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Abstract
Background: The transport through a quantum-scale device may be uniquely characterized by its transmission eigenvalues τn.

Recently, highly conductive single-molecule junctions (SMJ) with multiple transport channels (i.e., several τn > 0) have been

formed from benzene molecules between Pt electrodes. Transport through these multichannel SMJs is a probe of both the bonding

properties at the lead–molecule interface and of the molecular symmetry.

Results: We use a many-body theory that properly describes the complementary wave–particle nature of the electron to investigate

transport in an ensemble of Pt–benzene–Pt junctions. We utilize an effective-field theory of interacting π-electrons to accurately

model the electrostatic influence of the leads, and we develop an ab initio tunneling model to describe the details of the lead–mole-

cule bonding over an ensemble of junction geometries. We also develop a simple decomposition of transmission eigenchannels into

molecular resonances based on the isolated resonance approximation, which helps to illustrate the workings of our many-body

theory, and facilitates unambiguous interpretation of transmission spectra.

Conclusion: We confirm that Pt–benzene–Pt junctions have two dominant transmission channels, with only a small contribution

from a third channel with τn << 1. In addition, we demonstrate that the isolated resonance approximation is extremely accurate and

determine that transport occurs predominantly via the HOMO orbital in Pt–benzene–Pt junctions. Finally, we show that the trans-

port occurs in a lead–molecule coupling regime where the charge carriers are both particle-like and wave-like simultaneously,

requiring a many-body description.

40

http://www.beilstein-journals.org/bjnano/about/openAccess.htm
mailto:jbergfie@uci.edu
http://dx.doi.org/10.3762%2Fbjnano.3.5


Beilstein J. Nanotechnol. 2012, 3, 40–51.

41

Introduction
The number of transmission channels for a single-atom contact

between two metallic electrodes is simply given by the chem-

ical valence of the atom [1]. Recently, it was argued [2] that the

number of dominant transmission channels in a single-mole-

cule junction (SMJ) is determined by the degeneracy of the

molecular orbital [3] closest to the metal Fermi level. In

this article, we focus on ensembles of highly conductive

Pt–benzene–Pt junctions [4] in which the lead and molecule are

in direct contact. Going beyond the phenomenological random-

matrix model of lead–molecule coupling considered in [2], a

realistic atomistic model is developed to describe lead–mole-

cule coupling over an ensemble of energetically favored junc-

tion geometries.

For a two-terminal SMJ, the transmission eigenvalues τn are

eigenvalues of the elastic transmission matrix [5]

(1)

where G is the retarded Green’s function [6] of the SMJ, Γα

is the tunneling-width matrix describing the bonding of

the molecule to lead α, and the total transmission function

T(E) = Tr{T(E)}. The number of transmission channels is equal

to the rank of the matrix (Equation 1), which is in turn limited

by the ranks of the matrices G and Γα [2]. The additional two-

fold spin degeneracy of each resonance is considered to be

implicit throughout this work. As indicated by Equation 1, an

accurate description of transport requires an accurate result for

G, which can be calculated by using either single-particle or

many-body methods, and which depends critically on accurate

descriptions of the molecular energy levels and the lead–mole-

cule coupling.

In effective single-particle theories, including current imple-

mentations of density functional theory (DFT), it is often neces-

sary [7-10] to describe the transport problem by considering an

“extended molecule”, composed of the molecule and several

electrode atoms. This procedure makes it difficult, if not impos-

sible, to assign transmission eigenchannels to individual molec-

ular resonances since the quantum states of the extended mole-

cule bear little resemblance to the states of the molecule itself.

We utilize a nonequilibrium many-body theory based on the

molecular Dyson equation (MDE) [6] to investigate transport

distributions of SMJ ensembles. Our MDE theory correctly

accounts for wave–particle duality of the charge carriers, simul-

taneously reproducing the key features of both the Coulomb

blockade and coherent-transport regimes, alleviating the neces-

sity of constructing an extended molecule. Consequently, we

can unambiguously assign transmission eigenchannels to mole-

cular resonances [2].

Previous applications of our MDE theory [6,11,12] to transport

through SMJs utilized a semiempirical Hamiltonian [13] for the

π-electrons, which accurately describes the gas-phase spectra of

conjugated organic molecules. Although this approach should

be adequate to describe molecules weakly coupled to metal

electrodes, e.g., by thiol linkages, in junctions where the π-elec-

trons bind directly to the metal electrodes [4], the lead–mole-

cule coupling may be so strong that the molecule itself is

significantly altered, necessitating a more fundamental molec-

ular model.

