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Abstract
We examine different approaches to model viscoelasticity within atomic force microscopy (AFM) simulation. Our study ranges

from very simple linear spring–dashpot models to more sophisticated nonlinear systems that are able to reproduce fundamental

properties of viscoelastic surfaces, including creep, stress relaxation and the presence of multiple relaxation times. Some of the

models examined have been previously used in AFM simulation, but their applicability to different situations has not yet been

examined in detail. The behavior of each model is analyzed here in terms of force–distance curves, dissipated energy and any

inherent unphysical artifacts. We focus in this paper on single-eigenmode tip–sample impacts, but the models and results can also

be useful in the context of multifrequency AFM, in which the tip trajectories are very complex and there is a wider range of sample

deformation frequencies (descriptions of tip–sample model behaviors in the context of multifrequency AFM require detailed studies

and are beyond the scope of this work).
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Introduction
Atomic force microscopy (AFM) has evolved rapidly since its

invention in the mid-1980s [1] and has been used since then for

measuring topography and probe–sample forces on micro- and

nanoscale surfaces in different environments. Tapping mode

AFM (amplitude modulation, AM-AFM) is the most common

dynamic method and has been the subject of thorough studies

[2-6]. In tapping mode AFM damage or wear of the tip and

surface are reduced with respect to contact-mode AFM due to

lower friction and lateral forces, which makes it more applic-

able for imaging soft samples, such as polymers and biological

surfaces. Tapping mode AFM has the additional advantage that

it records a phase contrast simultaneously with the acquisition

of topography, which can be very useful in the study of hetero-

geneous samples [7-10]. Moreover, the observables in tapping
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mode AFM (phase and amplitude) can provide quantitative

information about the dissipative and conservative tip–sample

interactions by converting them to energy-based quantities,

namely the dissipated power (Pts) and virial (Vts) [9,11].

Although several authors have achieved quantification of

energy dissipation processes [12-15], the further utilization of

that information to derive material properties is not trivial in

tapping mode AFM. The nature of the technique with its inter-

mittent contact, during which the probe interacts with nonlinear

tip–sample forces ranging from attractive to repulsive, hinders

the derivation of simple relationships between observables and

sample properties. Furthermore, the extraction of sample prop-

erties becomes especially challenging when studying

viscoelastic materials. Despite the obstacles, analytical and

numerical simulations have been performed as an attempt to

estimate quantities such the sample loss tangent (a common

term used in the characterization of viscoelastic samples) [16]

although it has been reported that this approach can be inaccu-

rate for intermittent-contact applications [17]. Notably, one of

the key factors preventing the extraction of reliable material

information has been the absence of physically accurate models

for viscoelastic samples. On the other hand, better quantitative

agreement has been accomplished through contact-mode based

techniques such as contact resonance AFM (CR-AFM) [17],

band excitation AFM (BE-AFM) [18,19] and dual-amplitude

resonance tracking AFM (DART-AFM) [20]. These techniques

operate in a regime of quasi-linear tip–sample forces by using

very small cantilever oscillation amplitudes, but as a result only

provide linear viscoelasticity information and characterization

can be slow for CR-AFM and BE-AFM due to the pixel-based

measurement procedures used.

Significant progress has been recently achieved with regards to

fast and simultaneous topographical and spectroscopic charac-

terization of viscoelastic materials through the use of multifre-

quency AFM [21]. This work represents an important mile-

stone in rapid and quantitative multi-property characterization,

although it has so far only been realized in the context of a very

simple viscoelastic model that is generally not physically accu-

rate (this model is discussed in detail below). In fact, most of

the current models used in AFM simulation do not take into

account fundamental viscoelastic behaviors, such as stress

relaxation, creep or multiple relaxation times, which are very

distinct features in materials that exhibit rate-dependent behav-

iors, such as polymers [22]. A recent attempt has been made to

model viscoelastic samples in AFM by using a standard linear

solid (SLS) model (which is also discussed below) in order to

include basic rate dependent properties [22-25]. Although this is

a reasonable step, further sophistication is still required in order

to realistically capture the nonlinear rate-dependent behaviors.

The present paper explores the nature and behavior of

spring–dashpot sets as examples of models that can be

used for representing viscoelastic surfaces. The first part

of the study reviews the simplest models used in the context of

linear viscoelasticity within AFM, followed by a discussion of

more sophisticated spring–dashpot models. The second part of

the study evaluates in detail the force–distance curve and dissi-

pation behavior of these models, focusing on single-eigenmode

tip–sample impacts. Throughout the paper, the advantages and

disadvantages of the various models are discussed, along with

possible enhancements that can lead to more accurate simula-

tion of viscoelastic material characterization with AFM.

Results and Discussion
Model descriptions
Linear Maxwell model
The Linear Maxwell  model is  one of the simplest

spring–dashpot sets. It consists of a spring arranged in series

with a dashpot (Figure 1a). This model is known for success-

fully describing stress relaxation (time-dependent drop in

stress under a constant strain) and for failing to describe

creep (time-dependent strain relaxation under a constant

stress). The latter precludes the existence of a mechanism

for surface recovery upon deformation. As a consequence,

the sample continuously yields to lower positions when

impacted by the AFM tip, such that in subsequent impacts

the tip meets the sample at lower and lower heights (see inset of

Figure 1c). This also means that a tapping tip would not be able

to reach steady state as the surface is continuously yielding

(i.e., the probe would reach steady state only when the Linear

Maxwell sample has yielded sufficiently to allow the tip to

oscillate at its free oscillation amplitude, without any

tip–sample interaction). Since we are interested in the

response of the Linear Maxwell sample with an intermittent

contact probe, we have used a prescribed tip trajectory for the

simulations in Figure 1. We have thus prescribed the tip motion

as z(t) = zc + A·sin(ωt) while allowing surface relaxation.

