate

surfaces, e.g., in Figure 1, a shallow amplitude modulation on a

50–200 nm lateral scale, which we tentatively explain to be

due to a mesocrystalline substructure that has been recently

observed by SEM [35].

In Figure 3 and Figure 5 the infrared resonance is not as repeat-

able on the bioaragonite as on the biocalcite crystals, both with

regard to spectral position and height. Further away from the

interface layer bioaragonite has a more stable spectrum (not

shown). This indicates that the interlayer carbonate (i) is truely

bioaragonite but (ii) has a reduced, changeable mineral content.

The interlayer bioaragonite crystals are clearly smaller and less

well ordered (Figure 2).

Surprisingly, we find in Figure 3 a 350 nm long section with

a similarly strong and sharp resonance at a much higher

frequency of about 1018 cm−1, which we tentatively assign to

be phosphate (see Discussion section). In order to specifically

map its occurrence we acquired monochromatic s-SNOM

images (Figure 2 and Figure 6) at 980 cm−1, which is a CO2

laser frequency at which the scattering signal is still weakly

enhanced by the "phosphate" resonance (see amplitude spectra

in Figure 3b, Figure 4 and Figure 5b). "Phosphate" occurs at a

few spots only, in the calcite region up to and including the

interlayer, but not further out in the aragonite region; in the

calcite region its occurrence diminishes with distance from the

interface (Figure 6). Additional zoomed images such as

Figure 1 (see also Figure 11) unveil individual "phosphate"



Beilstein J. Nanotechnol. 2012, 3, 312–323.

315

Figure 3: Nano-FTIR spectral line scan across the interface between
calcite and aragonite layers; (a) Topography corresponding to the full
white box of Figure 2b, with the scan line marked by a dashed line;
(b) infrared amplitude and (c) infrared phase spectra identify calcite,
"phosphate" and aragonite by their resonances at 872, 1018, and
857 cm−1, respectively. The white bars define the ranges of averaging
for the spectra for Figure 4.

Figure 4: Nano-FTIR spectra of M. edulis obtained from Figure 3b and
Figure 3c by averaging over the ranges indicated in Figure 3b by the
white bars: calcite region (blue, dashed), aragonite region (red,
dashed), "phosphate"/interface region (full, from left to right: yellow,
green, blue).

regions as sparsely scattered, contiguous particles of 100 to

500 nm size that seem to be no higher than 10 or 20 nm judging

from their topography. All "phosphate" particles are distin-

Figure 5: Nano-FTIR spectral line scans as in Figure 3;
(a–c) Topography, amplitude and phase spectra ca. 300 nm below the
scan in Figure 3; (e–g) the same but further away; (d) infrared absorp-
tion of dry polished material, with frequency scale aligned to (b and f).

Figure 6: Polished section of Mytilus edulis viewed in monochromatic
s-SNOM (980 cm−1), continued from Figure 2; (a) 120 µm further left in
the calcite region and (b) 120 µm further right in the aragonite region.

guishable in the topography images. In passing we note that

there are numerous other nanoparticles with a topographic

height of up to 100 nm (Figure 2 and Figure 6); these exhibit a

small infrared amplitude pointing to a nonresonant organic ma-

terial [6]. The "phosphate" particles in Figure 3 and Figure 5a–c

happen to bridge the interface as they exhibit in their left part a

reduced calcite resonance (best recognizable in the phase

spectra), and in their right part also a reduced aragonite reso-

nance. This superposition of spectra suggests that the "phos-

phate" particles are thin enough, about 20 nm, for sensing also

of the underlying calcite or aragonite (see Discussion section)

[36].
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Figure 7: Tubule in human dentin and its surrounding imaged by (a,b) nano-FTIR where the topography (a) is acquired simultaneously with the
infrared amplitude image (b, in spectrally integrating mode), and by (c) SEM (backscattered electron image (BEI)).