In this work, we utilize an effective field theory of interacting

π-electrons (π-EFT), in which the form of the molecular Hamil-

tonian is derived from symmetry principles and electro-

magnetic theory (multipole expansion) [14]. The resulting

formalism constitutes a state-of-the-art many-body theory that

provides a realistic description of lead–molecule hybridization

and van der Waals coupling, as well as the screening of

intramolecular interactions by the metal electrodes, all of which

are essential for a quantitative description of strongly-coupled

SMJs [4].

The bonding between the tip of electrode α and the molecule is

characterized by the tunneling-width matrix Γα, where the rank

of Γα is equal to the number of covalent bonds formed between

the two. For example, in a SMJ where a Au electrode bonds to

an organic molecule through a thiol group, only a single bond is

formed, and there is only one significant transmission channel

[15,16]. In Pt–benzene–Pt junctions, however, each Pt elec-

trode forms multiple bonds to the benzene molecule and

multiple transmission channels are observed [4]. In such highly

conductive SMJs the lead and molecule are in direct contact and

the overlap between the π-electron system of the molecule and

all of the quasi-atomic wavefunctions of the atomically sharp

electrode are relevant. Rather than the random-matrix method

used in [2], we develop an atomistic approach to bonding in

which the nine relevant orbitals for each Pt electrode are

included (one s, three p, and five d), representing the evanes-

cent tunneling modes in free space outside the apex atom of

each electrode tip. This atomistic model of lead–molecule

coupling allows distributions of transport coefficients to be

computed directly over an ensemble of junction geometries,

supplanting the phenomenological model of lead–molecule

coupling employed in [2].

In the next section, we outline the relevant aspects of our MDE

theory and derive transport equations in the isolated-resonance
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approximation. We then develop our atomistic treatment of

lead–molecule coupling, in which the electrostatic influence of

the leads is treated by π-EFT and the multiorbital lead–mole-

cule bonding is described using the quasi-atomic orbitals of the

electrode tip. Finally, the transport distributions for these

ensembles of Pt–benzene–Pt junctions are calculated by using

both the full molecular Green’s function and within the

isolated-resonance approximation. The efficacy of the isolated

resonance approximation is investigated in detail.

Many-body theory of transport
When macroscopic leads are bonded to a single molecule, a

SMJ is formed, transforming the few-body molecular problem

into a full many-body problem. The bare molecular states are

dressed by interactions with the lead electrons when the SMJ is

formed, shifting and broadening them in accordance with the

lead–molecule coupling.

Until recently [6] no theory of transport in SMJs was available

which properly accounted for the particle and wave character of

the electron, such that the Coulomb blockade and coherent

transport regimes were considered “complementary” [10]. Here,

we utilize a many-body MDE theory [6,12] based on nonequi-

librium Green’s functions (NEGFs) to investigate transport in

multichannel SMJs, which correctly accounts for both aspects

of the charge carriers.

In order to calculate transport quantities of interest we must

determine the retarded Green’s function G(E) of the junction,

which may be written as

(2)

where Hmol =  +  is the molecular Hamiltonian,

which we formally separate into one-body and two-body terms

[6,12]. S is an overlap matrix, which in an orthonormal basis

reduces to the identity matrix, and

(3)

is the self-energy, including the effect of both a finite

lead–molecule coupling, through , and many-body interac-

tions, through the Coulomb self-energy ΣC(E). The tunneling

self-energy matrices are related to the tunneling-width matrices

by

(4)

It is useful to define a molecular Green’s function

 In the sequential tunneling regime

[6], where lead–molecule coherences can be neglected, the

molecular Green’s function within MDE theory is given by

(5)

where all one-body terms are included in  and the

Coulomb self-energy Σ(0) accounts for the effect of all intramol-

ecular many-body correlations exactly. The full Green’s func-

tion of the SMJ may then be found using the molecular Dyson

equation [6]

(6)

where ΔΣ = ΣT + ΔΣC and  At room tempera-

ture and for small bias voltages, ΔΣC ≈ 0 in the cotunneling

regime [6] (i.e., for nonresonant transport). Furthermore, the

inelastic transmission probability is negligible compared to the

elastic transmission in that limit.