In this case the tip was forced to travel down to 20 nm below

the original surface position for each tap, as shown in the inset

of Figure 1c. The inset also shows how the surface yields for

each consecutive tap, and it can also be seen that it

experiences only a partial recovery without returning to its orig-

inal position. When the tip goes down, the Linear Maxwell

surface partially relaxes through the dashpot, which is the

element that causes relaxation of the force stored in the spring.

During retraction the sample experiences an elastic recovery

that is proportional to the force stored in the spring, which could

not fully relax during the approach. However, the sample does

not experience viscous recovery because the dashpot does not

have a mechanism to travel back up and return to its original

position.
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Figure 1: (a) Linear Maxwell model schematic; (b) stress relaxation
simulation performed on a Linear Maxwell surface. The surface pos-
ition (Xb) is depressed to a constant position of 5 nm below its unper-
turbed state, starting at t = 20 µs. The inset shows the same stress
relaxation experiment but starting at t = 0 µs, and the horizontal axis is
intentionally plotted by using a logarithmic scale to show the inflection
point corresponding to its single relaxation time. (c) Force–distance tip
trajectories (the trajectory proceeds in the counterclockwise direction)
for a prescribed sinusoidal tip trajectory given by z(t) = 80 nm +
(100 nm) sin(ωt), where ω is 2π times 25 kHz. The inset shows three
consecutive tip–sample taps, each one separated by a fundamental
period equal to 1/25 ms. The Linear Maxwell parameters used were
k = 7.5 N/m and c = 1.0 × 10−4 N·s/m. The blue and red arrows in (c)
correspond to approach and retraction of the tip, respectively.

Despite the limitations of the Linear Maxwell model, it is able

to model dissipation which is evidenced by the presence of a

hysteresis loop in the force–distance (FD) curve (see Figure 1c).

This dissipation loop arises from the gap between the energy

input (energy given by the cantilever to the surface during ap-

proach) and the energy output (energy returned by the surface to

the cantilever during retract). In spring–dashpot models this gap

is caused by the relief of some of the stress accumulated in the

springs through the dashpots. Another advantage of the Linear

Maxwell model is that it gives a qualitatively accurate descrip-

tion of a FD curve for a viscoelastic sample during a single

impact. Figure 1c shows FD curves containing two minima that

arise from the fact that the tip encounters and leaves the sample

at different heights (the surface remains depressed when the tip

leaves the sample). The lack of surface recovery of the Linear

Maxwell surface is also evidenced in the force–distance curves

of consecutive taps where it can be seen that each loop is shifted

to the left where the retract point of a previous tap is the ap-

proach point of the subsequent oscillation (see Figure 1c). It is

also worth mentioning that all our simulations include long

range attractive forces, incorporated through the Hammaker

equation (see details in the Methods section) in order to obtain

results that are more directly applicable to AFM.

Figure 1b shows a stress relaxation experiment for a Linear

Maxwell arm. It can be seen that as time increases the stress

over the element drops to zero which is not accurate since it is

known that viscoelastic materials (e.g., polymers) retain internal

stresses in the chains that are not relaxed over time [26]. The

results also indicate the existence of a single relaxation time

(cd/k) which is reflected in the inflection point in Figure 1b. The

existence of a single relaxation time is also considered a limita-

tion in depicting true viscoelastic surfaces, which generally

have more than one relaxation time [27]. Finally, it is worth

mentioning that although a Linear Maxwell arm might appear to

be too simplistic, there may be samples whose recovery is so

slow that their response could be approximately mimicked by

this model [26].

Linear Kelvin–Voigt model
Another simple model comprised by a spring and a dashpot in

parallel is known as the Linear Kelvin–Voigt model (Figure 2a).

This model is known for successfully describing creep compli-

ance, but failing to describe stress relaxation. The surface lacks

a spring that is able to accommodate the immediate force

applied to it. Instead, the only spring in the model does not have

an immediate response and it only experiences compression

until the parallel dashpot starts yielding. As a result, a sudden

step appears in the FD curve in Figure 2c upon impact. The

magnitude of the step in the force (F) will depend on the instan-

taneous velocity (v) of the tip when it hits the sample and the

viscous coefficient of the damper (cd), since the force in a linear

dashpot is given by F = cd × v. Since the tip approaches the

sample with a velocity governed by the imaging and cantilever

parameters, the sample surface experiences an instantaneous

velocity immediately upon contact, which gives rise to the

sudden jump in the FD curve. This is an obvious problem

precluding the application of this model to tapping mode AFM.

This artifact can also be seen in the inset of Figure 2c which

shows the force as a function of time as well as the position of

the surface and tip trajectory in time. It can be seen that the

discontinuous increment of the force occurs at the moment

when the probe encounters the surface.