Human dentin
The exciting potential of nano-FTIR imaging of phosphate-

based biominerals is demonstrated with a human tooth in which

the bone-like phosphate nanocrystals are too small to be

resolved, but where a hierarchy of structures exists at all scales

including the submicrometer range [16,37]. Here, we explore

dentine, a mineralized collagen-fibril-based [37] biological

composite that supports enamel and is similar to bone, but does

not remodel and does not contain cells. Dentin contains exten-

sions of the pulp cells, which reside in ca. 1 µm thick tubules

that are often surrounded by 1 to 2 µm thick mineralized

sheaths devoid of collagen. Tubules of teeth are known to

branch into nano-tubuli [38] and are easily observed on perpen-

dicularly cut sections. Figure 7 shows a 10 × 10 µm2 area

surrounding a typical tubule (filled with PMMA, see methods)

inside the tooth, approximately 1.5 mm away from the enamel/

dentin junction. The infrared image in Figure 7b was obtained

in a spectrally integrating mode that highlights the phosphate

band from approx. 950 to 1150 cm−1 (see Experimental

section). A general similarity is seen with the SEM backscat-

tered electron (BE) image (Figure 7c), in which the intensity is

known to be a measure of the mineral density, averaged over ca.

1 µm depth [39]. The high-density peritubular rims produce the

strongest infrared scattering. As a consequence of their higher

resistance to polishing, they protrude approximately 50 nm

from the surrounding dentin matrix. Outside the peritubular

ring, the upper-right quadrant of the BE image exhibits two

low-density spots with about 100 nm diameter designating

nanotubuli. They appear clearly in the infrared images as spots

of about 1 µm in diameter with an amplitude between the low

one of PMMA (inside the large tubule) and that of intertubular

dentin. Several high-density patches revealed by BEI (e.g.,

encircled in Figure 7c) are clearly expressed in the infrared

image by a slightly enhanced amplitude. Thus spectrally inte-

Figure 8: Local infrared spectra registered by nano-FTIR at positions
1–4 in Figure 7b (colors), and further away on enamel of the same
tooth section (black).

grated (phosphate band) nano-FTIR images of dentin compare

well with the BE image of the same tissue.

The unique spectroscopic information provided by nano-FTIR

is substantiated by four spectra centered on the phosphate ν3

vibrational band (Figure 8), acquired at characteristic locations

marked in Figure 7b, and a fifth on the same tooth section taken

2 mm away on the enamel. The enamel and dentin amplitude

(and phase) spectra are dominated by the resonance at

1025 cm−1. The peak height varies with location similarly as the

spectrally integrated infrared amplitude as imaged in Figure 7b.

While being assigned to phosphate as in the M. edulis case, we

find that the tooth phosphate resonance is significantly broad-

ened. Apparently this is an inhomogeneous broadening akin to

what is known from classical FTIR spectra of bone [23-32].
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Figure 9: Dentin characteristics along line scans marked x (left part) and y (right part) in Figure 7; SEM intensity (black), topography (grey, in nm
scaled by 1/240), nano-FTIR spectra (upper two panels), and three therefrom extracted quantities: amplitude at 1020 cm−1 (red, scaled ×2500), ratio r
of amplitudes at 1053 and 1022 cm−1 (green), and phase at 1080 cm−1 (blue, in rad scaled by 1/2).

Figure 10: Tubule in human dentin near the enamel, imaged by nano-
FTIR in which the infrared amplitude image (a, right, in spectrally inte-
grating mode) is acquired simultaneously with the topography (a, left);
(b) dentin characteristics along line scan marked z in (a), topography
(grey, in nm scaled by 1/240), infrared amplitude spectrum (upper
panel), and extracted quantities as in Figure 9.

Interestingly, the processed spectra show that the band shapes

are significantly different for each of the five locations (see

Discussion section, Figure 12a). The PMMA amplitude spec-

trum shows a relatively weak resonance around 1160 cm−1.