The molecular Green’s function Gmol is found by exactly diago-

nalizing the molecular Hamiltonian, including all charge states

and excited states of the molecule [6,12]

(7)

where  is the probability that the molecular state ν is

occupied, C(ν,ν′) are many-body matrix elements and

 In linear response, 

where  is the grand canonical partition

function.

The rank-1 matrix C(ν,ν′) has elements

(8)

where dnσ annihilates an electron of spin σ on the nth atomic

orbital of the molecule, and ν and ν′ label molecular eigenstates

with different charge. The rank of C(ν,ν′) in conjunction with

Equation 6 and Equation 7 implies that each molecular reso-

nance ν → ν′ contributes at most one transmission channel in

Equation 1, suggesting that an M-fold-degenerate molecular

resonance could sustain a maximum of M transmission

channels.



Beilstein J. Nanotechnol. 2012, 3, 40–51.

43

Isolated-resonance approximation
Owing to the position of the chemical potential of the leads

relative to the molecular energy levels and the large charging

energy of small molecules, transport in SMJs is typically

dominated by individual molecular resonances. In this subsec-

tion, we calculate the Green’s function in the isolated-reso-

nance approximation wherein only a single (nondegenerate or

degenerate) molecular resonance is considered. In addition to

developing intuition and gaining insight into the transport

mechanisms in a SMJ, we also find (cf. Results and Discussion

section) that the isolated-resonance approximation can be used

to accurately predict the transport.

Nondegenerate molecular resonance
If we consider a single non-degenerate molecular resonance

then

(9)

where ε = Eν′ − Eν,  is the rank-1 many-body

overlap matrix, and we have set  In order

to solve G analytically, it is useful to rewrite Dyson’s equation

(Equation 6) as follows:

(10)

In the elastic-cotunneling regime (ΔΣC = 0) we find

(11)

Equation 11 can be equivalently expressed as

(12)

where

(13)

is the effective self-energy at the resonance, which includes the

effect of many-body correlations through the C(ν,ν′) matrix.

Using Equation 1, the transmission in the isolated-resonance

approximation is given by

(14)

where 

(15)

is the dressed tunneling-width matrix, and 

As evidenced by Equation 14, the isolated-resonance approxi-

mation gives an intuitive prediction for the transport. Specifi-

cally, the transmission function is a single Lorentzian reso-

nance centered about  with a half-width at half-maximum of

 The less-intuitive many-body aspect of the transport problem

is encapsulated in the effective tunneling-width matrices 

where the overlap of molecular many-body eigenstates can

reduce the elements of these matrices and may strongly affect

the predicted transport.

Degenerate molecular resonance
The generalization of the above results to the case of a degen-

erate molecular resonance is formally straightforward. For an

M-fold degenerate molecular resonance

(16)

The M degenerate eigenvectors of Gmol may be chosen to diag-

onalize ΣT on the degenerate subspace

(17)

and Dyson’s equation may be solved as before

(18)

Although ΣT is diagonal in the basis of  ΓL and ΓR need

not be separately diagonal. Consequently, there is no general
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simple expression for T(E) for the case of a degenerate reso-

nance, but T can still be computed using Equation 1.

In this article we focus on transport through Pt–benzene–Pt

SMJs where the relevant molecular resonances (HOMO or

LUMO) are doubly degenerate. Considering the HOMO reso-

nance of benzene

(19)

where  diagonalize ΣT and 0N is the N-particle ground

state.

π-Electron effective field theory
In order to model the degrees of freedom most relevant for

transport, we have utilized an effective field theory of inter-

acting π-electron systems (π-EFT) as described in detail in [14].

Briefly, this was done by starting with the full electronic Hamil-

tonian of a conjugated organic molecule and by dropping

degrees of freedom far from the π-electron energy scale. The

effective π-orbitals were then assumed to possess azimuthal and

inversion symmetry, and the effective Hamiltonian was required

to satisfy particle–hole symmetry and be explicitly local. Such

an effective field theory is preferable to semiempirical methods

for applications in molecular junctions because the effective

interaction is derived from Maxwell’s equations, and hence can

be readily generalized to include screening of intramolecular

Coulomb interactions due to nearby metallic electrodes.