Figure 2c shows the creep experiment on a Linear Kelvin–Voigt

surface. In the inset of the figure, force and surface position are
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Figure 2: (a) Linear Kelvin–Voigt model scheme; (b) creep simulation
performed on a Linear Kelvin–Voigt surface, whereby a force of
−35 nN is applied at time zero. The horizontal axis is plotted using a
logarithmic scale to show the inflection point corresponding to the
single retardation time of the model. The inset shows the same experi-
ment but here the force is applied at time t = 20 µs and the surface
creeps. (c) Force–distance tip trajectory corresponding to a tapping tip
over a Linear Kelvin–Voigt sample. The inset shows the base (surface)
and tip position, and the force along one fundamental oscillation. The
tip was oscillated along a numerically simulated trajectory (not
prescribed) for tapping mode AFM. The parameters used for (c) are:
cantilever position zc = 80 nm, natural frequency (f0) = 75 kHz, free
amplitude (A01) = 100 nm, cantilever stiffness (km1) = 4 N/m. The
Linear Kelvin–Voigt parameters used for (b) and (c) were k = 7.5 N/m
and c = 1.0 × 10−6 N·s/m. The blue and red arrows in (c) correspond to
approach and retraction of the tip, respectively.

plotted as a function of the time. In this experiment a down-

ward force of 35 nN is applied to the surface, after which the

surface immediately starts creeping. When the sample retracts

the model behaves as if an upward force is being applied to the

surface, which causes the surface to creep back up to its orig-

inal unperturbed position. This ability of the Linear

Kelvin–Voigt model to reproduce creep provides a mechanism

for the surface to recover to its original position, which is a

feature that is not available in Linear Maxwell surfaces, as

previously discussed. It is interesting to see in the inset of

Figure 2c that during tip retract the surface does not seem to

creep right away but instead it appears that the sample has an

initial elastic response and only afterwards exhibits creep

behavior, starting when the tip–sample contact is lost. The

reason for this is that the surface actually creeps from the begin-

ning but with a higher rate than the tip velocity, so in the simu-

lations a restriction needs to be imposed to keep the surface

from overtaking the tip position. As a result, the surface only

creeps freely when there is no restriction by the tip, which

occurs when the tip leaves the surface. As expected, for higher

values of cd (a less yielding dashpot) the creep phenomenon can

be seen from the beginning of the tip retraction because the

dashpot creep rate is lower than the tip velocity (Figure S1,

Supporting Information File 1). In Figure 2b it can also be seen

that the Linear Kelvin–Voigt model only provides one retarda-

tion time (the inflection point in the strain–log time curve). The

inability of these simple models (Linear Maxwell and Linear

Kelvin–Voigt) to capture multiple relaxation and retardation

times constitutes a disadvantage when modeling the actual

behavior of polymers and in particular when interpreting AFM

data, whereby the cantilever and imaging parameters may be

such that they favor only a particular relaxation time of the

sample or none at all.

Despite the above disadvantages of the Linear Kelvin–Voigt

model, it has been previously used in tapping mode

AFM, both in experimental and numerical simulation

approaches [16,17]. This model is also customarily used

in contact-mode methods [28,29], for which there is no tran-

sition between contact and noncontact regimes as in tapping

mode, so the sudden force artifact discussed above does not

occur.

Standard Linear Solid (SLS) model
The SLS model is recognized as being the simplest one that is

able to capture both stress relaxation and creep compliance,

which are basic time-dependent properties exhibited by

viscoelastic surfaces. It is comprised by a Linear Maxwell arm

arranged in parallel with a spring (Figure 3a) and has been

recently used in the context of multifrequency and spectral

inversion AFM simulations [22-24]. Figure 3b illustrates the

time-dependent properties of an SLS surface, which captures

the advantages of the Linear Maxwell and Linear Kelvin–Voigt

models, but exhibiting important differences in the time-depen-

dent experiments. Figure 3b illustrates a relaxation experiment

for the SLS model. Here, a restoring force of 75 nN is immedi-

ately obtained when the surface is displaced by 5 nm at time

20 µs. Then, the system relaxes through the dashpot located in

the Linear Maxwell arm. However in the case of SLS the stress

does not relax to zero, but rather, some stress remains stored in

the spring parallel to the Linear Maxwell arm (kinf) which in

this 1-dimensional case corresponds to a force of 37.5 nN. This

behavior is more physically accurate for samples such as poly-
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mers, for which it is known that a total relaxation of the stress

does not occur [26]. On the other hand, for the creep simulation

the SLS shows an immediate response of the surface (attributed

to the elastic part) right when the force is applied, before notice-

able surface creep occurs (Figure S2, Supporting Information

File 1). The above is not observed in the creep simulation of the

Linear Kelvin–Voigt surface where creep occurs without

showing an immediate elastic response (Figure 2b). In the

context of tapping mode AFM the SLS also has advantages

when compared to the previous models discussed. First, it

provides a mechanism to accommodate the initial force through

its springs during tip approach without causing the discontin-

uous increase in force exhibited by the Linear Kelvin–Voigt

model. Second, it provides a mechanism for surface recovery

which allows the surface to return to its unperturbed position

(this feature is not available in the Linear Maxwell model).

Despite the advantages of the SLS model, however, it does not

reproduce multiple relaxation times nor nonlinear elastic behav-

ior.