The nano-FTIR spectra (Figure 9) recorded along 110 pixels of

10 µm long trajectories (marked in Figure 7) demonstrate the

excellent reproducibility of the method. Local spectral varia-

tions clearly mark the dentin microstructure. Though weak, the

spectrum of PMMA allow us to define the approximate tubule

opening, designated by two dashed lines in Figure 9 and

Figure 10. The lower panels of these figures show three

interesting quantities extracted from the nano-FTIR spectral

scans (colored curves, see Discussion section), together with the

simultaneously recorded profiles of SEM intensity (black curve)

and of topography (grey curve). A second tubule adjacent to

the enamel junction displays a considerably narrower lumen

and little topographic height, but clear infrared signatures

(Figure 10).

Discussion
FTIR is well established as a method for studying biominerals

in a variety of settings, and nano-FTIR extends this function-

ality to include spectroscopic mapping at the nanometer length

scale. Our observations of phosphates and carbonates in the

well-studied examples of M. edulis and human dentin reveal

exquisite detail, which matches what is observed by electron

microscopy and nanoindentation. The achievement of chemical

and structural mapping of biominerals opens new horizons for
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our understanding of mineral arrangements and variability in

biological systems. Intricate carbonate-based natural skeletons,

that may include transient and stabilized amorphous phases, can

now be mapped within and across interfaces by a noncontact

and nondestructive imaging technique. With respect to apatite

studies, our method is directly applicable to the investigation of

healthy and diseased forms of vertebrate bones and teeth.

Mineral precipitation, aggregation and aging can now be

analyzed and quantified in submicrometer detail, to better

understand the biological processes of bone formation,

abnormal development, and healing in response to drug treat-

ment.

Several technical advantages of surface scanning make the

nano-FTIR approach extremely robust and useful for the study

of biological materials. The samples need not be thin, only

reasonably flat, thus avoiding thin-section preparations, which

are prone to damage. Unavoidable topographic obstacles

resulting from the cutting and polishing procedures are of little

consequence: Height variations of 100 nm do not change the

off-resonant infrared amplitude (Figure 2) nor the resonant

response in amplitude and phase, as demonstrated for example

by the repeatability of the carbonate resonance spectra within

the sample region containing biocalcite (Figure 3). At steep

topographic edges though, the s-SNOM amplitude is known to

be reduced over a width equal to the spatial resolution, resulting

in "edge darkening" [6]. This effect probably contributes to the

dark regions seen between calcite crystals in Figure 2b and

remains to be further investigated. The impressive spatial reso-

lution of nano-FTIR can be judged from the edges of the biocal-

cite crystals (Figure 3a) that demonstrate a mechanical (AFM)

resolution certainly below 30 nm. Abrupt edges of the nano-

FTIR line section showing the phosphate resonance

(Figure 3b,c and Figure 5b,c) prove that the infrared resolution

is better than 20 nm.

The "phosphate" particles in M. edulis are clearly recognized

from their spectral signature (Figures 3–5), but would have been

barely detected based on their topographic appearance alone

(interestingly, their surfaces (see also Figure 1 and Figure 11)

appear smoother than the neighboring biocarbonate crystals).

Note that the nano-FTIR spectra of the "phosphate"

particles additionally show one of the carbonate resonances

(Figures 3–5), obviously originating from the crystals under-

neath [36,40]. To understand this effect, we recall that the basic

near-field interaction probes the sample to a depth on the order

of the tip radius (or somewhat deeper when one chooses the

tapping amplitude or the average tip-to-sample distance to be

larger than the tip radius) [6]. Thus buried objects may affect

the backscattering provided that the covering layer is not thicker

than a few times the tip radius [36]. Based on this effect, even a

tomographic mapping capability of s-SNOM has been

suggested [6,41]. Our present observation is the first report to

distinguish different phonon resonances in both the covering

layer and the buried material. We estimate from the observed

amplitudes that the thickness of the "phosphate" particles is on

the order of 10–30 nm, in agreement with their topographic

appearance.