Effective Hamiltonian
This allows the effective Hamiltonian for the π-electrons in gas-

phase benzene to be expressed as

(20)

where t is the tight-binding matrix element, μ is the molecular

chemical potential, Unm is the Coulomb interaction between the

electrons on the nth and mth π-orbitals, and 

The interaction matrix Unm is calculated by way of a multipole

expansion keeping terms up to the quadrupole–quadrupole

interaction:

(21)

where UMM is the monopole–monopole interaction, UQM is

the quadrupole–monopole interaction, and UQQ is the

quadrupole–quadrupole interaction. For two π-orbitals with

arbitrary quadrupole moments  and  and centers

separated by a displacement , the expressions for these are

(22)

where

(23)

is a rank-4 tensor that characterizes the interaction of two

quadrupoles and  is a dielectric constant included to account

for the polarizability of the core and σ electrons. Here i, j, k, and

l are the Cartesian indices of the foregoing tensors and vectors.

Altogether, this provides an expression for the interaction

energy that is correct up to fifth order in the interatomic

distance.

Benzene
The adjustable parameters in our Hamiltonian for gas-phase

benzene are the nearest-neighbor tight-binding matrix element t,

the on-site repulsion U, the dielectric constant , and the

π-orbital quadrupole moment Q. These were renormalized by

fitting to experimental values that should be accurately repro-

duced within a π-electron only model. In particular, we simulta-

neously optimized the theoretical predictions of (1) the six

lowest singlet and triplet excitations of the neutral molecule, (2)

the vertical ionization energy, and (3) the vertical electron

affinity. The optimal parametrization for the π-EFT was found

to be t = 2.70 eV, U = 9.69 eV, Q = −0.65 eÅ2 and  = 1.56

with a RMS relative error of 4.2 percent in the fit of the excita-
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tion spectrum. It would be interesting to compare the values of

U and Q determined by this analysis with estimates from ab

initio methods such as density functional theory. Note,

however, that the use of “improved” values of the parameters in

our effective Hamiltonian is unlikely to improve agreement

with the experimental data that we considered, precisely

because we optimized the π-EFT predictions for these

quantities.

The top panel of Figure 1 shows the spectral function for gas-

phase benzene within π-EFT, along with experimental values

for the first optical excitation of the cation (3.04 eV), the

vertical ionization energy (9.23 eV), and the vertical electron

affinity (−1.12 eV). As a guide for the eye, the spectrum has

been broadened artificially by using a tunneling-width matrix of

Γnm = (0.2 eV)δnm. The close agreement between the experi-

mental values and the maxima of the spectral function suggests

that our model is accurate at this energy scale. In particular, the

accuracy of the theoretical value for the lowest optical excita-

tion of the cation is noteworthy, as this quantity was not fit

during the renormalization procedure but rather represents a

prediction of π-EFT.

Figure 1: Spectral functions A(E) = −(1/π)Tr{G(E)} at room tempera-
ture for gas-phase benzene (top panel) and Pt–benzene–Pt junctions
(ensemble average, bottom panel). The gas-phase resonances are
broadened artificially as a guide for the eye. The dashed orange lines
are fixed by (left to right) the lowest-lying optical excitation of the mole-
cular cation [17-21], the vertical ionization energy of the neutral mole-
cule [17-20,22], and the vertical electron affinity of the neutral mole-
cule [23]. The asymmetry in the average spectral function arises
because the HOMO resonance couples more strongly on average to
the Pt tip atoms than does the LUMO resonance. The work function of
the Pt(111) surface (−5.93 eV [24]) is shown for reference.

In order to incorporate screening by metallic electrodes into

π-EFT, we utilized an image multipole method whereby the

interaction between an orbital and image orbitals is included up

to the quadrupole–quadrupole interaction in a screened inter-

action matrix  In particular, we chose a symmetric 

that ensures the Hamiltonian gives the energy required to

assemble the charge distribution from infinity with the elec-

trodes maintained at fixed potential, namely

where Unm is the unscreened interaction matrix and 

is the interaction between the nth orbital and the image

of the mth orbital. When multiple electrodes are present,

the image of an orbital in one electrode produces images

in the others, resulting in an effect reminiscent of a hall of

mirrors. We deal with this by including these “higher order”

multipole moments iteratively until the difference between

successive approximations of  drops below a predeter-

mined threshold.