Wiechert model
Modeling of multiple relaxation times has generally been

carried out by representing a viscoelastic surface as a series of

Linear Maxwell arms in parallel with an equilibrium spring that

keeps a residual stress that does not relax in time. This general-

ized model is known as the Wiechert model. Multiple relax-

ation times in a real sample are attributed to the presence of

molecular segments with different lengths which have different

contributions [30]. Figure 3c shows a Wiechert model with two

Linear Maxwell arms. We have chosen this particular configur-

ation for simplicity, as the main goal is to illustrate its applica-

tion in the context of tapping mode AFM. Figure 3d shows a

stress relaxation simulation for the Wiechert model chosen, and

as expected, the existence of two relaxation times is evidenced

by the presence of two inflection points in the inset. Each relax-

ation time is linked to the relaxation of each of the Linear

Maxwell arms. The dashpot constants were intentionally chosen

to have significantly different values (c1 = 1.0 × 10−5 N·s/m and

c2 = 10.0 × 10−5 N·s/m) in order to more clearly show the pres-

ence of the multiple relaxation times. In the context of tapping

mode AFM this model exhibits a behavior that is qualitatively

similar to that of the SLS model. That is, it is able to success-

fully accommodate the initial force experienced by the surface

during the approach of the tip and also provides a mechanism

for surface recovery through the stress stored in the equilibrium

spring. The FD curve of the Wiechert model (Figure S3,

Supporting Information File 1) also looks qualitatively similar

to the FD curve of the SLS model. Both are characterized by the

presence of two minima and a dissipation loop, and both curves

are smooth with no discontinuity artifacts as for the Linear

Kelvin–Voigt model.

Figure 3: (a), (c), and (e) Standard linear solid (SLS) model, Wiechert
model, and Nafion model, respectively; (b), (d), and (f) stress relax-
ation simulations for SLS, Wiechert, and Nafion models, respectively.
The insets show the stress relaxation experiments for which time is
plotted in logarithmic scale to show the inflection points corresponding
to the relaxation times. The parameters for (b) are: ke = k = 7.5 N/m,
c = 5.0 × 10−5 N·s/m. The parameters for (d) and (f) are: ke = 20 N/m,
k1 = 10 N/m, k2 = 5 N/m, c1 = 1.0 × 10−5 N·s/m, c2 =10.0 × 10−5 N·s/m.

Nafion® model
The Nafion model was introduced by Boyce and coworkers [31]

to mimic the behavior of the Nafion proton exchange polymer

in biaxial loading tests. This model, shown in Figure 3e,

consists of a standard linear fluid element (a Linear Maxwell

arm in parallel with a dashpot) in series with a spring and in

parallel with an equilibrium spring. The special arrangement in

this model attempts to reproduce the molecular and intermolec-

ular rearrangement that Nafion undergoes during the applica-

tion of stress [31], which motivated us to consider it in the

context of AFM. However, it is important to point out that the

original model has nonlinear springs and dashpots, whereas the

model illustrated here only contains linear elements. This has

been done for simplicity, but one must be mindful that

nonlinear elements should be present to account for the geomet-
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rical aspects of the changing tip–sample contact area during

impact. A stress relaxation simulation of the Nafion model is

shown in Figure 3f. The inset clearly indicates the presence of

two relaxation times in the force–log time curve. Is interesting

to see that the rate at which the force drops is proportional to

the rate of motion of dashpot c1. The above is explained by the

fact that the drop in the force in spring k1 is dictated by the

motion of dashpot c1 and, at the same time, the relaxation of the

entire model is governed by spring k1, since the equilibrium

spring never relaxes. Is also interesting to mention that the

Linear Maxwell arm initially experiences an increase in force,

after which the force starts to drop. In this model, as in the two

previously described models, the force does not fall to zero but

instead reaches a minimum force stored in the equilibrium

spring ke. This model exhibits a very interesting behavior under

the influence of a tapping tip, which is discussed in the second

part of this study.

Nonlinear models
Typically, viscoelasticity in the context of AFM has been

modeled by the addition of a dissipative force term (Fts
DISS) to

the conservative force term(s) (Fts
CON), such that the total

tip–sample force can be expressed as Fts = Fts
CON + Fts

DISS.

Usual ly  the repuls ive conservat ive port ion of  the

tip–sample interaction force is defined through the

Derjaguin–Muller–Toporov (DMT) model or a similar model

[6,32] while the conservative attractive force corresponding to

van der Waals interactions is modeled through the Hamaker

equation [6]. The dissipative portion of the interaction has been

typically modeled through a velocity-dependent term. One ap-

proach (often used by us) has been to use the model of Gots-

mann and coworkers [33], in which the dissipative force, Fdiss,

is proportional to the negative of the tip velocity (that is, acting

in opposite direction) through an exponentially decaying coeffi-

cient:

(1)

Here ztip is the instantaneous cantilever tip position, γ0 is a

dissipation coefficient with units of mass/time and z0 is a char-

acteristic length over which the dissipation force decays (in this

study we will refer to this model as ‘DMT-Gotsmann’). Another

very widely used approach to incorporate the dissipative portion

of the tip–sample forces, is an adapted Voigt model that uses

Hertz contact mechanics to incorporate the contact area and

sample deformation [7]. The dissipative part of this model, orig-

inally introduced by García and coworkers [34] has the

following form:

(2)

where η is the viscosity, R is the tip radius and δ is the sample

deformation (tip–sample indentation). In this model, the linear

spring in the Linear Kelvin–Voigt material is also replaced by a

nonlinear DMT spring. As a result, this model is able to capture

the nonlinear behavior of the tip–sample interactions (this

model will be referred to in this study as DMT-García). Typical

FD curves of the above two models are shown in Figure 4, in

which we show the conservative and dissipative contributions

along with the total force. The insets illustrate how the different

contributions of the force behave in time. It can be clearly seen

that the conservative part is symmetric, the dissipative part is

antisymmetric and the total force lacks symmetry. Both

approaches (DMT-Gotsmann model and DMT-García) share a

similar concept in which the viscous force is proportional to the

deformation velocity, and also both include varying contribu-

tions due to contact area variations. One important difference is

that the DMT-Gotsmann model includes viscoelastic contribu-

tions in the conservative attractive part of the interaction, which

is generally not physically meaningful for viscoelastic surfaces

since viscoelastic dissipation only occurs in the contact regime,

although there can be other contributions to dissipation in the

non-contact regime such as long-range and short-range surface

adhesion [7], the discussion of which is beyond the scope of this

study. One important disadvantage of the DMT-Gotsmann and

DMT-García models is that neither is able to reproduce the

fundamental rate-dependent properties of viscoelastic materials,

namely stress relaxation and creep. Furthermore, these models

do not mimic the behavior of the sample but instead always

assume a static unperturbed sample. As a result the FD curves

only show one minimum at the fixed point where the tapping

probe always finds the sample. On the other hand, one signifi-

cant advantage of these models over the linear models discussed

in previous sections is that they take into account the effect of a

varying contact area on the stiffness and dissipative coefficient

of the tip–sample interaction.

As an initial attempt to blend the advantages of the linear

spring–dashpot models with the advantages of the current

nonlinear models used in AFM, we propose here a standard

nonlinear solid (SNLS). Figure 5a shows a diagram of the

SNLS. The structure resembles the SLS but it incorporates a

nonlinear DMT spring as the equilibrium spring. This configur-

ation was chosen because the SLS is the simplest model that is

able to describe stress relaxation and creep, and the DMT is a

widely used model in contact mechanics that is typically used in

the context of AFM. We include both DMT contact forces and

long-range van der Waals forces [6,32].
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Figure 4: (a) and (b) show force trajectories for a tip under a numeri-
cally simulated (not prescribed) single tapping mode trajectory for a
DMT-García sample and a DMT-Gotsmann sample, respectively. The
figures show the individual contribution of the conservative and dissi-
pative forces, along with the total force. The insets show the behavior
of the force contributions over time and reflect the symmetry aspects
discussed in the main text. The simulation parameters for the
cantilever dynamics in (a) and (b) are: cantilever position zc = 80 nm,
natural frequency (f0) = 50 kHz, free amplitude (A01) = 50 nm,
cantilever stiffness (km1) = 10 N/m. The model parameters for (b) and
(c) associated with the DMT contribution are: elastic sample modulus
(Es) of 3 GPa, elastic tip modulus (Et) of 150 GPa, Poisson’s ratio of tip
and sample (υt and υs, respectively) of 0.3, tip radius of curvature (R)
of 10 nm, Hamaker constant of 2 × 10−19 J. For (a) a viscosity (η)
value of 400 N·s/m2 was used. For (b) a dissipation coefficient (γ0) of
3 × 10−7 kg/s, and a characteristic dissipation length (z0) of 0.75 nm
were used. The blue and red arrows correspond to approach and
retraction of the tip, respectively.

(3)

(4)

(5)

where H is the Hammaker constant, R is the tip radius, z the tip

position with respect to the sample, a0 the intermolecular dis-

tance, E* the effective tip–sample elastic modulus, Et and Es the

elastic modulus of tip and sample, respectively, and νt and νs

are the Poisson’s ratios of the tip and the sample, respectively.

In general, the SNLS works similar to the SLS with the differ-

ence that the SNLS includes a DMT element as the equilibrium

spring. In Figure 5a we provide a physical representation of the

SNLS model in which the DMT spring can be visualized as an

infinite collection of springs, for which the number of active

elements increases as the tip goes deeper into the sample. The

above is mathematically represented with a nonlinear spring

whose stiffness depends on the position of the tip and the

contact area [32]. A typical FD curve for this model is shown in

Figure 5b, in which the nonlinear behavior of the contact region

is evident, along with the presence of two force minima, as in

the spring–dashpot models.

Dissipation-based analysis
Extracting material properties in a fast and accurate way is one

of the ultimate goals in AFM. In order to accomplish this for

viscoelastic surfaces, physically accurate models are a require-

ment. One very distinct feature of viscoelastic materials is that

they dissipate energy when they are subjected to dynamic

loading. In the particular case of tapping mode AFM, the

sample experiences a cyclic, nearly sinusoidal loading. For

tapping mode AFM, other authors have derived expressions that

link the observables (phase and amplitude) to the energy dissi-

pated [9,35], and these relationships have been widely used

[10,11,36,37]. Although the amount of dissipation is an impor-

tant hint to the nature of the material, it is not possible to derive

unambiguous conclusions about the material properties by

probing a material with a single condition. With viscoelasticity

being a rate-dependent phenomenon, it becomes necessary to

characterize the sample at different velocities, which is not

trivial in practice for tapping mode AFM. Such characterization

would require imaging the sample with cantilevers of different

fundamental frequencies or the use of different higher eigen-

modes in successive experiments [22]. For this numerical study,

we have chosen the first approach and for simplicity we have

restricted ourselves to single-eigenmode tapping mode AFM

due to the introductory nature of this work and to keep it from

becoming excessively lengthy.