Figure 11: "Phosphate" in M. edulis. High-resolution images (similar to
Figure 1) of the dotted-box areas, 1.0 × 1.2 µm2 of Figure 2. Backscat-
tered infrared amplitude in color code as in Figure 2b, overlaid on a
pseudo-3D rendering of the topography.

The origin of the "phosphate" particles remains unclear in this

proof-of-principle study. Their erratic distribution may suggest

some unknown preparation artifact. The material could be a

modification of materials in the organic matrix; however, this is

not highlighted in the infrared images. Nevertheless, it is clear

that the particles could not simply be dried polishing material

(Struers OP-A) since this shows a weak FTIR absorption at

1073 cm−1 (Figure 5d) but no discernible nano-FTIR resonance

in the frequency range of interest. A strong argument for the

assignment of the particles as crystalline phosphate is the

observed high spectral phase effect of about 80°, exceeding that

of bioaragonite (50°) and biocalcite (70°). Typically the spec-

tral phase effect is on the order of 30° for strong polymer vibra-

tions [8,9] but on the order of 400° for strong crystal phonons

[3,6]. For molluscs the employment of phosphate in shell archi-

tecture has not been reported, but the radula (tooth structure) of

the chitons is known to contain calcium phosphate [42,43]. In

bones, phosphorylated proteins have been suggested as impor-
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tant components of the organic matrix [44,45]. Notwith-

standing their unclear origin, our finding of "phosphate" parti-

cles demonstrates that nano-FTIR can easily locate and chemi-

cally recognize nanometer-sized material even at high rarefac-

tion. We finally note that the observed particles are crystalline

for two more reasons: (i) Their near-field scattering amplitude

is about 10−3 as with calcite (Figure 3b and Figure 4), and not

much smaller than 3 × 10−3 as known for two strongly polar

crystals, SiC and SiO2 [3]; and (ii) their near-field resonance

line shape is asymmetric, with the steep high-frequency edge

(Figure 4) typical of strong oscillators [6,46]. Disorder in a

crystal would strongly reduce the amplitude, as has been shown

systematically [47]. Amorphous materials have a reduced,

broadened resonance [3], while typical organic materials are

known to have an even weaker response [8], as is also seen in

this study with the PMMA resonance peaking at 1.5 × 10−4 near

1150 cm−1 (grey curve in Figure 8).

The broad phosphate bands measured in dentin by nano-FTIR

contain information on the biomineral composition and density.

Firstly, from their peak and baseline amplitudes (Figure 8) we

tentatively determine the local volume fraction f of mineral

particles (assuming f = 1 for enamel) to amount to f = 0.54,

0.30, and 0.26, respectively, for the spectra 1, 2, and 3 (see

Experimental section). Then, following normalization, we

obtain the line shapes of the mineral fraction at each of the three

locations, plotted in Figure 12a (in the same colors as in

Figure 8). Clearly there are significant, position-dependent

differences in the 1020 to 1120 cm−1 frequency range. These

differences show that (i) tooth materials consist, even on a

20 nm length scale, of several mineral types differing in their

vibrational resonances, and (ii) the mineral composition varies

with location. Specific spectral components may be identified at

1020, 1055, and 1100 cm−1. The component at 1055 cm−1 is

present in enamel and peritubular dentin but not in intertubular

dentin, and may relate to the lack of collagen protein, whereas

the component at 1100 cm−1 is present in all dentin but not in

enamel. For discussing possible assignments we have calcu-

lated and plotted the distribution of three characteristic quan-

tities, which we extract from the nano-FTIR spectral scans,

namely the peak s-SNOM amplitude (red), the ratio r of ampli-

tudes at 1053 cm−1 and 1022 cm−1 (green; not meaningful in

the tubule lumen), and the phase at 1080 cm−1 (blue), in a direct

comparison with the BEI profiles (Figure 9 and Figure 10).