In the particular case of the Pt–benzene–Pt junction ensemble

described in the next section, the electrodes of each junction are

modeled as perfect spherical conductors. An orbital with mono-

pole moment q and quadrupole moment Qij located a distance r

from the center of an electrode with radius R then induces an

image distribution at  with monopole and quadrupole

moments

and

respectively. Here Tik is a transformation matrix representing a

reflection about the plane that is normal to the vector 

The lower panel of Figure 1 shows the Pt–benzene–Pt spectral

function averaged over the ensemble of junctions described in

the next section using this method. Comparing the

spectrum with the gas-phase spectral function shown in the

top panel of Figure 1, we see that screening due to the nearby

Pt tips reduces the HOMO–LUMO gap by 33% on average,

from 10.39 eV in the gas-phase to 6.86 eV over the junction

ensemble.
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The screening of intramolecular Coulomb interactions by

nearby conductor(s) illustrated in Figure 1 leads to an attractive

interaction between a molecule and a metal surface (van der

Waals interaction). By diagonalizing the molecular Hamil-

tonian with and without the effects of screening included in

Unm, it is possible to determine the van der Waals interaction at

arbitrary temperature between a neutral molecule and a metallic

electrode by comparing the expectation values of the Hamil-

tonian in these two cases:

This procedure was carried out at zero temperature for benzene

oriented parallel to the surface of a planar Pt electrode at a

variety of distances, and the results are shown in Figure 2. Note

that an additional phenomenological short-range repulsion

proportional to r−12 has been included in the calculation to

model the Pauli repulsion arising when the benzene π-orbitals

overlap the Pt surface states.

Figure 2: Calculated van der Waals contribution to the binding energy
of benzene adsorbed on a Pt(111) surface as a function of distance.
Here the plane of the molecule is oriented parallel to the Pt surface. A
phenomenological short-range repulsion  r−12 has been included to
model the Pauli repulsion when the π-orbitals overlap the Pt surface
states.

The lead–molecule coupling
When an isolated molecule is connected to electrodes and a

molecular junction is formed, the energy levels of the molecule

are broadened and shifted as a result of the formation of a

lead–molecule bond and due to the electrostatic influence of the

leads. The bonding between lead α and the molecule is

described by the tunneling width matrix Γα and the electrosta-

tics, including intramolecular screening and van der Waals

effects, are described by the effective molecular Hamiltonian

derived using the aforementioned π-EFT. Although we use the

Pt–benzene–Pt junction as an example here, the techniques we

discuss are applicable to any conjugated organic molecular

junction.

Bonding
The bonding between the tip of electrode α and the molecule is

characterized by the tunneling-width matrix Γα given by

Equation 4. When a highly conductive SMJ [4] is formed, the

lead and molecule are in direct contact such that the overlap

between the π-electron system of the molecule and all of

the quasi-atomic wavefunctions of the atomically sharp

electrode are relevant. In this case we may express the elements

of Γα as [6]

(24)

where the sum is calculated over the evanescent tunneling

modes emanating from the metal tip, labeled by their angular-

momentum quantum numbers,  is the local density of

states on the apex atom of electrode α, and  is the tunneling

matrix element of orbitals l [25]. The constants Cl can in prin-

ciple be determined by matching the evanescent tip modes to

the wavefunctions within the metal tip [25]; however, we set

 and determine the constant C by fitting to the peak of

the experimental conductance histogram [4]. In the calculation

of the matrix elements, we use the effective Bohr radius of a

π-orbital a* = a0/Z, where a0 ≈ 0.53 Å is the Bohr radius and Z

= 3.22 is the effective hydrogenic charge associated with the

π-orbital quadrupole moment −0.65 eÅ2, determined by π-EFT.

For each Pt tip, we include one s, three p and five d orbitals in

our calculations, which represent the evanescent tunneling

modes in free space outside the apex atom of the tip. At room

temperature, the Pt density of states (DOS) ρα(E) = Σlρl
α(E)

is sharply peaked around the Fermi energy [26] with

ρα(εF) = 2.88/eV [27]. In accordance with [25], we distribute

the total DOS such that the s orbital contributes 10%, the p

orbitals contribute 10%, and the d orbitals contribute 80%.