Dissipation in AFM has often been studied by using dissipation

vs amplitude setpoint (A1/A01) curves, in which it has been
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Figure 5: (a) Standard nonlinear solid (SNLS) model. (b) Tip force
trajectory for a tip under a numerically simulated (not prescribed)
tapping mode trajectory interacting with a SNLS sample. The inset in
(b) shows the position of the surface and the dashpot over one funda-
mental oscillation. The parameters for the cantilever dynamics were
the same as in Figure 2b. The parameters for kDMT were the same as
in Figure 4. The parameters k and c were set to 7.5 N/m and
0.5 × 10−5 N·s/m, respectively. The blue and red arrows in (b) corres-
pond to approach and retraction of the tip, respectively.

possible to distinguish differences in dissipation arising from

viscoelasticity, long- and short-range interactions [34]. We

have also followed this approach in the current study. Figure 6

shows the FD behavior of three different models (Linear

Kelvin–Voigt, DMT-García and DMT-Gotsmann) for different

cantilever frequencies, with the insets showing the corres-

ponding dissipation behavior for different frequencies and

different amplitude setpoints (ratio of engaged amplitude to free

amplitude A1/A01). We have analyzed these models together

since they share some common features. For the Linear

Kelvin–Voigt model (Figure 6a) the dissipation has a direct

relation with the velocity, through the linear viscous dashpot in

its structure (Figure 2a). For this simple model, which does not

include stress relaxation, dissipation arises from the presence of

a viscous linear dashpot where the magnitude of the dissipation

force is related to the velocity by the simple relation .

For the other two models in Figure 6, dissipation is incorpo-

rated through a nonlinear dashpot, but still the emergence of

dissipation is in the form of . All the results in

Figure 6 show that, regardless of the setpoint, dissipation grows

monotonically over the entire range of frequencies studied.

The models in Figure 6 share some common features and the

nonlinear models (Figure 6b and Figure 6c) can be considered

enhancements of the simple linear Linear Kelvin–Voigt model,

which are able to capture the nonlinear interactions of the probe

in intermittent contact with the sample. However, we again

remind the reader that these models do not exhibit stress relax-

ation, and in the case of DMT-Gotsmann and DMT-García,

they do not exhibit creep either. Nonetheless, the DMT-García

model has been able to successfully describe certain viscoelastic

materials under specific conditions [21], and even the simple

Linear Kelvin–Voigt model has shown applicability in tapping

mode AFM for the calculation of loss tangent in simulations

[16], although it has shown to be inaccurate in experimental

applications, in which real samples are involved [17].

In Figure 7 and Figure 8 we have varied the parameters of the

Nafion model in order to tune the importance of the dashpot

elements in the viscoelastic model. In this type of model the

dissipation per cycle is related to the magnitude of the dashpot

constant, where larger dashpot constants lead to lower dissipa-

tion (recall that here there are springs that accommodate the

immediate response of the cantilever). This does not apply to

the case of the Linear Kelvin–Voigt model because there are no

springs to accommodate the immediate sample deformation

induced by the tip. In the case of the Linear Kelvin–Voigt and

other models, in which the dashpot immediately experiences the

sample deformation (e.g., in the standard linear fluid element

(dashpot in parallel with a Linear Maxwell arm)), the amount of

dissipation is proportional to the constant (dissipation coeffi-

cient) of the dashpot that immediately experiences strain upon

deformation. This discrepancy comes from the fact that the

mechanism for the emergence of dissipation for models that

accommodate initial response through springs (e.g., standard

linear solid and Linear Maxwell) and those that do not

(e.g., Linear Kelvin–Voigt and standard linear fluid) is funda-

mentally different. The latter ones experience immediate

viscous dissipation whenever there is a surface displacement

while the former experience dissipation through subsequent

surface relaxation of stress initially stored in springs.

In the case of the Nafion model we have varied the magnitude

of c1 and c2 (see Figure 3a) to observe the effect of changing

the relative importance of the damping elements. Figure 7

shows the results for the case when both dashpots have the

same damping constant. Figure 7a illustrates how dissipation

decreases when the frequency increases for the range studied



Beilstein J. Nanotechnol. 2014, 5, 2149–2163.

2157

Figure 6: (a), (b) and (c) show force trajectories for a tip following a numerically simulated (not prescribed) single tapping mode trajectory over a
Linear Kelvin–Voigt, a DMT-García, and a DMT-Gotsmann sample, respectively. Each of the force trajectories is color-coded according to the
cantilever eigenfrequency used in the simulation. The insets in the figures show the behavior of dissipation as the frequency increases, and each
color coded line relates to a specific amplitude setpoint (A1/A01). The simulation parameters for the cantilever dynamics in (a), (b) and (c) are:
cantilever position zc = 80 nm, free amplitude (A01) = 100 nm, cantilever stiffness (km1) = 4 N/m. The Linear Kelvin–Voigt parameters for (a) were
k = 7.5 N/m and c = 1.0 × 10−6 N·s/m. The sample parameters for (b) and (c) are the same as for Figure 4.