In the BE image with 0.12 nm resolution (Figure 7c), the bright-

ness provides a local measure of the electron density [48] and

consequently of the mineral content [39]. While the white

hypermineralized rim of the tubule exhibits an identical shape

to that seen in the infrared (Figure 7b), the fine linear fibrils in

the BEI are not seen in the infrared images presumably because

Figure 12: Normalized infrared resonance of phosphate; (a) of dentin
and enamel measured by nano-FTIR (colors as in Figure 8); (b) of
fluorapatite crystal at 10 nm tapping amplitude by nano-FTIR
(magenta), and measured simultaneously at n = 3 demodulation (red,
see Experimental section), and by conventional FTIR reflectance
(black); the latter also for hydroxyapatite (black, dotted).

they are too deep below the surface. We note in passing that

s-SNOM is nondestructive, unlike SEM in which the inter-

action of electrons with bony materials is known to induce

damage. The extracted BE profiles (Figure 9) mark the edges of

the tubule lumen, as do the extracted infrared profiles. Outside

the peritubular rim, the amplitude (red) and phase (blue) corre-

late qualitatively with the BE-defined mineral content (black).

An exception in the 7.1–7.5 µm section of Figure 9 (right) is

attributed to the different probing depths of the s-SNOM and

BE imaging methods. Amplitude and phase thus appear to be

equally capable of measuring small density changes. As for the

spectral differences within the phosphate band, the ratio r is

about 0.8 and 0.7 for the peritubular and intertubular regions of

the large tubule (x,y), respectively, but interestingly only 0.7

and 0.6, respectively, for the small tubule (z, Figure 10). For

enamel r = 0.80 (Figure 12a).

An assignment of the observed nano-FTIR spectral components

of tooth at around 1020, 1055, and 1100 cm−1 is, unfortunately,

not straightforward, because most apatite species of interest

have not yet been measured by s-SNOM as pure substances. For

bulk crystals, it is well known from theory and experiments that
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the near-field resonance in the case of a strong oscillator is

up-shifted from the transverse phonon frequency that marks the

infrared absorption [6]. The up-shift nearly to the longitudinal

phonon frequency amounts to 62 cm−1 for SiO2 [3], and even to

120 cm−1 for the exceptionally strong phonon of SiC [46]. For

fluorapatite, infrared-active modes are known to be at

1030 cm−1 (strong), 1042.5 cm−1 (weak), and 1091 cm−1

(medium) [49], while nano-FTIR registers a strong resonance at

1063 cm−1 (as also in hydroxyapatite) and a weak one at

1090 cm−1, as shown in Figure 12b (for comparison we also

show reflectivity spectra that nearly match for both apatites).

The strong near-field resonance obviously comes from the

strong infrared-active mode at 1030 cm−1, and thus is up-shifted

by 33 cm−1. Naively one would expect that the near-field

components observed at 1020, 1055, and 1100 cm−1 in tooth

materials connect to correspondingly lower-frequency, strong

infrared absorption components. But this seems not to be the

case, because the experimental FTIR absorption of dentin

exhibits peaks at 1039, 1069, 1108 [30], or 1040, 1060,

1092 cm−1 [28]. A down-shift of the 1040 line to 1014 cm−1

was reported for caries-affected dentin [26]. Theoretically it has

not been explored for the case of small particles as to whether,

and in which direction, the near-field resonance should shift

from a given far-field absorption peak. Our experiments show

that the near-field resonance in enamel and dentin exhibits a

peak near 1020 cm−1, which is 43 cm−1 below the near-field

resonance of apatite (Figure 12).