We are interested in investigating transport through stable junc-

tions where the “atop” binding configuration of benzene on Pt

has the largest binding energy [28-30]. In this configuration, the

distance between the tip atom and the center of the benzene ring

is ≈2.25 Å [4], giving a tip to orbital distance of ≈2.65 Å (the

C–C bond distance is taken as 1.4 Å). The trace of Γα(εF) is

shown as a function of tip position in Figure 3, where for each

tip position the height was adjusted such that the distance to the

closest carbon atom was 2.65 Å. From the figure, it is evident

that the lead–molecule coupling strength is peaked when

the tip is in the vicinity of the center of the benzene

ring (whose outline is drawn schematically in black). As

shown in [2], the hybridization contribution to the binding

energy is
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which is roughly Tr{Γ(εF)}. Here μ is the chemical potential

of the lead metal,  is the N-particle molecular Hilbert space,

and 0N is the ground state of the N-particle manifold of the

neutral molecule. The sharply peaked nature of Tr{Γα} seen in

Figure 3 is thus consistent with the large binding energy of the

atop configuration.

This result motivates our procedure for generating the ensemble

of junctions, in which we consider the tip position in the plane

parallel to the benzene ring to be a 2-D Gaussian random vari-

able with a standard deviation of 0.25 Å, chosen to correspond

with the preferred bonding observed in this region. For each

position, the height of each electrode (one placed above the

plane and one below) is adjusted such that the closest carbon to

the apex atom of each electrode is at a distance of 2.65 Å. Each

lead is positioned independently of the other. This procedure

ensures that the full range of possible, bonded junctions are

included in the ensemble.

Figure 3: The trace of Γα for a Pt electrode in contact with a benzene
molecule. Nine total basis states of the Pt tip are included in this calcu-
lation (one s, three p and five d states). The tip height above the plane
of the molecule is adjusted at each point such that the Pt–C distance is
fixed to 2.65 Å (see text). Tr{Γα} retains the (six-fold) symmetry of the
molecule and is sharply peaked near the center of the benzene ring,
indicating that the strongest bonds are formed when the lead is in the
“atop” configuration. The benzene molecule is shown schematically
with the black lines; the carbons atoms are located at each vertex.

The eigenvalue distributions of Γα over the ensemble are shown

in Figure 4. Although we include nine (orthogonal) basis

orbitals for each lead, the Γ matrix only exhibits five nonzero

eigenvalues, presumably because only five linear combinations

can be formed that are directed toward the molecule. Although

we have shown the distribution for a single lead, the number of

transmission channels for two leads, where each Γα matrix has

the same rank, will be the same even though the overall

lead–molecule coupling strength will be larger. The average

coupling per orbital with two electrodes is shown in the bottom

panel of Figure 5.

Figure 4: Eigenvalue decomposition of an ensemble of Γα matricies,
showing that each lead–molecule contact has ~5 channels. Note that
nine orthogonal basis orbitals were included in the calculation for each
lead.

Screening
The ensemble of screened interaction matrices  is gener-

ated using the same procedure discussed above. Each Pt elec-

trode is modelled as a conducting sphere with radius equal to

the Pt polarization radius (1.87 Å). This is equivalent to the

assumption that screening is due mainly to the apex atoms of

each Pt tip. The screening surface is placed such that it lies one

covalent radius away from the nearest carbon atom [14].

The average over the interaction matrix elements  defines

the “charging energy” of the molecule in the junction [14]. The

charging energy  and per-orbital Tr{Γ} distributions are

shown in the top and bottom panels of Figure 5, respectively, in

which two electrodes are used in all calculations. As indicated

by the figure, the Tr{Γ}/6 distribution is roughly four times as

broad as the charging-energy distribution. This fact justifies the

use of the ensemble-average  matrix for transport calcula-

tions [2], an approximation which makes the calculation of
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Figure 5: The distribution of charging energy  (top panel) and
Tr{Γ} (bottom panel) over the ensemble described in the text. Here
Γ = Γ1 + Γ2 is the total tunneling-width matrix of the junction. The width
of the Tr{Γ} distribution is about four times that of the  distribu-
tion. The peaks of the  and Tr{Γ}/6 distributions are at 1.68 eV
and 1.95 eV, respectively, suggesting that transport occurs in an inter-
mediate regime in which both the particle-like and wave-like character
of the charge carriers must be considered.

thousands of junctions computationally tractable. The peak

values of the  and Tr{Γ}/6 distributions are 1.68 eV and

1.95 eV, respectively, suggesting that transport occurs in an

intermediate regime in which both the particle-like and wave-

like character of the charge carriers must be considered.

In addition to sampling various bonding configurations, we also

consider an ensemble of junctions to sample all possible Pt

surfaces. The work function of Pt ranges from 5.93 eV for the

(111) surface to 5.12 eV for the (331) surface [24], and we

assume that μPt is distributed uniformly over this interval.