here (10–200 kHz). It is interesting to see in Figure 7b that

regardless of the amplitude setpoint (A1/A01) the level of dissi-

pation was higher for lower frequencies along the entire range

of parameters studied here. That is, there is no overlap of the

dissipation vs amplitude setpoint curves for different frequen-

cies in Figure 7b. The slope of the dissipation vs amplitude

setpoint curves is an important parameter in characterizing

dissipation [34], which also facilitates the determination of the
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Figure 7: Results of energy dissipation when a numerically simulated tip trajectory in intermittent contact AFM interacts with a Nafion model.
(a) shows force–distance curves for tips driven at different eigenfrequencies (color coded). The inset in (a) shows the behavior of the dissipation as
the frequency grows, and each color-coded line relates to a specific amplitude setpoint (A1/A01). (b) shows dissipation vs amplitude setpoint (A1/A01)
curves in which each color-coded line corresponds to a specific eigenfrequency. The inset in (b) shows the slope of the curves in (b) near the range
where the slopes cross the x-axis in order to easily locate the maxima of the curves in (b). (c) shows the response of the surface and dashpots of the
Nafion model for two cases at different cantilever eigenfrequencies. The parameters for the cantilever dynamics are the same as in Figure 6. The
sample parameters use were: ke = 20 N/m, k1 = 10 N/m, k2 = 5 N/m, and c1 = c2 = 1.0 × 10−5 N·s/m. Time normalization has been carried out in (c)
with respect to the fundamental period for ease of comparison.

maximum in these curves. The inset in Figure 7b was plotted

for a range in which it is easy to inspect where the derivative

crosses the x-axis. For this case the maximum of the curves

slightly shift to the left as the frequency increases within a

range of 0.4 to 0.5 of the ratio A1/A01.

In contrast, for Figure 8, when the dashpot c2 is set to a high

damping value compared to c1 (notice that the dashpot c2 in

Figure 3a hardly yields when compared to c1) the behavior of

dissipation changes drastically compared to the results of

Figure 7. In the inset of Figure 8a it can be seen that for the

range of frequency studied, for every setpoint dissipation

increases until it reaches a certain maximum, depending on the

setpoint, and then decreases to lower values. In dynamic

loading experiments in the polymer literature this maximum is

related to a glass transition temperature Tg where the loss

modulus (which is proportional to dissipation) peaks within that

frequency range [27]. Figure 8b confirms the trend in the inset

of Figure 8a. It can be seen that from 25 kHz to 75 kHz dissipa-

tion increases almost for all the setpoints (except for high

setpoints) and then decreases for higher frequencies (from

75 kHz to 175k Hz) almost for all setpoints (except for low

setpoints where A1/A01 is lower than 0.15). The inset in

Figure 8b shows that the maximum of the dissipation vs

setpoint curve shifts to the left as the frequency increases. The

behavior of this model (Figure 8) is more intricate than the one

shown in Figure 7 and illustrates the challenges in choosing the

ideal parameters when an experimentalist wants to maximize

dissipation in tailoring a material that follows this model.

Figure 9 shows dissipation behaviors when performing

tapping mode AFM over two different viscoelastic samples:
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Figure 8: Results of energy dissipation when a tip interacts with a Nafion model under a numerically simulated trajectory. (a) Shows force distance
curves for tips driven at different eigenfrequencies (color coded). The inset in (a) shows the behavior of dissipation as the frequency increases, and
each color coded line relates to a specific amplitude setpoint (A1/A01). (b) shows dissipation vs amplitude setpoint (A1/A01) curves, where each color
coded line corresponds to a specific eigenfrequency. The inset in (b) shows the slope of the curves in (b) near the range where the slopes cross the
x-axis in order to easily locate the maxima of the curves in (b). (c) shows the response of the surface and dashpots of the Nafion model for two cases
at different cantilever eigenfrequencies. The parameters for the cantilever dynamics were the same as in Figure 6 and Figure 7. The sample parame-
ters were: ke = 20 N/m, k1 = 10 N/m, k2 = 5 N/m, c1 = 0.5 × 10−5 N·s/m, and c2 = 100.0 × 10−5 N·s/m. Time normalization has been carried out in (c)
with respect to the fundamental period for ease of comparison.

Figure 9a and Figure 9b show results for the Wiechert model,

and Figure 9c and Figure 9d for the SLS model. For this set of

simulations the Wiechert model (see diagram in Figure 3c) had

a value of c2 that was much higher than the value of c1, with the

purpose of making c2 less relevant in terms of the amount of

dissipation observed. Afterwards, an SLS model was simulated

with parameters that approximate the response of the

more complex Wiechert model (see the caption of Figure 9).

The dissipation results show very similar trends for both

models and also a close quantitative agreement between both,

which is reasonable since the Wiechert model was set in a way

that one of the dashpots dominates during the intermittent

tip–sample interactions, and as previously stated, the mecha-

nism of dissipation of this spring–dashpot models is surface

relaxation which happens when the force, built up in the

springs, drops through the yielding of the dashpots. There is still

a small difference between the models, which can be observed

in Figure 9b and Figure 9d where the values of the dissipation

are slightly higher for the Wiechert model. This difference is

attributed to the modest contribution of dissipation arising from

the stress relaxation that occurs through c2 in the Wiechert

model.