Generally, the interpretation of infrared absorption observed in

bone should be extended to include the influence of the parti-

cles' shape through depolarization effects [50,51]. Recently,

density functional theory has been applied specifically to the

apatite ν3 vibrational infrared absorption, predicting strong

spectral distortion and splitting (up to ±50 cm−1) due to these

macroscopic electrostatic effects (not to be confused with

microscopic distortion of lattice cells), depending on whether

the particles are spherical, needle-like or plate-like [52]. Powder

measurements with classical FTIR displayed absorption peaks

at 1038, 1067, 1097 cm−1 for fluorapatite, and at 1034, 1053,

1105 cm−1 for hydroxyapatite, where indeed the last two peaks

were found to be strongly split by the nonspherical shape of the

particles [52]. Similar values were reported in other studies

[24,53,54]. As the mineral in dentin and bone consists of

isolated, locally ordered apatite platelets, strong depolarization

effects probably distort the infrared spectra in the ν3 phosphate

resonance region. Clearly a systematic study is warranted in

which near-field and far-field infrared apatite bands are

acquired for various shapes of chemically and structurally well-

defined nanocrystals. Such a study should also cover the weaker

ν1 phosphate band, which is less affected by electrostatic

effects, as are all Raman lines [52].

Figure 12b directly illustrates the spectral discrimination

provided by nano-FTIR [46], which has great potential for

mineral research. The measured near-field response is seen

to drop within 7 cm−1 (between 90% and 10% of the peak

amplitude); the response is even sharper because our present

instrumental resolution is about 6 cm−1 [3]. Additionally,

Figure 12b shows that the resonance becomes narrowed

simply by choosing a higher order n of signal demodulation (see

Experimental section) [6]. This would result in a virtual

"tip sharpening" and improve the spatial resolution of the

s-SNOM [6,55,56]. As for the spectral resolution, a discrimin-

ation of components differing by just a few cm−1 is certainly

achievable.

Experimental
s-SNOM near-field microscope
We employed a commercial scattering near-field microscope

based on AFM (NeaSNOM, neaspec.com) equipped with a

standard metalized tip (NCPt arrow, nanoandmore.com). It is

operated in AFM tapping mode to modulate the near-field inter-

action between the tip and sample, and records the backscat-

tered infrared signal simultaneously with the topography.

Typical tapping amplitudes are 50–60 nm. Lock-in detection at

the n = 2 harmonic (default) of the tapping frequency (approx.

300 kHz) provides background-free near-field imaging. Moni-

toring of the infrared signal versus tip–sample separation (ap-

proach curves) was used to ensure the optimal working settings

of the tapping amplitude, the demodulation order n, and the

focusing. In the monochromatic infrared near-field imaging

mode of the s-SNOM a line-tunable CO2 laser attenuated to

10 mW is used for illumination. The acquisition time was 5 ms

per pixel, requiring several minutes for a 128 × 128 sized

image.

Nano-FTIR mode of s-SNOM
The nano-FTIR spectroscopic mode of s-SNOM uses illumina-

tion by a coherent broadband mid-infrared beam (here 25 µW)

from a difference-frequency source [3] driven by a femtosecond

(<100 fs) Er fiber laser (FFS.SYS-2B and FFS-CONT,

toptica.com). Detection and spectral analysis of the backscat-

tered light is by an asymmetric Michelson interferometer that

generates, by online Fourier transformation, infrared amplitude

and phase spectra simultaneously; a switchable reference path

ensures an absolute quantification of backscattering [3]. Note

that while common FTIR spectrometers are not equipped to

determine the complete, complex material response, the nano-

FTIR phase spectra valuably complement the amplitude spectra

[6]. For example, the phase change on resonance can be taken

as a measure of the resonance strength. Nano-FTIR spectra can

be monitored in real time at 3 Hz rate allowing the optimal

focus adjustment on the tip. The usual acquisition time was 10 s
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per pixel for obtaining highly resolved spectra as in Figure 3,

Figure 5 and Figure 8. The spectroscopic line scans in Figure 9

and Figure 10b were obtained with a reduced spectral resolu-

tion of about 8 cm−1, and the shown result is an average over

five consecutive scans.