Using this ensemble, the conductance histogram over the

ensemble of junctions can be computed, and is shown in

Figure 6. The constant prefactor C appearing in the tunneling

matrix elements [25] in Equation 24 was determined by fitting

the peak of the calculated conductance distribution to that of the

experimental conductance histogram [4]. Note that the width of

the calculated conductance peak is also comparable to that of

the experimental peak [4].

Results and Discussion
The transmission eigenvalue distributions for ensembles of

1.74 × 105 Pt–benzene–Pt junctions calculated by using the full

many-body spectrum and in the isolated-resonance approxima-

tion are shown in Figure 7a and Figure 7b, respectively. Despite

the existence of five covalent bonds between the molecule and

Figure 6: Calculated conductance histogram for the ensemble over
bonding configurations and Pt surfaces. The value of the conductance
peak has been fit to match the experimental data [4], determining the
constant C in Equation 24. There is no peak for G ~ 0 because we
designed an ensemble of junctions where both electrodes are strongly
bound to the molecule.

each lead (cf. Figure 4), there are only two dominant trans-

mission channels, which arise from the two-fold-degenerate

HOMO resonance closest to the Pt Fermi level [2]. As proof of

this point, we calculated the transmission eigenvalue distribu-

tion, over the same ensemble, using only the HOMO resonance

in the isolated-resonance approximation (Equation 19). The

resulting transmission eigenvalue distributions, shown in

Figure 7b, are nearly identical to the full distribution shown in

Figure 7a, with the exception of the small but experimentally

resolvable [4] third transmission channel.

The lack of a third channel in the isolated-resonance approxi-

mation is a direct consequence of the two-fold degeneracy of

the HOMO resonance, which can therefore contribute at most

two transmission channels. The third channel thus arises from

further off-resonant tunneling. In fact, we would argue that the

very observation of a third channel in some Pt–benzene–Pt

junctions [4] is a consequence of the very large lead–molecule

coupling (~2 eV per atomic orbital) in this system. Having

simulated junctions with electrodes whose DOS at the Fermi

level is smaller than that of Pt, we expect junctions with Cu or

Au electrodes, for example, to exhibit only two measurable

transmission channels.

In order to investigate the efficacy of the isolated-resonance

approximation further, we calculated the average total trans-

mission through a Pt–benzene–Pt junction. The transmission

spectra calculated using the full molecular spectrum, the

isolated HOMO resonance and the isolated LUMO resonance

are each shown as a function of the chemical potential of the

leads μPt in Figure 8. The spectra are averaged over 2000

bonding configurations and the blue shaded area indicates the

range of possible chemical potentials for the Pt electrodes. The

close correspondence between the full transmission spectrum

and the isolated HOMO resonance over this range is consistent

with the accuracy of the approximate method shown in
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Figure 7: The calculated eigenvalue distributions for an ensemble of 1.74 × 105 (2000 bonding configurations × 87 Pt surfaces) Pt–benzene–Pt junc-
tions using many-body theory with (a) the full spectrum and (b) the isolated-resonance approximation for the (doubly degenerate) HOMO resonance.
Despite each lead forming ~5 bonds (cf. Figure 4), calculations in both cases exhibit only two dominant channels, which arise from the degeneracy of
the relevant (HOMO) resonance. The weak third channel seen in (a) is a consequence of the large lead–molecule coupling and is consistent with the
measurements of [4].

Figure 7. Similarly, in the vicinity of the LUMO resonance, the

isolated LUMO resonance approximation accurately character-

izes the average transmission. The HOMO–LUMO asymmetry

in the average transmission function arises because the HOMO

resonance couples more strongly on average to the Pt tip atoms

than does the LUMO resonance.

It is tempting to assume, based on the accuracy of the isolated-

resonance approximation in our many-body transport theory,

that an analogous “single molecular orbital” approximation

would also be sufficient in a transport calculation based, e.g., on

density-functional theory (DFT). However, this is not the case.

Although the isolated-resonance approximation can also be

derived within DFT, in practice, it is necessary to use an

“extended molecule” to account for charge transfer between

molecule and electrodes. Analyzing transport in terms of

extended molecular orbitals has proven problematic. For

example, the resonances of the extended molecule in [31]

apparently accounted for less than 9% of the current through the

junction.