Figure 10 shows dissipation results for the standard nonlinear

solid model (SNLS). Figure 10a shows FD curves at different

frequencies, from which it is clear that at low frequencies the

dissipation loop is larger and also the tip position reaches lower

values corresponding to a greater tip–sample indentation. As the

tip reaches lower values, the minimum of the FD curve when

the tip leaves the sample (the left-most minimum in the FD

curves, corresponding to the tip retract) is also lower. The above

is explained by the fact that lower frequencies allow for a
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Figure 9: (a) and (c) show dissipation vs amplitude setpoint (A1/A01) curves where each color coded line corresponds to a specific eigenfrequency,
for the Wiechert and the SLS models, respectively. The insets in (a) and (c) show the slope of the curves in (a) and (c) plotted over a range near
where the slopes cross the x-axis, in order to easily locate the maxima of the curves in (a) and (c). (b) and (d) show the behavior of dissipation as
frequency increases, and each color coded line relates to a specific amplitude setpoint (A1/A01) for the Wiechert and the SLS models, respectively.
The parameters for the cantilever dynamics were the same as in Figures 6 to 8. The sample parameters for (a) and (b) were: ke = 10 N/m,
k1 = 7.5 N/m, k2 = 7.5 N/m, c1 = 0.5 × 10−5 N·s/m, and c2 = 100.0 × 10−5 N·s/m. The sample parameters for (c) and (d) were: ke = 17.5 N/m,
k = 7.5 N/m, c = 0.5 × 10−5 N·s/m.

longer time for relaxation of the dashpots. The inset in

Figure 10 shows the behavior of dissipation at different

frequencies, exhibiting a similar trend as for the SLS model

where the two extremes of frequencies show low dissipation,

coinciding with the behavior of amorphous polymers, which in

dynamic loading tests are expected to undergo highly elastic

behavior in the two extremes of frequencies [27]. Figure 10b

also shows similar qualitative behavior to that of the SLS

model, with the maxima in the inset shifting to the left for larger

frequencies. Finally, Figure 10c shows the response of the

surface and the dashpot of the SNLS model to different frequen-

cies. This figure shows clearly than at 25 kHz the dashpot in the

model is able to respond significantly while at 175 kHz the

dashpot response is much smaller. As a result, the surface is

able to experience greater surface relaxation (leading to greater

dissipation) at 25 kHz.

Conclusion
Different approaches to model viscoelasticity within intermit-

tent contact AFM have been studied with special emphasis on

spring–dashpot models. We summarize the models that have

been frequently used in AFM, highlighting their strengths and

deficiencies. We also propose different spring–dashpot models

that can be used to mimic the response of viscoelastic surfaces,

especially polymers, under interactions with the AFM tip. Most

of the models included display distinct features observed in

polymers, namely stress relaxation and creep, and some of them

exhibit multiple relaxation times, as in realistic samples. The

level of complexity and physical accuracy is different for each

model and good judgment is advised in selecting the proper

model for the type of sample or dynamic phenomenon under

investigation. Although this paper is not intended to serve as an

exhaustive manual for modeling viscoelasticity in AFM, it is
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Figure 10: Results of energy dissipation when a realistic tip interacts in intermittent contact AFM with a standard nonlinear solid (SNLS). (a) Shows
force–distance curves for tips driven at different eigenfrequencies (color coded). The inset in (a) shows the behavior of dissipation as frequency
increases, and each color coded line relates to a specific amplitude setpoint (A1/A01). (b) Shows dissipation vs amplitude setpoint (A1/A01) curves
where each color coded line corresponds to a specific eigenfrequency. The inset in (b) shows the slope of the curves in (b) plotted in the range where
the slopes cross the x-axis in order to easily determine the maxima of the curves in (b). (c) Shows the response of the surface and dashpots of the
SNLS model for two different cantilever eigenfrequencies. The parameters for the cantilever dynamics were the same as in Figures 6 to 9. The
sample parameters were the same as for Figure 5.

our aim that it sparks further theoretical developments, which

are much needed especially as new rapid AFM-based spec-

troscopy techniques are developed [21].

Methods
Numerical simulations of the cantilever dynamics were

performed for most of the cases according to single-eigenmode

tapping mode AFM, unless otherwise indicated. To model the

dynamics of the cantilever we included the contribution of the

first three flexural modes of the cantilever (although only the

first one was excited). Each mode was described through an

individual equation of motion, and the three single equations

were coupled through the tip–sample interaction forces as in

previous studies [19,22,24,37,38]. The first eigenmode (the only

one actively driven) was excited at its natural frequency. The

first three quality factors of the cantilever were set to Q1 = 220,

Q2 = 450, and Q3 = 750 in all cases, and the rest of the parame-

ters are indicated in the figure captions for each case. The equa-

tions of motion were integrated numerically and the amplitude

and phase for the first eigenmode were calculated using the

in-phase (Ii) and quadrature (Ki) terms:

(6)

(7)

where zi(t) is the i-th eigenmode response in the time domain, N

is the number of periods over which the phase and amplitude

were averaged, ω is the excitation frequency, and τ is the funda-

mental period of one oscillation. The amplitude and phase (used
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in the dissipation analysis) were calculated, respectively, as:

(8)

(9)

The repulsive tip–sample forces were simulated through the

various models discussed throughout the paper, and the parame-

ters for each of the models are provided in the respective figure

captions.

Supporting Information
Supporting Information features additional simulation data,

namely the surface response of Linear Kelvin–Voigt

samples and its dependency on its dissipation coefficient,

the creep simulation of a SLS sample, and the comparison

between the force–distance curves of the SLS and the

Nafion model.

Supporting Information File 1
Additional simulation data.

[http://www.beilstein-journals.org/bjnano/content/

supplementary/2190-4286-5-224-S1.pdf]
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