Figure 12b illustrates that the use of the n = 3 instead of the

n = 2 demodulation order reduces the apatite resonance

halfwidth by 40%. However, this is paid for by a five-fold

reduction of the amplitude, as noted with other crystals previ-

ously [3]. Higher power than the presently available 25 µW

would certainly allow for routine use of n = 3 and higher. Up to

10 mW is desirable (at which point tip heating starts to reduce

the AFM stability) and would thus increase the present signal

levels by 400×, or alternatively, reduce the acquisition time by

160,000× for a constant S/N ratio. Note that this positive

perspective is in sharp contrast to tip-enhanced Raman scat-

tering (TERS) for which up to 10 mW is readily available, but

intrinsically weak cross sections leave little room for future

signal improvement [57].

A spectrally integrated mode of nano-FTIR is also introduced in

this study. It employs a fixed interferometer setting at a (free-

induction-decay) [2] fringe maximum (ca. 150–300 fs delay).

The detector amplitude signal then represents the background-

suppressed near-field signal response averaged over a wide

spectral band around the peak of the backscattered spectrum.

Again the routine scanning is at a rate of 5 ms per pixel,

requiring several minutes for a 128 × 128 pixel image.

Sample preparation
The shell valve of M. edulis was sectioned longitudinally into

200 µm thick wafers. These were polished on both sides and

etched for 45 s with a suspension of alumina nanoparticles

(Struers OP-A), then cleaned and dried. Tooth samples were

embedded in PMMA following dehydration by a graded ethanol

and PMMA exchange solution; samples were cut perpendicu-

larly to the tubules, serially ground and polished by using

diamond slurry down to 1 µm [58].

Line-shape determination of mineral compo-
nent in a composite
A theory of near-field interaction for the dentin and bone cases

of mixed particles that are smaller than the tip radius is not yet

available. A straightforward solution would be to calculate an

effective dielectric function, by using composite-medium theory

[59], as a weighted average of the dielectric functions of the

individual components (and taking proper account of depolar-

ization), and then to apply the point-dipole or, better, the finite-

dipole model of near-field interaction [3]. While composite-

medium theory traditionally assumes spherical particles, an

extension to ellipsoids is available [60]. Since individual dielec-

tric functions are not known, however, we attempt here, for the

first time in near-field microscopy, a simplified two-component

analysis to extract the spectral contribution due to minerals.

First, we determine the volume fraction f of mineral nanoparti-

cles by extracting f from the spectra in Figure 8 in the following

way. We assume the total scattering amplitude s to be a

weighted sum of a mineral and an organic part, sM and sO, res-

pectively, s = f sM + (1 − f) sO. We assume f = 1 for enamel,

which consists nearly entirely of hydroxyapatite nanocrystals.

For simplicity we assume a flat spectrum sO. By setting sO =

0.00006 we then determine f = 0.54, 0.30, and 0.26 for the

spectra 1, 2, and 3, respectively. With these values we compute

the mineral component normalized amplitude spectra,

sM = (1 − (1 − f) sO/s)/f shown in Figure 12a. Other settings of

sO would give less agreement of the spectra outside the phos-

phate band.

Conclusion
We have quite generally demonstrated the achievement of

chemical identification—a central need for nanoscience—by an

infrared nanoscope, at 20 nm resolution. We show both the

highlighting of a selected compound in a scanned image, as

well the measurement of local FTIR spectra. Our method is

nondestructive and needs no vacuum or special sample prepar-

ation. Nano-FTIR is widely valuable for studying promising

nanostructures, be it in nanotechnology, the pharmaceutical

industry, or solid-state physics. For this study we have chosen

biominerals over other obvious candidates because biomineral-

ization is unexplored in its nanometer-scale detail but is yet of

great medical importance.
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