Employing an extended molecule also makes it difficult, if not

impossible, to interpret transport contributions in terms of the

resonances of the molecule itself [31]. Since charging effects in

SMJs are well-described in our many-body theory [6,12], there

Figure 8: The calculated average total transmission averaged over
2000 bonding configurations through a Pt–benzene–Pt junction shown
as a function of the chemical potential of the leads μPt. The isolated-
resonance approximation employing the HOMO or LUMO resonance
accurately describes the full many-body transport in the vicinity of the
HOMO or LUMO resonance, respectively. These data are in good
agreement with the measurements of [4]. The work-function range for
the crystal planes of Pt is shaded in blue, where
−5.93 eV ≤ μPt ≤ −5.12 eV [24].

is no need to utilize an extended molecule, and therefore the

resonances in our isolated-resonance approximation are true

molecular resonances.
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The full counting statistics of a distribution are characterized by

its cumulants. By using a single-particle theory to describe a

single-channel junction, it can be shown [32,33] that the first

cumulant is related to the junction transmission function, while

the second cumulant is related to the shot-noise suppression.

Often this suppression is phrased in terms of the Fano factor

[34]

(25)

In Figure 9 we show the distribution of F for our ensemble of

junctions, where the τn have been calculated from many-body

theory. Because of the fermionic character of the charge

carriers, 0 ≤ F ≤ 1 , with F = 0 corresponding to completely

wavelike transport, and a value of F = 1 corresponding to

completely particle-like transport. From the figure, we see that

F is peaked at ~0.51 implying that both the particle and wave

aspects of the carriers are important, a fact which is consistent

with the commensurate charging energy and bonding strength

(cf. Figure 5).

Figure 9: The calculated Fano factor F distribution for the full
ensemble of 1.74 × 105 Pt–benzene–Pt junctions. F describes the
nature of the transport, where F = 0 and F = 1 characterize wave-like
and particle-like transport, respectively. The peak value of this distribu-
tion F ~ 0.51 indicates that we are in an intermediate regime.

In such an intermediate regime both “complementary” aspects

of the charge carriers are equally important, requiring a many-

body description and resulting in many subtle and interesting

effects. For example, the transport in this regime displays a

variety of features stemming from the interplay between

Coulomb blockade and coherent-interference effects, which

occur simultaneously [6,11]. Although the Fano factor reflects

the nature of the transport, it is not directly related to the shot-

noise power in a many-body theory. The richness of the trans-

port in this regime, however, suggests that a full many-body

calculation of a higher-order moment, such as the shot noise,

may exhibit equally interesting phenomena.

Conclusion
We have developed a state-of-the-art technique to model the

lead–molecule coupling in highly conductive molecular junc-

tions. The bonding between the lead and molecule was

described by using an “ab initio” model in which the tunneling

matrix elements between all relevant lead tip wavefunctions and

the molecule were included, producing multi-channel junctions

naturally from a physically motivated ensemble over various

contact geometries. Coulomb interactions between the mole-

cule and the metallic leads were included by using an image

multipole method within π-EFT. In concert, these techniques

allowed us to accurately model SMJs within our many-body

theory.

The transport for an ensemble of Pt–benzene–Pt junctions,

calculated by using our many-body theory, confirmed

our previous finding [2] that the number of dominant trans-

mission channels is two, with the higher channels more

strongly suppressed within the more realistic treatment of lead-

molecule coupling presented here. Moreover, we find that the

transport through a Pt–benzene–Pt junction can be accurately

described by using only the relevant (two-fold-degenerate

HOMO) molecular resonance. The exceptional accuracy of

such an isolated-resonance approximation, however, may be

limited to small molecules with large charging energies.

In larger molecules, where the charging energy is smaller,

further off-resonant transmission channels may become more

important.

In metallic point contacts the number of channels is completely

determined by the valence of the metal. Despite the larger

number of states available for tunneling transport in SMJs, we

predict that the number of transmission channels is typically

more limited than in single-atom contacts because molecules

are less symmetric than atoms. Channel-resolved transport

measurements of SMJs therefore offer a unique probe into the

symmetry of the molecular species involved.

Supporting Information
We investigate the origin of the transmission distribution

widths by considering transport ensembles over Pt surfaces

with fixed bonding, and over bonding configurations with a

fixed Pt surface.

Supporting Information File 1
Transport distribution width decomposition

[http://www.beilstein-journals.org/bjnano/content/

supplementary/2190-4286-3-5-S1.pdf]
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